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Abstract

The nucleons, as one of the most fundamental building blocks of visible matter, are built up of quarks
and gluons. However, the interactions and dynamics inside the nucleons, which are mediated by
the strong force and described by Quantum Chromodynamics (QCD), are still a major challenge
to modern physics. In the mass region of the excited states of the nucleons, known as resonances,
perturbative calculations are not feasible in QCD, and thus phenomenological approaches and numeri-
cal methods are essential for the description of the strong interaction. From the experimental side,
complementary probes are available to study the excitation spectrum of the nucleon and different
sensitivities to unique observables provide stringent tests of the available theoretical approaches.
In the past, most resonances have been found in pion-nucleon scattering experiments. However,
the meson photoproduction reactions gained more attention during the last decades since several
resonances might only weakly couple to the pion-induced reactions. Although over the years a lot
of experimental effort from several collaborations at various accelerator facilities was conducted,
discrepancies between theoretical models and experimental results are still present, e.g., regarding the
number of resonances. From the experimental point of view, the short lifetimes of the resonances are
a possible explanation for these discrepancies. They lead to many broad and overlapping resonances
that even contribute selectively to distinct decay channels. The measurement of the total unpolarized
cross sections alone is not able to identify all resonances since they are only sensitive to the dominant
contributing resonances. For the identification of all resonances and their properties, an unambiguous
Partial Wave Analysis (PWA) solution needs to be obtained. This requires precise knowledge of
several well-chosen single and double polarization observables in different decay channels. Therefore,
current experiments measure these polarization observables that are sensitive to weakly contributing
resonances. They can be accessed by either polarizing the initial state, by measuring the polarization
of the recoiling nucleon in the final state, or even both.

One experiment, which can measure polarization observables through the meson photoproduction
process, is the Crystal Ball experiment within the A2 collaboration. It is located at the electron
accelerator MAMI in Mainz, Germany. The G/E measurements made use of elliptically polarized
photons that have a linearly and circularly polarized component at the same time. They are produced
by the interaction of a longitudinally polarized electron beam with a diamond radiator. In combination
with a longitudinally polarized butanol target, the elliptically polarized photons are used to obtain
for the first time the double polarization observables G and E simultaneously in one experimental
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run. Whereas for the determination of E the circular polarization component is needed, the linear
polarization component of the photon beam allows to access G with the same experiment.

The double polarization observable G was determined for the reactions γ⃗ p⃗ → pπ0 and γ⃗ p⃗ → nπ+ in
a beam photon energy range from 230 MeV to 840 MeV (W = 1145MeV−1569MeV) with a full
angular coverage. In addition, the double polarization observable E was extracted in the same beam
photon energy range for the γ⃗ p⃗ → nπ+ reaction. Background contamination could be effectively
reduced and the desired reaction channels were clearly identified. Asymmetries in the selected
azimuthal angular distribution of the final state meson were used to extract the double polarization
observable G. For the extraction, two methods were used, namely a χ2-fit to the binned event yield
asymmetries and an unbinned maximum likelihood fit. The double polarization observable E was
determined via the carbon subtraction method.

The results for the double polarization observable G in both analyzed channels provide the first precise
measurement in the first resonance region and parts of the second resonance region. Furthermore, the
new A2 data in the pπ0 channel close the gap between the region of the ∆(1232)3/2+(P33) resonance
and the already existing data in the second resonance region. Both data sets are in good agreement
with each other in the overlapping region. Furthermore, the high sensitivity of the double polarization
observable G to weakly contributing resonances in combination with the new precise data reveal even
contributions of partial waves with angular momentum up to l = 4 (G-waves) in the first resonance
region. In the future, the measurement of both channels will allow an isospin separation of the partial
waves and might help, in particular, to improve the uncertainties of the partial wave P11 to which the
Roper resonance N(1440)1/2+(P11) couples.
For the double polarization observable E in the nπ+ channel, a very good agreement between the
measurements with elliptically and circularly polarized photons was observed. Therefore, the results
of this work give experimental evidence that an elliptically polarized photon beam can be used to
extract the double polarization observable E. In comparison to the existing data, the new A2 data
provide additional points in the backward direction of the charged pion and for beam photon energies
below 350 MeV. In the overlapping regions, the data sets agree very well with each other.
Overall, the results of the polarization observables still show notable differences to recent PWA
models. Therefore, the new data will help to further constraint the different models.
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Chapter 1

Introduction

Already the Greek scientists and philosophers tried to understand the fundamental building blocks of
matter. Over 2500 years ago, Demokrit was the first person who assumed that matter is built up of
small and inseparable units, which he finally called the "atom" (old greek for atomos = inseparable).
Nowadays, we know that the atom is separable and that it is formed by a nucleus built up of protons
and neutrons, along with negatively charged electrons surrounding the nucleus.
Until the year 1933, the proton and therefore also the atom were assumed to be the most fundamental
building blocks of matter and therefore to behave as point-like particles. This picture changed after
Stern and Gerlach measured the magnetic moment of the proton in 1933 which differed from the
theoretical prediction for a point-like spin 1/2 particle [1]. Followed in the late 1950s, R. Hofstadter
and colleagues performed an experiment where electrons were scattered on a proton [2]. The resulting
measured cross section disagreed with the scattering of an electron on a point-like particle. Thus, by
the introduction and determination of the electric form factor, the root-mean-square charge radius of
the proton was deduced. Through the measurement of this extension of the proton, the final proof of
an inner structure of the proton was given. However, although over the last 50 years, the spectroscopy
of the proton revealed the inner structure of it in terms of quarks and gluons, the interactions and
dynamics inside the proton are still a major challenge of modern physics.
Therefore, the purpose of this thesis is to contribute to a better understanding of the dynamics between
the quarks and gluons inside the proton, by performing measurements of so-called polarization
observables.
This chapter aims to give a good overview of the necessary theoretical background for this thesis.

1.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics (SM) belongs to the most successful physical theories of all
time. It is capable of describing a wide range of observed phenomena via twelve elementary fermion
fields and the three fundamental interactions among them, namely the strong, electromagnetic, and
weak interaction. The interactions between particles are described by the exchange of vector gauge



2 Introduction

bosons with spin 1, where the form of the interaction is determined by local gauge principles. The
Higgs mechanism and its associated scalar Higgs boson with spin 0 are the final important parts of
the Standard Model since the Higgs mechanism is the solution to the problem that the vector gauge
bosons of the weak interaction have to acquire mass without breaking the local gauge symmetry of
the Standard Model [3]. Moreover, it gives the fundamental fermions their masses.
The twelve elementary fermions have spin 1/2 and are grouped into two groups of six particles each,
called leptons and quarks, with each having their antiparticle. They are arranged in three generations
in which the particles have similar physical quantities. An overview of the elementary particles and
their properties can be found in Tab. 1.1 [4].

Table 1.1: Overview of the different elementary particles in the SM and some of their properties. The weak
isospin (T) corresponds to a conserved quantum number of the weak interaction. In the table, the third
component of the weak isospin for left-handed fermions is given.

1. Generation 2. Generation 3. Generation Electric charge Weak isospin

leptons
(

e
νe

) (
µ

νµ

) (
τ

ντ

) (
−1
0

) (
1/2
−1/2

)

quarks
(

u
d

) (
c
s

) (
t
b

) (
2/3
−1/3

) (
1/2
−1/2

)

The three main interactions differ in their strength, range, and interaction with the particle properties.
An overview is presented in Tab. 1.2 [4].

Table 1.2: Overview of the properties of the different interactions in the SM.

Interaction Mediator Acts on Relative strength Range

strong gluon (g) color charge 1 ≈ 1 fm

electromagnetic photon (γ) electric charge 10−2 ∞

weak W± weak isospin 10−15 < 1 fm
Z0 weak isospin

electric charge

The underlying framework of quantum field theory for the strong interaction is called quantum
chromodynamics (QCD). In this theory, the strong force is mediated by gluons which are acting via
the so-called color charge on quarks and themselves. Every quark carries one of three possible color
charges (red (r), green (g), and blue (b)), whereas their anti-particles likewise carry the anti-color
charge. Gluons can have eight independent color states, which are combinations of a color and an
anti-color, e.g., rḡ. By that, the color charge can be conserved at a quark-gluon reaction vertex.
Furthermore, this property of the gluons allows them to directly interact with each other, which leads
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to two major aspects of QCD.
The first property is the effect of asymptotic freedom, and it is connected to the large energy de-
pendence of the strong coupling constant αS(Q2). Thereby, the coupling constant is a quantity
of the strength of the interaction of a gluon with itself or a quark at the QCD vertex. It depends
on the momentum transfer Q2 at the vertex. In the case of the coupling constant αEM(Q2) of the
electromagnetic interaction, the particle-antiparticle pairs coming out of the vacuum shield the color
charge, reducing its value for decreasing energies. This effect is known as the screening effect of the
effective charge in QED. However, since gluons carry a color charge and thus can self-interact, virtual
gluon pairs are possible in QCD, which smear the color charge and lead to an anti-screening effect.
This effect acts with an opposite sign from that of quarks and dominates over the screening effect
from quark-antiquark loops (cf. Fig. 1.1). As a result, the running coupling constant of the strong
interaction tends to decrease with small distances (equivalent to high energies) whereas the coupling
constant of the electromagnetic interaction αEM(Q2) increases (cf. Fig. 1.2). This effect is known

Fig. 1.1: Feynman loop diagrams for the strong running coupling constant. Some loop diagrams, which
are responsible for the running coupling constant of the strong interaction, are presented. Thereby, q2 is the
momentum transfer at the vertex. The third diagram shows the production of quark-antiquark pairs (straight
lines) in the vacuum, which are responsible for the screening effect of the color charge. The remaining diagrams
present loop diagrams for the self-interaction of gluons (curly lines), leading to the anti-screening of the color
charge (figure taken from [3]).

as asymptotic freedom since quarks behave asymptotically like quasi-free particles with increasing
energy. Due to the small coupling constant in this range, perturbative quantum chromodynamics, can
be applied to describe the strong interaction.
The opposite effect appears at larger distances and thus smaller energies where the coupling between
the quarks becomes very large. As a result, despite many experimental attempts to detect isolated
quarks and gluons, they have never been detected. The phenomenon is explained by the hypothesis of
color confinement. Its main message is that colored objects, like the quarks and gluons, are always
confined to color-singlet states. To produce a color singlet-state, they have to be bound in systems
of several quarks, named hadrons. These hadrons are realized most simply in either three quarks
(baryons) or a quark-antiquark pair (mesons) [5]. In fact, even more complex structures, known
as exotic states are possible, e.g., qqqqq̄ systems in the baryon sector. These objects are called
pentaquarks. The LHCb collaboration has published the observation of two charmed pentaquark
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states with a minimum quark content cc̄uud at invariant masses close to 4.4 GeV [6]. In the meson
sector, due to the self-coupling of gluons, mesons made of bound gluons (glueballs) and qq̄ with an
excited gluon (hybrids) may exist. In addition, color singlet states are possible by a multiquark system
consisting of qq̄qq̄. Thereby, a distinguishment between a compact diquark-antidiquark system, called
tetraquarks, and a "molecular" bound state of two mesons is made. These molecular states have also
been predicted in the baryon sector [7]. A separation of these quark configurations inside the hadrons
always leads to the formation of new hadrons. This phenomenon is known as hadronization and thus
free quarks and gluons can not be observed.

Fig. 1.2: Coupling constants of the electromagnetic and strong interaction. On the left side, the measured
coupling constant of the electromagnetic interaction is shown as a function of the energy scale q. The data
are obtained from e+e− → f f̄ data with the OPAL experiment at LEP [3]. The dotted line shows the limit of
αem ≈ 1/137 at q2 = 0. The right side presents the analogous picture of the strong running couling constant
αS(Q2). Thereby, the running coupling of QCD (solid line) is plotted together with recent data. Note that Q2

= -q2 holds where q2 is the momentum transfer as shown in Fig. 1.1. The energy scale q is equal to Q = |q|
(figure left taken from [3], right from [7]).

1.2 Bound states in QCD (Hadrons)

All hadrons have in common that their total wave function is a product of the spin and flavor
components, the color content, and the spatial wave function and is given by [3]:

Ψtotal = χspinφ f lavorξcolorηspatial. (1.1)

For the simplest composition of baryons (qqq) and mesons (qq̄), the flavor component of the total
wave function can be constructed using the assumption of a SU(3) f flavor symmetry of the three
lightest quarks (up (u), down (d) and strange (s)).
Using the fundamental SU(3) representation for quarks and the conjugate representation for the
antiquarks, the flavor wave function of a meson consisting of a qq̄ decomposes into an octet and a
singlet,

3⊗ 3̄ = 8⊕1. (1.2)
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As these mesons are built up of two fermions with spin 1/2, the individual spins can either be aligned
to each other (triplet state with total spin S = 1) or not (singlet state with S = 0). Therefore, each
flavor state has two possible spin configurations. The parity of a meson is given by:

P(qq̄) = P(q)P(q̄)× (−1)L = (+1)(−1)(−1)L = (−1)L+1 (1.3)

with P(q) and P(q̄) being the intrinsic parities of the quark and likewise the antiquark. Thus, together
with the convention JP, the lightest mesons with an orbital angular momentum of L = 0 can be
grouped into a 0− pseudoscalar meson multiplet and a 1− vector meson multiplet. They are plotted in
Fig. 1.3.

Y+1

-1

I3
1-1

I3
1-1

Y+1

-1

Fig. 1.3: The meson nonets of the ground state. On the left side, the pseudoscalar nonet with JP = 0− is
shown whereas on the right side the vector meson nonet with JP = 1−. On the y-axis of both plots, one finds
the hypercharge Y , which is the sum of the strangeness S and the baryon number B, and on the x-axis one has
the third component of the strong isospin I3 (figure modified from [3]).

The flavor wave function of the baryons can be constructed in a similar way and is given by:

3⊗3⊗3 = 10S ⊕8MS ⊕8MA ⊕1A. (1.4)

Thereby, S stands for symmetric, A for antisymmetric and M for mixed flavor states, i.e. mixed-
symmetric (MS) and mixed-antisymmetric (MA). As baryons are made of quarks which are fermions
and thus have to fulfill the Pauli-principle, the overall wave function of the baryon needs to be
antisymmetric under the interchange of any two of the three quarks. Since the bound systems always
need to be color-neutral, the color wave function needs to be antisymmetric. Furthermore, the spatial
wave function is symmetric for the ground state baryons. As a consequence, the product of the spin
and flavor function has to be symmetric. This can be achieved either by a symmetric spin 3/2 wave
function in combination with the symmetric decuplet or the mixed symmetric flavor octet with the
mixed symmetric spin state with a total spin of 1/2. The corresponding multiplets in form of the 1/2+



6 Introduction

octet, which includes the proton (p) and neutron (n), and the 3/2 + decuplet, including the ∆, are
depicted in Fig. 1.4.

Y+1

-1

I3
1-1

I3
1-1

Y
+1

-1

Fig. 1.4: The baryon multiplets of the ground state. On the left side, the octet with JP = 1/2+ is shown
whereas on the right side the decuplet with JP = 3/2+ can be seen. Both of them are plotted as a function of
the hypercharge Y , which is the sum of the strangeness S and the baryon number B, and the third component of
the strong isospin I3 (figure modified from [3]).

As the SU(3) flavor symmetry of the up-, down- and strange-quarks is not exact, the masses of the
baryons and mesons inside their corresponding multiplets are not the same. Moreover, the mass
increases with the number of strange-quark inside the hadrons as the mass of the strange quark
(ms ≈ 95 MeV) is greater than of the up- (mu ≈ 2.2 MeV) and down-quark (md ≈ 4.7 MeV). As an
example, the mass of the lightest baryon, the proton, is in the order of 938 MeV whereas the mass of
the Ξ in the same multiplet with two strange quarks is already in the order of 1320 MeV [7]. The mass
difference between the octet and decuplet states can be assigned to the chromomagnetic spin-spin
interactions of the involved quarks [3]. As an example, the mass of the ∆+ with the same quark
content as the proton but with a total spin of S = 3/2 is about 300 MeV heavier than the proton. It is
noteworthy that the ∆ states with a mass of about 1232 MeV were the first-ever observed resonances
which were seen in πN scattering experiments performed by Fermi and collaborators in 1952 [8].
Notably, the up- and down quark and even the strange quark have extremely small masses in com-
parison to the baryon masses. In fact, the sum of the quark masses inside the proton contributes
with only about 1% to the total mass. The remainder can be attributed to the energy associated with
the internal color gluon field which produces a sea of virtual quarks and gluons. A final problem,
related to the masses of the baryons, is that the energy scale of their masses is in the region where
the strong coupling constant is large, making perturbation calculations of QCD impossible. Thus,
phenomenological approaches in the form of the constituent quark model or even numerical methods
like lattice calculations are essential to model the strong interaction and to describe the dynamics
between the quarks and gluons. These will be briefly introduced, with respect to the nucleon excitation
spectrum, in the next section.
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Constituent Quark Models

The constituent quark models assume that the baryons are built up of three constituent quarks with the
same particle properties as the valence quarks but a mass of about one third of the baryon mass, i.e.
the up- and down constituent quark mass is roughly 350 MeV, whereas the one of the strange quark is
500 MeV [9]. The high mass arises from the valence quarks, introduced in the previous section, which
are surrounded by a cloud of quark-antiquark pairs (called sea-quarks) and gluons. Following the
requirements of the color confinement, these constituent quarks need to be bound inside the baryons
via a potential. Thereby, the potential depends on the considered quark model. Over the years, many
different approaches for the potential have been developed [9], starting from a simple non-relativistic
harmonic-oscillator potential [10] to relativistic models like the Bonn model [11].
The Bonn model respects the color confinement through a potential which increases proportionally
to the average distance between the quarks. A spin-flavor dependent interaction, based on instanton
induced interactions, can describe most of the spin-dependent splittings in the baryon excitation
spectrum [12].
The obtained excitation spectra, including the prediction of the Bonn model and the experimentally
measured resonances, are depicted in Fig. 1.5 for the N∗-states with the strong isospin I = 1/2 and
for the ∆∗-states with strong isospin I = 3/2. The nomenclature of a resonance state is given by their
isospin, the resonance mass M, the total angular momentum and parity JPres

res , and finally the partial
wave (l)2I2J . Thereby, as the resonance notation is defined for resonances that decay via the strong
interaction into a meson and a nucleon, the term l in the partial wave expression is the orbital angular
momentum between the meson and nucleon in the final state. Instead of using l = 0,1,2,3,4,5 . . . , the
notation from atomic spectroscopy is used, namely l = S,P,D,F,G . . . . Altogether, this means that a
resonance is described by (N/∆)(M)JPres

res ((l)2I2J), i.e. the ∆-resonance of the decuplet is given in this
notation by ∆(1232)3/2+(P33) . Due to this notation, the baryon excitation spectra are categorized
in terms of total angular momentum J and parity P. The predictions are indicated by the blue lines,
whereas the red line presents the corresponding experimental measurements with their uncertainties
indicated by the boxes. Finally, their PDG rating, taken from [13], is included by the number of stars
above the state1. In the low mass resonance region with masses below 1.8 GeV, the predictions are
mostly compatible with the experimental measurements. Only some discrepancies are seen, e.g., in
the N∗ section, the predicted resonance position of the N(1535)1/2−(S11) is 51 MeV smaller than the
measured one. Opposite behavior is given for the N(1680)5/2+(F15), where the predicted position
is even 81 MeV larger. Similarities are also present in the ∆∗ section, i.e. the ∆(1700)3/2−(D33) is
predicted 109 MeV lower than the measured one. Nevertheless, the overall pattern and number of
resonances agree in the low mass region. This situation changes dramatically above 2 GeV, as more
resonances are predicated than have been measured. This problem is typically denoted in literature as
the missing resonance problem [10]. One of the two major explanations for these discrepancies is a
wrong assumption on the number of degrees of freedom in the theoretical models. The constituent

1A high number of stars means that the state is well established and seen by several experiments.
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Fig. 1.5: Excitation spectrum obtained with the Bonn model. The excitation spectrum predicted by the
Bonn model (blue line) is compared to the experimental measurements (red lines) and their uncertainties
(boxes). The PDG rating of the excited states, taken from [13], is included by the number of stars above the
state. The upper row presents the results for the resonance states with isospin I = 1/2 whereas the lower one
the resonances with isospin I = 3/2 (figure taken from [14]).
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quarks might be in a quark-diquark system rather than a three quark system and thus one degree of
freedom would be frozen. However, recent experimental results do not support this diquark model
[15] and lattice QCD calculation, as will be shown in the next section, neither. Finally, it is noteworthy
that most of the observed resonance states have been measured in πN-scattering experiments. Thus,
from the experimental side, a possible explanation of the missing resonance problem is that the high
lying resonances might have a small coupling to the pion induced reaction.

Lattice QCD

Another theoretical prediction for the excitation spectrum can be determined via lattice gauge theories.
Thereby, lattice QCD defines the Lagrangian of the strong interaction on a space-time which has
been discretized into a lattice with a lattice spacing a and length L [16]. To extract the excitation
spectrum, the lattice spacing a needs to be minimized whereas the simulated volume of the lattice
needs to go to infinity. As these calculations need a high amount of computing power, calculations
are performed for different lattice spacing a with increasing length L and nonphysical masses for the
quarks. Finally, the lattice QCD results can be used as a starting point for an extrapolation into the
continuum limit (a → 0). In this limit, the Lorentz-invariance of the Lagrangian, which was broken by
the lattice structure, is recovered and together with the extrapolation of the assumed unphysical mass
of the pion (mπ0 = 396MeV) to the physical mass of about 135 MeV, the excitation spectrum can be
obtained [16]. Fig. 1.6 shows the predicted excitation spectrum for the nonphysical quark masses with
a mass of mπ0 = 396MeV. Although the resonance positions of the constituent quark models and the

Fig. 1.6: Excitation spectrum obtained from lattice QCD calculations. The resonance states are shown as
a function of their mass divided by the Ω− mass and their total angular momentum and parity configuration JP.
Note that the calculations were performed with the nonphysical pion mass of mπ0 = 396MeV (figure taken
from [16]).
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lattice calculation do not agree2, the number of resonance states matches quite well. Most importantly,
the lattice QCD calculation has the missing resonance problems as well, which is a strong hint that
the diquark-model can be ruled out as a possible explanation. Nevertheless, the statement should be
treated with caution since, in addition to the nonphysical pion mass, the resonances can not decay
within these calculations.

1.3 Experimental Access to the Nucleon Excitation Spectra

In the past, most of the observed resonance states in the nucleon excitation spectra have been
obtained from πN-scattering experiments. However, it is mandatory to use complementary probes
to provide experimental information for the theoretical models. Thus, during the last decades, the
photoproduction of pseudoscalar mesons off the nucleon gained more attention. This section will
present the basic concepts of the photoproduction of pseudoscalar mesons, the importance of the
measurement of so-called polarization observables and will finally outline different partial wave
analyses, which use the polarization observables as input to determine contributing resonances in a
desired reaction channel.

1.3.1 Pseudoscalar Meson Photoproduction

To get a better understanding of the major challenges of photoproduction experiments and of baryon
spectroscopy overall, Fig. 1.7 shows the total photoabsorption cross section off the proton as a function
of the beam photon energy Eγ and the center of mass energy W 3, along with several single- and
double-meson final states. In addition, all listed four-star N∗ and ∆∗ resonances in the PDG are
indicated by the dashed vertical lines [7].
The inspection of the cross sections directly shows that the number of peaks, which indicates a
possible resonance behavior, does not at all agree with the number of included dashed vertical lines for
the established resonances. This can be attributed to the fact that the nucleon resonance states decay
via the strong interaction with a typical lifetime in the order of 1×10−24 s [7]. As a consequence
of Heisenberg’s uncertainty principle, the decay width is typically in the order of 100 MeV and thus
several resonances overlap in the cross sections. Other remarkable observations are the different
structures in the cross section of individual final states compared to the total photoproduction cross
section. This can be explained by the contribution of different resonances and their coupling strength to
explicit final states. Thus, to obtain a maximal amount of information on each contributing resonance
in a given final state, polarization observables are measured via the process of pseudoscalar meson
photoproduction. The basic formalism will be presented in the following section.

2This is expected due to the assumption of nonphysical quark masses.
3Photoproduction experiments are fixed-target experiments. Thus, the corresponding center of mass energy W , which

corresponds to the resonance invariant mass, is given by W =
√

2Eγ mp +m2
p where Eγ is the incoming beam photon energy

and mp the rest mass of the target proton at rest.



1.3 Experimental Access to the Nucleon Excitation Spectra 11

 [MeV]γE
0 500 1000 1500 2000 2500 3000

b]µ [σ

1−10

1

10

210

X → pγ

−π+πp → pγ

0π0πp → pγ
0πp → pγ

ηp → pγ

+πn → pγ

0π+πn → pγ

 [MeV]W
1000 1200 1400 1600 1800 2000 2200 2400 2600

Fig. 1.7: Photoproduction cross sections off the proton. The total photoproduction cross section off the
proton [7] is presented together with the cross sections for the production of several single- and multimeson
final states as a function of the incoming beam photon energy Eγ and center of mass energy W . Data for the
reaction γ p → pπ0 are taken from [17, 18], for γ p → nπ+ from [19, 20], for γ p → pη from [21, 22, 23], for
γ p → pπ+π− from [24, 25, 26], for γ p → pπ0π0 from [27, 28, 18], and for γ p → nπ+π0 from [29]. For the
higher energies in the γ p → nπ+ reaction the SAID-CM12 solution (solid line) was included [30] and for the
γ p → nπ+π0 the ππ MAID was selected [31]. In addition, all listed four star N∗ and ∆∗ resonances in the PDG
are indicated by the dashed vertical lines [7].

Formalism of Pseudoscalar Meson Photoproduction

Following the principles of scattering theory, the transition of an initial state | i ⟩ to the final state
| f ⟩ can be described by a scattering matrix S, which includes the unit matrix 1 to account for the
non-interaction term and a transition matrix T which contains all information on the scattering process
[3]. The probability Pf i for an initial state | i ⟩ to scatter into the final state | f ⟩ is connected to these
matrices via:

Pf i = P(| i ⟩ → | f ⟩) = |⟨ f |S| i⟩|2 =
∣∣S f i
∣∣2 with S = 1+ iT. (1.5)

For the photoproduction process of a pseudoscalar meson M on a nucleon N, the reaction, including
the corresponding four momenta pi, can be written as:

γ(pγ)N(pN)→ N′(pN′)M(pM). (1.6)
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The matrix element S f i and thus as well the transition matrix Tf i take the shape:

S f i = δ f i +
1

(2π)2 δ
4(pN′ + pM − pN − pγ)

√
m2

N
4EN′EMENEγ

· iM f i (1.7)

where mN is the nucleon mass, pi the four momenta of the corresponding particle i and Ei their energy
[32]. Whereas the first two factors in the second term in Eq. (1.7) are responsible for the phase
space and energy- and momentum-conservation, the matrix element M f i contains all information
on the scattering process. An overview of the dominant tree-level diagrams in the scattering process
is presented in Fig. 1.8. It is built up of the non-resonant background terms, including the s- and

Fig. 1.8: Feynman diagrams for the photoproduction of pions from free nucleons. Shown are the Feynman
diagrams which contribute to the scattering process. It includes the s- and u-channel Born terms ((A) and (B)),
the pion pole term (C), the Kroll-Ruderman contact term (D), and the vector-meson exchange (D). Whereas
these are all non-resonant contributions, the resonant s- and u-channel process with a resonance N∗ or ∆ in the
intermediate state are presented in the diagrams (F) and (G) (figure taken from [33]).

u-channel Born terms, where a nucleon is exchanged in the intermediate state (diagrams (A) and
(B)), the pion-pole term in diagram (C), the Kroll-Ruderman contact term in diagram (D), and the
vector-meson exchanges in diagram (E). The resonant terms are given by the resonant s- and u-channel
process, with a resonance N∗ or ∆∗ in the intermediate state (diagrams (F) and (G)). Within this thesis,
the pseudoscalar mesons in the final state are the neutral pion (π0) and the charged pion (π+) of the
reactions γ⃗ p⃗ → pπ0 and γ⃗ p⃗ → nπ+ 4. It is noteworthy that the pion-pole term and the Kroll-Ruderman
contact term can not contribute in the final states where only neutral mesons are involved, because
photons can only couple to charged particles (cf. Tab. 1.2). Thus, only the s- and u-channel Born
terms need to be considered as non-resonant terms to the resonance excitations in the photoproduction
of neutral pions. The situation is different for charged pions in the final state where the contribution
of both these terms to the overall photoproduction is significant. In particular, the Kroll-Ruderman
contact term plays a very important role near the threshold production but also contributes together

4γ⃗ and p⃗ denote a polarized photon and target-nucleon, respectively
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with the pion-pole term at higher beam photon energies [34].
The matrix M is related to the photoproduction matrix F , which is evaluated in the center of mass
system. Depending on the basis used for the quantization of the involved spins, the matrix can be
parameterized from the theoretical point of view by different amplitudes, i.e. helicity amplitudes,
transversity amplitudes or the CGLN-amplitudes. The latter will be discussed in further detail here
whereas information about the other systems of amplitudes can be found in [35].
To describe the photoproduction matrix F and thus the matrix M , four complex CGLN-amplitudes
are introduced. In the basis of Pauli spinors χ for the initial and final nucleon, the relation between
both matrices is given by [36]:

M =
4πW
mN

∣∣〈χ(N′) |F |χ(N)
〉∣∣2 (1.8)

with the center-of-mass energy

W =
√

s =
√
(pγ + pN)2. (1.9)

The photoproduction matrix F is a 2×2 matrix and can be expressed by the four complex Goldberger-
Low-Nambu (CGLN)-amplitudes F [36] via:

F = i(σ⃗ · ε⃗)F1 +
(σ⃗ · q⃗)(σ⃗ · (⃗k× ε⃗))

qk
F2 + i

(σ⃗ ·⃗ k)(⃗q · ε⃗)
qk

F3 + i
(σ⃗ · q⃗)(⃗q · ε⃗)

q2 F4 (1.10)

with σ⃗ being the Pauli spin operators, ε⃗ the photon polarization vector, and k⃗ and q⃗ the three momenta
of the initial state photon and the final state meson, respectively. The amplitudes are functions of the
center of mass energy W and the polar angle θ of the outgoing meson in the center of mass system.
The conservation of angular momentum allows the decomposition of the Fi into partial waves with a
well-defined angular momentum. Hereby, the eigenstates are represented by Legendre polynomials
Pk(cosθ) and their derivatives, whereas the complex expansion coefficients are given by electric
El±(W ) and magnetic Ml±(W ) multipoles with l being the relative orbital momentum of the final
state meson M to the recoil nucleon. The multipole-expansion of the CGLN-amplitudes reads [36]:

F1(W,θ) =
∞

∑
l=0

[lMl+(W )+El+(W )]P
′
l+1(cosθ)+ [(l +1)Ml−(W )+El−(W )]P

′
l−1(cosθ),

F2(W,θ) =
∞

∑
l=0

[(l +1)Ml+(W )+ lMl−(W )]P
′
l (cosθ),

F3(W,θ) =
∞

∑
l=0

[El+(W )−Ml+(W )]P
′′
l+1(cosθ)+ [El−(W )+Ml−(W )]P

′′
l−1(cosθ),

F4(W,θ) =
∞

∑
l=0

[Ml+(W )−El+(W )−Ml−(W )−El−(W )]P
′′
l (cosθ). (1.11)

The term ± indicates whether the spin of the final state nucleon SN′ is added to or subtracted from l to
obtain the total angular momentum Jres of the intermediate resonance state with a parity Pres. Thereby,
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the intrinsic parity of the nucleon is PN = PN′ =+1 and of the meson PM =−1 (cf. Sec. 1.2), which
leads to the following constraints for the intermediate state:

|l −1/2|= |l −SN′ | ≤Jres ≤ |l +SN′ |= |l +1/2|,

Pres = PN′PM(−1)l = (−1)l+1. (1.12)

To produce the intermediate resonance state with total angular momentum Jres, the orbital angular
momentum Lγ of the initial state photon interacts with the nucleon with spin SN , leading to an
intermediate resonance state with

|Lγ −1/2|= |Lγ −SN | ≤Jres ≤ |Lγ +SN |= |Lγ +1/2|,

Pres = PNPγ = Pγ . (1.13)

As parity P and angular momentum J need to be respected in the initial and final state, the following
conditions need to be fulfilled in the intermediate resonance state as well:

Pγ = Pres = (−1)l+1,

|Lγ ±1/2|= Jres = |l ±1/2|. (1.14)

The parity of the photons, initialized by electric radiation, is given by Pγ = (−1)Lγ and the corre-
sponding multipole is the electric photon multipole ELγ . The parity of the initialization via magnetic
radiation is Pγ = (−1)Lγ+1 with the magnetic photon multipole MLγ . Finally, the strong isospin
I of the final state mesons, i.e. Iπ = 1 in case of a pion, and the nucleon IN′ = 1/2 need to be
respected. As the intermediate resonance state decays via the strong interaction and strong isospin is
conserved, the intermediate resonance states need to have an isospin of either I = 1/2, corresponding
to N∗ resonances, or I = 3/2, corresponding ∆∗ resonances. With these information and the initial
state and final state properties, the intermediate resonance state can be characterized as shown in
Tab. 1.3 for Lγ = 1 and Lγ = 2. Different resonances can couple to a defined partial wave, i.e. the
∆(1232)3/2+(P33) resonance can be excited by the E1+ or M1+ photoproduction multipoles. In
addition, the photoproduction multipoles consist always of a partial wave which is attributed to
the isospin I = 1/2 component and one to the isospin I = 3/2. To get access to only one of these
components, an isospin separation needs to be performed.
The isospin of the initial state photon has an isoscalar component with Iγ = 0 and an isovector
component with Iγ = 1. By that, the isovector component can couple with the isospin of the initial
state nucleon to a resonance state with either isospin I = 1/2 (N∗) or I = 3/2 (∆∗). On the other hand,
the isoscalar component can only contribute to the N∗ resonances.
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Table 1.3: Connection between multipoles and their corresponding partial waves. For Lγ = 1 and Lγ = 2,
the corresponding photon- and photoproduction multipoles and their partial waves are shown. The partial waves
are separated by the total isospin I of the intermediate resonance states and their connection to the quantum
numbers of the initial state (IS), the intermediate resonance state (RES), and the final state (FS).

Photon multipole IS RES FS Photoprod. multipole Partial waves (l)2I2J

ELγ/MLγ LPγ

γ SPN
N JPres

res S
PN′
N′ lPM El±/Ml± I = 1/2 I = 3/2

E1 1− 1/2+ 1/2− 1/2+ 0− E0+ S11 S31
3/2− 1/2+ 2− E2− D13 D33

M1 1+ 1/2+ 1/2+ 1/2+ 1+ M1− P11 P31
3/2+ 1/2+ 1+ M1+ P13 P33

E2 2+ 1/2+ 3/2+ 1/2+ 1+ E1+ P13 P33
5/2+ 1/2+ 3+ E3− F15 F35

M2 2− 1/2+ 3/2− 1/2+ 2− M2− D13 D33
5/2− 1/2+ 2− M2+ D15 D35

Respecting charge conservation, the four possible πN final states, can be expressed by three isospin
dependent multipoles M i

l±
5 via [37]:

M
(γ p→nπ+)
l± =

√
2 ·
(

M 0
l±+

1
3
M

1/2
l± − 1

3
M

3/2
l±

)
, (1.15)

M
(γn→pπ−)
l± =

√
2 ·
(

M 0
l±− 1

3
M

1/2
l± +

1
3
M

3/2
l±

)
, (1.16)

M
(γ p→pπ0)
l± = M 0

l±+
1
3
M

1/2
l± +

2
3
M

3/2
l± , (1.17)

M
(γn→nπ0)
l± =−M 0

l±+
1
3
M

1/2
l± +

2
3
M

3/2
l± . (1.18)

The three different isospin dependent multipoles are thereby defined by their indices via [38]:

• The index i = 0 corresponds to an isoscalar transition amplitude with Iγ = 0. Initial and final
state have isospin I = 1/2.

• The index i = 1/2 corresponds to an isovector transition amplitude with Iγ = 1. Initial and final
state have isospin I = 1/2 (∆I = 0).

• The index i = 3/2 corresponds to an isovector transition amplitude with Iγ = 1. Initial state has
isospin I = 1/2, final state has isospin I = 3/2 (∆I = 1).

To measure either the multipole contribution of the N∗- or the ∆∗-states, the channel-dependent linear
combination of the isospin dependent multipoles need to be combined in such a way that only one
contribution remains. This is achieved by measuring the same quantities for two of these channels.

5Based on Eq. (1.8), they contain all information on the individual photoproduction multipoles, mentioned in Tab. 1.3.
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An example is the separation of the M1+ multipole in the region of the ∆(1232)3/2+(P33) resonance
region by the measurement of the reactions γ⃗ p⃗ → pπ0 and γ⃗ p⃗ → nπ+ . Using the Eq. (1.15) and Eq.
(1.17), the multipole M3/2

1+ can be expressed in the following way [37]:

M3/2
1+ = M(γ p→pπ0)

1+ − 1√
2
·M(γ p→nπ+)

1+ . (1.19)

Similarly, a different linear combination can give access to the N∗-star resonances which couple to
the M0

1+ and M1/2
1+ multipoles. The main advantage of this decomposition is that one can get access to

weakly contributing resonances in a multipole. An impressive example is given in reference [39]. The
authors quote that the M3− multipole in the particle representation (cf. Eq. (1.17)) is dominated by
the N(1680)3/2+(F15) with isospin I = 1/2 and that the resonance ∆(1905)5/2+(F35) with isospin
I = 3/2 is hardly seen. This changes dramatically in the isospin basis where clear evidence for this
state is seen. Fig. 1.9 presents the multipole as a function of the center of mass energy W and for the
particle representation on the left and in the center, and the isospin separation on the right. Note that
the shown multipoles are obtained by different partial wave analyses which will be explained later
within this chapter. However, as a first step, polarization observables are introduced which are used as
input for the different partial wave analyses.

Fig. 1.9: The M3− multipole for different representations and PWA solutions. Shown are the three rep-
resentations of the multipole M3− for three PWA solutions (black solid line: BnGa-2014-02, blue dashed:
JüBo-2016-01, red dashed-dotted: SAID) [39]. The first two columns represent the particle basis whereas the
last one shows the isospin basis with I = 3/2. Clear evidence for the ∆(1905)5/2+(F35) with isospin I = 3/2
is present, which is not seen so pronounced in the other two representations. The extracted Breit-Wigner
resonance positions from the BnGa solutions are included by the green lines. The figure demonstrates the
importance of the isospin separation through the measurement of both pion photoproduction processes off the
proton (figure modified from [39]).
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1.3.2 Measurement of Polarization Observables

To obtain information about the contributing resonances in a given final state, the scattering amplitudes
need to be known precisely. This can be achieved by determining the four complex CGLN amplitudes,
including their absolute values, their three relative phases, and one overall global phase. Experi-
mentally this can be accomplished by the measurement of cross sections and so-called polarization
observables. Polarization observables can be accessed by either polarizing the initial state, measuring
the polarization in the final state, or even both. In this way, 16 polarization observables are accessible
which are summarized in Tab. 1.4.

Table 1.4: Overview of the polarization observables in the pseudoscalar meson photoprodction reactions.
Shown are all 16 possible polarization observables. (x,y,z) is the cartesian coordinate system of the initial state
in the CM system, whereas (x’,y’,z’) indicates the system of the final state. The coordinate systems are depicted
in Fig. 1.10 (table modified from [40]).

Target Recoil Target+Recoil
- - - x’ y’ z’ x’ x’ z’ z’

pγ x y z - - - x z x z
unpolarized σ - T - - P - Tx -Lx′ Tz′ -Lz′

linearly polarized Σ H -P -G Ox′ -T Oz′ - - - -
circularly polarized - F - -E -Cx′ - -Cz′ - - - -

For a unique extraction of the CGLN-amplitudes, Chiang and Tabakin suggest for the photoproduction
of pseudoscalar mesons the measurement of eight of these observables, known as the complete
experiment. The latter compromises the measurement of the unpolarized cross section, all single
polarization observables and four well-chosen double polarization observables [41].
Following this proposal, the double polarization observable G and E are determined in this thesis by
using elliptically polarized photons in combination with a longitudinally polarized target. Thereby,
the elliptically polarized photons have a linearly polarized component and a circularly polarized
component. With this spin configuration, the unpolarized differential cross section is modified to6:

dσ

dΩ
(W,θ ,ϕ) =

dσ

dΩ

∣∣∣∣
0
(W,θ) ·

(
1− pLΣcos2ϕ + pL pZGsin2ϕ − pC pZE

)
(1.20)

with dσ

dΩ

∣∣
0 (W,θ) being the unpolarized differential cross section, pL (pC) the linear (circular) polar-

ization degree of the beam photons, and pZ the polarization degree of the longitudinally polarized
target. ϕ is the angle between the linear polarization plane and the reaction plane. The definition of
the angle is shown in Fig. 1.10 where the coordinate system in the initial and final state for the center
of mass system is depicted.
The importance of the polarization observables can be directly seen in the CGLN-amplitude repre-
sentation of the unpolarized cross section and both profile functions of the polarization observables,

6The modification of the polarized differential cross section due to the contribution of the remaining polarization
observables, listed in Tab. 1.4, is presented in detail in [42].
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M

N

N⃗recoil

p⃗L

p⃗C

Fig. 1.10: Coordinate systems for the definition of the polarization observables . Shown are the coordinate
systems in the center of mass system for the initial state on the left and for the final state on the right. The
reaction plane in x-z direction is defined by the final state meson M and the nucleon N as both have to fly
back-to-back. The linear polarization plane of the linearly polarized photons is tilted by an angle ϕ relative
to this reaction plane. The target spin vector p⃗T can either be polarized in z-direction, corresponding to a
longitudinally polarized target (pZ), or in x- or y-direction, corresponding to a transversely polarized target (pX
and pY ). For the measurement of recoil polarization observables, the coordinate system needs to be rotated by
the angle θ which results in the (x’,y’,z’) system. Thereby, θ is the angle of the meson M with respect to the
reaction plane (figure modified from [14]).

which are the product of the polarization observable and the unpolarized cross section (cf. Eqs
(1.21)-(1.23)).

dσ

dΩ

∣∣∣∣
0
(W,θ ,ϕ) = Re

{
|F1|2 + |F2|2 +

1
2

sin2
θ
(
|F3|2 + |F4|2

)
+ sin2

θ(F∗
2 F3 +F∗

1 F4 + cosθF∗
3 F4)−2cosθF∗

1 F2
}

ρ, (1.21)

Ě(W,θ) = E · dσ

dΩ

∣∣∣∣
0
= Re

{
|F1|2 + |F2|2 −2cosθF∗

1 F2 + sin2
θ(F∗

2 F3 +F∗
1 F4)

}
ρ, (1.22)

Ǧ(W,θ) = G · dσ

dΩ

∣∣∣∣
0
= sin2

θ Im
{

F∗
2 F3 +F∗

1 F4
}

ρ, (1.23)

with ρ being the phase space factor. Whereas the unpolarized cross section and the profile function Ě
have the square of the amplitudes included, the profile function Ǧ only contains interference terms.
As will be shown now, this is the reason why the double polarization observable G is perfectly suited
to study weakly contributing resonances in a given final state. Moreover, as mentioned before, the
measurement of the observable for the neutral and charged pion photoproduction reaction off the
proton at the same time allows for an isospin decomposition of the multipoles.
Since polarization observables can be described by the CGLN amplitudes and these can be decomposed
into partial waves (cf. Eq. (1.11)), it is obviously meaningful to expand the results of the polarization
observables in a similar way. The profile functions therefore can be expressed in a truncated PWA
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decomposition7 by [43]:

Ǧ(W,cosθ) = ρ

2Lmax

∑
k=2

(aLmax)
Ǧ
k (W )P2

k (cosθ) , (1.24)

Ě(W,cosθ) = ρ

2Lmax

∑
k=0

(aLmax)
Ě
k (W )P0

k (cosθ) . (1.25)

Here, ρ is the phase space factor, (aLmax)
Ω̌

k are the energy-dependent real expansion coefficients of
the observable Ω̌ truncated at a defined Lmax, and Pm

k (cosθ) are the angular-dependent associated
Legendre polynomials [44]. The information about the contributing multipoles is included in the
expansion coefficients, as these are bilinear Hermitean forms of the multipoles, which are defined via
Hermitean matrices CΩ̌

k and the multipole vector |MLmax (W )⟩ :

(aLmax)
Ω̌

k (W ) = ⟨MLmax (W )|C Ω̌
k |MLmax (W )⟩ . (1.26)

The dimension of the matrices C Ω̌
k is given by the number of multipoles which contribute up to a

certain truncation and is given by 4Lmax×4Lmax. The multipole vector |MLmax (W )⟩ has 4Lmax entries
and contains the multipoles in the form of:

|MLmax (W )⟩= (E0+,E1+,M1+,M1−,E2+,E2−,M2+,M2−, · · · ,ELmax+,ELmax−,MLmax+,MLmax−)
T .

(1.27)
The multipoles and their corresponding partial waves are listed in Tab. 1.5. As the terms for
the expansion coefficients are quite large, it is meaningful to introduce a short-notation where the
contributing partial waves are presented only for their corresponding lM , i.e. an interference between
the partial wave S11 and the P11 is contained in the ⟨S,P⟩ term, whereas an interference between
P11 and P33 is contained in ⟨P,P⟩. The first coefficient (a1)

Ǧ
2 for the double polarization observable

G, which is truncated at Lmax = 1, is depicted in Eq. (1.28) and the first coefficient (a1)
Ě
0 for E in

Eq. (1.29).

(a1)
Ǧ
2 =

(
E∗

0+ E∗
1+ M∗

1+ M∗
1−
)


0 0 0 0
0 0 i i/2
0 −i 0 −i/2
0 −i/2 i/2 0




E0+

E1+

M1+

M1−


= Im

{
M∗

1− · (E1+−M1+)−2E∗
1+M1+

}
= ⟨P,P⟩ .

(1.28)

7The infinite multipole expansion is only considered up to a finite angular momentum quantum number Lmax. The
procedure will be called Lmax-fit procedure in the following.
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Table 1.5: Overview of photoproduction multipoles and their corresponding partial waves. For different
truncation orders Lmax, the corresponding multipoles and their partial waves are shown. Thereby, lM is the
relative orbital momentum of the final state meson M to the recoil nucleon, J the total angular momentum of
the resonance state, P its parity, and I its isospin.

Lmax lM
Multipoles

JP Partial waves (lM)2I2J

ElM± MlM± I = 1/2 I = 3/2

1 0 E0+ - 1/2− S11 S31
1 - M1− 1/2+ P11 P31
1 E1+ M1+ 3/2+ P13 P33

2 2 E2− M2− 3/2− D13 D33
2 E2+ M2+ 5/2− D15 D35

3 3 E3− M3− 5/2+ F15 F35
3 E3+ M3+ 7/2+ F17 F37

4 4 E4− M4− 7/2− G17 G37
4 E4+ M4+ 9/2− G19 G39

(a1)
Ě
0 =

(
E∗

0+ E∗
1+ M∗

1+ M∗
1−
)


1 0 0 0
0 3 3 0
0 3 −1 0
0 0 0 1




E0+

E1+

M1+

M1−


= |E0+|2 +3|E1+|2 +3E∗

1+M1++3M∗
1+E1+−|M1+|2 + |M1−|2 = ⟨S,S⟩+ ⟨P,P⟩ .

(1.29)

From the inspection of the interference terms in Eq. (1.28), it becomes clear that the observable G,
in the region where Lmax = 1 is valid, is only sensitive to P-waves. Another remarkable fact is that
the observable G is completely described by interference terms of different multipoles and thus can
help to study small contributing multipoles which interfere with a strong multipole (cf. Eq. (1.23)).
The interference of the dominant multipole M1+ with the rather small M1− in the profile function
Ǧ is perfectly suited to study the Roper resonance N(1440)1/2+(P11). In case of contributions of
D-waves and thus Lmax = 2, two additional expansion coefficients need to be considered in case of
each observable. Furthermore, additional interference terms in the first coefficient need to be respected
which leads to:

(a2)
Ǧ
2 = ⟨P,P⟩+ ⟨S,D⟩+ ⟨D,D⟩ ,

(a2)
Ǧ
3 = ⟨P,D⟩ ,

(a2)
Ǧ
4 = ⟨D,D⟩ . (1.30)

All interference terms for the individual multipoles can be found in [45] up to Lmax = 3. As an example,
Fig. 1.11 shows the expansion coefficient (a3)

Ǧ
2 for the pπ0 analysis which has been determined within
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this thesis. More details are given in Sec. 9.2. The Lmax-fit has been performed for a truncation order
of Lmax = 3. The result for the fitted coefficient is presented together with the individual interference
terms of the multipole solution of the BnGa-2016 PWA (see next section) up to Lmax = 4 [46].
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Fig. 1.11: Contributing interference terms for the ⟨P,P⟩ block in the fit coefficient (a3)
Ǧ
2 for the pπ0

channel. The individual interference terms obtained with the BnGa multipoles together with the extracted
expansion coefficient can be used to further study the contributing resonances. The expansion coefficient is
compared to continuous curves which have been determined from the multipole solutions of the BnGa-2016
PWA solution [46]. The reconstruction of the expansion coefficient from the BnGa-2016 model have been
truncated at different Lmax. Hereby, the green solid curve corresponds to Lmax = 1 , the blue solid curve to
Lmax = 2 , the red solid curve to Lmax = 3 , and the black solid curve to Lmax = 4 . On the right panel, the
contributing partial wave interference terms are given for the different Lmax values. Thereby, Lmax = 1 only
contains the contribution of S-and P-waves, Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves,
and Lmax = 4 additionally G-waves. The individual interference terms are included as well and are indicated by
their color and dashed or dotted curves. In addition, the different interference terms for the ⟨P,P⟩ block are
plotted to show the sensitivity to the Roper resonance which couples to the M1− multipole. The dashed-dotted
line marks the photoproduction threshold of the pη channel. More details can be found in Sec. 9.2.

Inspecting Eq. (1.29), the first coefficient for E contains interference terms between different multi-
poles but also the absolute square of multipoles. Thus, in case one multipole dominates in a certain
energy range, the absolute square of this multipole has also the strongest contribution to the expansion
coefficient and thus no sensitivity to the interference terms with small contributing multipoles is
present. Especially at beam photon energies below 600 MeV (W = 1400MeV), the |M1+|2 term, to
which the ∆(1232)3/2+(P33) resonance belongs, is huge. Thus, at low energies and in the region
where Lmax = 1 is valid, no high sensitivity to the N(1440)1/2+(P11) is expected in the first coeffi-
cient. However, as can be seen in Eq. (1.31), expansion coefficients with an odd number for k are only
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sensitive to interference terms and thus can be sensitive to small contributing resonances.

(a1)
Ě
0 = ⟨S,S⟩+ ⟨P,P⟩ ,

(a1)
Ě
1 = ⟨S,P⟩ ,

(a1)
Ě
2 = ⟨P,P⟩ . (1.31)

Therefore, the measurement of both double polarization observables G and E might help to further
constrain the resonance properties. Moreover, they can be used as input for the energy-dependent
partial wave analyses (PWA), performed by different groups worldwide. The different PWAs are the
topic of the following section.

1.4 Model Dependent Partial Wave Analyses

Using the results of the measurement of the polarization observables as input, partial wave analyses
(PWAs) are used to extract multipoles and thus resonance properties. They are even capable of
providing predictions for polarization observables. By performing sensitivity studies of certain
resonances to polarization observables, the PWAs can help to decide which observables should be
measured in the future.
For this thesis, the most relevant models are the SAID, BnGa, MAID, and JüBo PWAs. All models
have in common that their amplitudes are analytic functions of the invariant mass and that two-body
unitarity is at least approximately fulfilled. In addition, all models are able to allow for coupled channel
effects [39]. The biggest difference comes from the parametrization of the scattering amplitude in
Eq. (1.5), which includes the description of the resonant and the non-resonant terms. Moreover,
different amounts of experimental data are used for the models.
One way to paramaterize the amplitude is the K-matrix approach, which constructs the transition
matrix T and thus the scattering amplitude. They are connected by:

T = K · (1− iK)−1. (1.32)

The K-matrix elements can be written as a sum of all poles together with non-resonant background
terms. A resonance is thereby a pole in the complex energy plane of the T-matrix with a mass
corresponding to the real part of the pole position E0 and a width corresponding to the imaginary
part via −2Im(E0) [47]. However, one should stress that in the most general case, there is no direct
one-to-one correspondence between K-matrix poles and T-matrix poles. The main advantage of this
approach is that it can handle several overlapping resonances and even superpositions of resonances
with non-resonant background terms. A Breit-Wigner parametrization is only applicable in case
of a well-isolated resonance. This is nearly given for the ∆(1232)3/2+(P33) resonance in the M1+

multipole as can be seen in Fig. 1.12 on the left side where the mass and width can be extracted from
the real and imaginary parts, respectively. At that point, a comparison with the E0+ multipole in the
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middle of Fig. 1.12 and the M3− multipole in Fig. 1.9 makes sense. It can be seen that the structure is
much more complex and thus a Breit-Wigner parametrization becomes questionable.
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Fig. 1.12: The parametrization of a resonance state. On the left side, the real (solid black line) and imaginary
part (dashed red line) of the particle representation multipole M1+(pπ0) of the reaction γ p → pπ0 is presented
for the BnGa-2016 PWA solution [46]. For the Breit-Wigner paramterization, the zero-crossing in the real
part defines the mass of the resonance state (dashed vertical line) and the imaginary part is used to determine
its width. In the middle, the similar plot is shown for the E0+(pπ0) multipole where the three resonances
N(1535)1/2−(S11), ∆(1620)1/2−(S31), and N(1650)1/2−(S11) are overlapping and interfere with each other.
Since Breit-Wigner distributions are not feasible anymore, a much better approach is the parametrization via
the complex energy plane of the T-matrix as shown on the right side for the JüBo meson exchange approach.
The modulus |T| for the S11 partial wave in πN → πN is plotted as a function of the complex scattering energy
E. The N(1535)1/2−(S11) and N(1650)1/2−(S11) resonances are clearly seen as an enhancement (figure right
modified from [48]).

The Scattering Analysis Interactive Dial-in (SAID) model is based on the Chew-Mandelstam K-matrix
approach [30] with the most recent solution being the SAID-CM12 solution. Resonances, expect
the ∆(1232)3/2+(P33) resonance, are dynamically generated by the parametrization of the K-matrix
with energy-dependent polynomials up to the fifth order. The masses, widths and hadronic couplings
are obtained from fits to data for pion-induced reactions. The photocouplings of the resonances are
finally determined by fitting to photoproduction data. Thus, new resonances can not be extracted with
photoproduction data within this approach.
The situation is different for the Bonn Gatchina PWA (BnGa) which is a multi-channel PWA relying
on a dispersion-relation Ansatz which is based on the N/D technique. It is the most phenomenological
model of the four approaches as the resonances are included by hand. Within the analysis of the newest
data, the BnGa group added above 2.2 GeV resonances as relativistic multi-channel Breit-Wigner
amplitudes [39]. To account for non-resonant contributions, amplitudes are included which represent
the t- and u-channel exchanges. As mentioned before, the BnGa group performs a multi-channel
analysis which fits simultaneously a large data base. It utilizes the SAID WI08 energy-dependent
amplitude solution together with pion-, photon-induced reactions, and even 3-body final states. A list
of all reactions is given in [39]. The recent solution is the BnGa-2016 [46].
The Mainz Isobar Model (MAID) is based on a T-matrix approach in which resonances are pa-
rameterized as multi-channel Breit-Wigner amplitudes [49]. Thereby, mass, width and coupling
strength of the 13 four-star resonances below W = 2GeV are taken from the PDG [7] as start param-
eters for the PWA. The non-resonant terms are modeled by Born terms which are described by an
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energy-dependent mixing of pseudovector-pseudoscalar πNN couplings and t-channel vector meson
exchanges [39]. The MAID-2007 solution is the oldest of all models and only includes data on photo-
and electroproduction of pions up to the year 2002.
The final partial wave analysis mentioned here, namely the Jülich-Bonn model (JüBo), is a dynam-
ical coupled-channel approach and strictly speaking no partial wave analysis [39]. The scattering
potential of pion-induced reactions is constructed from an effective Lagrangian, which is iterated
in a Lippmann-Schwinger equation [50]8. Resonances can be included by hand in the pole-part
of the scattering potential. In addition, generated resonances can occur via the interaction of t-and
u-channel terms which are included in a non-pole potential to allow for non-resonant contributions
as well. An example of a dynamically generated resonance in this approach is the Roper resonance
N(1440)1/2+(P11) . All resonances are obtained by studying the poles in the complex energy plane of
the scattering matrix. The formalism of the photoproduction processes is realized by a parametrization
of the kernel of the photoproduction multipole amplitude by energy-dependent polynomials. The
JüBo approach uses the same data base as the BnGa group and determines the resonance parameters
using the SAID WI08 energy-dependent amplitude solution together with pion- and photon-induced
data. The latest version is the JüBo-2017 solution [50].

1.5 Current Data Base

The current data situation up to a beam photon energy of 1.5 GeV for the pπ0 and nπ+ final states are
shown in Fig. 1.13 and Fig. 1.14. The data are presented by points in the kinematic variable cosθ ,
which is the polar angle of the meson in the center of mass system, and the beam photon energy Eγ .

The pπ0 channel is by far the best-measured photoproduction process. Apart from the differential
cross section (e.g., [51, 52, 53, 54]), the beam asymmetry Σ has the biggest data base. It consists
of data from the A2 collaboration shown in green [55, 56, 57], GRAAL collaboration in magenta
[53], CBELSA/TAPS in red [58], CLAS in blue [54], LEPS in yellow [59] and all data before the
year 2005 in gray. The polarization observables T , P and H have been measured in one experiment
by the CBELSA/TAPS collaboration [60, 61], whereas an experiment from the A2 collaboration
determined the obserables T and F [62]. The polarization observable E consists of a data set from the
CBELSA/TAPS collaboration [63] and new unpublished data from the A2 collaboration [14].
For the polarization observable G, which will be extracted within this thesis, a data base below
600 MeV is nearly not present as only a few data points are available. Above 600 MeV, data exist
from the CBELSA/TAPS collaboration [64, 45] which have an overlapping energy region with the A2
experiment. The covered energy range for the observable G within this thesis is indicated by the blue
area.

8The equation ensures automatically two-body unitarity and analyticity.



1.5 Current Data Base 25

For the nπ+ channel, the data base, compared to the one of the pπ0 channel, compromises much less
measurements. Although the differential cross section is well measured, only a few other polarization
observables have been investigated since the year 2000. All data before the year 2000 are marked
by the gray symbols. The beam asymmetry Σ was measured above 600 MeV with good statistics
and angular coverage by the GRAAL collaboration (points shown in magenta) [65, 66] and above
1100 MeV by the CLAS collaboration (points in blue) [54]. Below 600 MeV, data are also available
from the LEPS collaboration (yellow points) [59] and the A2 collaboration (green points) [67, 57].
The biggest data base is available for the double polarization observable E, which has been measured
by the CLAS collaboration in blue [68]. With an energy starting already at 350 MeV, these data
overlap with the new A2 data which are indicated by the blue area. Besides the arguments which
have been mentioned in the previous section, the importance of the double polarization observable
G can be seen directly in the small number of available data points in the analyzed energy region.
Additionally to the old data with poor statistics and bad angular coverage before the year 2000 [69,
70], the most recent measurements come from the A2/GDH collaboration with only one energy bin
and six points in the angular coverage as indicated by the green points [67].
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Fig. 1.13: Data base of the polarization observables for γ⃗⃗p→pπ0 . Shown are the experimental data points
up to Eγ =1.5 GeV for the unpolarized cross section dσ

dΩ
, the three single polarization observables (Σ,T,P), and

four double polarization observables (E,F,G,H). The full data base can be accessed in [71], whereas a list
of all citations is given in Tab. 5 in reference [72]. The gray points indicate all data before the year 2005.
Data from the CBELSA/TAPS collaboration are presented in red [17, 73, 58, 51, 63, 61, 64, 14] from the A2
collaboration in green [52, 62, 57, 55, 56], from the CLAS collaboration in blue [74, 54], from the GRAAL
collaboration in magenta [53] and from the LEPS collaboration in yellow [59]. The blue area in the double
polarization observable G marks the covered kinematic range by the new A2 data which are determined within
this thesis.
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Fig. 1.14: Data base of the polarization observables for γ⃗⃗p→nπ+ . Shown are the experimental data points
up to Eγ =1.5 GeV for the unpolarized cross section dσ

dΩ
, the three single polarization observables (Σ,T,P), and

four double polarization observables (E,F,G,H). The full data base can be accessed in [71], whereas a list of
all citations is given in Tab. 5 in reference [72]. The gray points indicate all data before the year 2000. Data
from the A2 collaboration are presented in green [67, 75, 57], from the CLAS collaboration in blue [54, 68],
from the GRAAL collaboration in magenta [65, 66] and from the LEGS collaboration in yellow [76]. The blue
area in the double polarization observable G and E marks the covered kinematic range by the new A2 data
which are determined within this thesis.
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1.6 Aim of this Work

Within this thesis, the double polarization observable G will be extracted in the beam photon energy
range from 230 MeV to 864 MeV. The measurement in the neutral pion photoproduction off the proton
closes the gap from the ∆(1232)3/2+(P33) region towards the already published CBELSA/TAPS data
[64]. Together with the charged pion channel, an isospin separation of the contributing resonances
is possible in a later analysis. Of special interest is the investigation of the M1− multipole to which
the Roper resonance N(1440)1/2+(P11) couples. It is mainly accessible in this observables due to its
interference structure of the contributing multipoles. Besides that, the observable G is perfectly suited
to study weakly contributing resonances in the region of the dominant ∆(1232)3/2+(P33) resonance.
Together with the measurement of the double polarization observable E, an experimental proof can be
made that the measurements with elliptically polarized photons on a longitudinally polarized target
are capable of determining the double polarization observables G (linearly polarized component) and
E (circularly polarized component) at the same time within one experiment. Thus, within this PhD
work, the double polarization observable E for the reaction γ⃗ p⃗ → nπ+ will be determined in the beam
photon energy range from 230 MeV to 864 MeV. The corresponding pπ0 and the pη channel were
part of the PhD work from F. Afzal [14].

The thesis is structured as follows. After an introduction to the experimental setup in Chapter 2,
Chapter 3 concentrates on the experimental production of photons, including linearly, circularly and
elliptically polarized photons which are needed to measure the double polarization observables G
and E. Chapter 4 gives an overview of the data acquisition and software needed to analyze the data.
Chapter 5 presents the methods to reconstruct the raw data into physical quantities which will then
be calibrated in Chapter 6. Chapter 7 continues with the selection process of the pπ0 and nπ+ final
state. The selected data are then used to extract the polarization observables in Chapter 8 and the final
results will be discussed in Chapter 9.



Chapter 2

Experimental Setup

The A2 experiment, located at the electron accelerator MAMI in Mainz, is perfectly suited to fulfill the
requirements for the measurement of polarization observables in photoproduction induced reactions.
Thus in this chapter, an overview of the experimental setup is presented. After an introduction to
the electron accelerator MAMI (MAinzer MIcrotron), the equipment for the production and tagging
of linearly polarized photons via coherent bremsstrahlung and of circularly polarized photons via
helicity transfer is described. These photons are guided towards two different targets including the
longitudinally polarized butanol target. Together, they form the requirements for the measurement of
the polarization observables G and E for the analysis of this work. Since the polarization observables
are analyzed for different final states, the decay particles have to be detected. Thus, the last two
sections in this chapter will present the main components of the A2 experiment for the detection of
neutral and charged particles. An overview of the experimental setup is illustrated in Fig.2.1.

Fig. 2.1: Overview of the A2 experiment. A schematic overview of the setup is shown including the three
main components of the A2 setup, namely the Tagger, the Crystal Ball, and the TAPS system (figure modified
from [77]).
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2.1 MAMI Electron Accelerator Facility

The MAMI electron accelerator facility is a continuous wave accelerator which is located at the
University of Mainz. It is a four-stage accelerator consisting of three Race Track Microtrons (RTM)
and a Double-Sided Harmonic Microtron (HDSM), which together can accelerate electrons up to an
energy of 1602 MeV. An overview of the facility is shown in Fig. 2.2.

Fig. 2.2: Overview of the MAMI facility. Shown is the MAMI hall consisting of the three accelerating RTMs
(MAMI B) and the HDSM (MAMI C). In addition, the four experimental halls X1, A1, A2, and A4 are shown
(figure taken from [78]).

2.1.1 Electron Sources

For the acceleration, two electron sources are available. A thermal source is used for the unpolarized
electrons and emits them with a maximum current of 100 µA. Polarized electrons with a polarization
degree up to 80% and a current up to 20 µA can be produced via photoelectron emission of a GaAsP
crystal (III-V semiconductor). A pulsed Ti:Sapphire laser provides linearly polarized photons, which
are converted via a quarter-wave plate into circularly polarized photons. These photons are irradiated
on the GaAsP crystal resulting in linearly polarized electrons [79]. To eliminate systematic effects
due to instrumental asymmetries in the experiment, the helicity of the electron beam polarization is
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flipped with a frequency of 1 Hz between parallel and anti-parallel. This is reached by using a Pockels
cell as the quarter-wave plate where a flip in the voltage polarity causes a change in the optical axis of
the used material and thus a helicity flip of the photons and electrons [80]. The degree of polarization
is determined afterward with a Mott polarimeter.

2.1.2 The Four-Stage Acceleration

The electrons from the polarized source with an energy of 611 keV are injected into the injector
linear accelerator (LINAC), where they are accelerated nearly to the speed of light with an energy of
3.97 MeV [81]. Afterwards, the first Race Track Microtron (RTM1) accelerates them to 14.86 MeV.
A schematic overview of the Race Track Microtron is shown in Fig. 2.3.

Fig. 2.3: Schematic overview of a Race Track Microtron (RTM). The lines indicate the passing of the
electron through the two dipole magnets (figure taken from [82]).

The RTM consists of a LINAC with radio-frequency cavities with a wavelength of λr f in combination
with two dipole magnets with an uniform magnetic field B. The magnets serve to deflect the electrons
by 180° so that the electrons can pass the acceleration of the LINAC many times. In the case of RTM1,
the number of circulations is 18. Since in each circulation the electrons gain a defined additional
energy ∆E, the radius of the beam in the magnetic fields increases (see Fig 2.3). Thus, to ensure that
the electrons are accelerated coherently in phase in the LINAC, two conditions have to be fulfilled.
The first one is the static coherence-condition for the path length L1 of the first complete circulation.
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It is given by:

L1 = k ·λr f =
2π(Ein j +∆E)

ecB
+2d (2.1)

and demands that the first path length L1 must be an integer multiple of the rf-wavelength λr f [83]. It
can be adjusted either by the injected energy Ein j, the distance d of the dipoles, or their magnet field
strength B. Since a huge distance d between the magnets would result in a large beam emittance and a
huge magnetic field in inhomogeneities in the field, the condition is fulfilled by the injected energy
Ein j of 3.97 MeV of the injector LINAC. The second condition is the dynamic resonance-condition
and requires a connection between the path length from one circulation Li to the next one Li+1:

Li+1 −Li = 2π∆R = k ·λr f . (2.2)

It is fulfilled by setting the energy gain ∆E per turn to:

∆E =
ecB
2π

· k ·λr f . (2.3)

Each RTM of the MAMI facility is adjusted in such a way that these conditions are fulfilled. Together
with the technique of longitudinal phase focusing and quadrupole magnets which focus the electrons
perpendicular to their momentum [84], a very good energy resolution and low divergences in the
beam are achieved [83] [82]. All three RTMs together can accelerate the electrons up to an energy
of 883 MeV. For further acceleration, another RTM is not feasible since the bending radius of the
electrons in the magnets strongly depends on the injected energy and the applied magnetic field.
Furthermore, due to the saturation of ferromagnetic materials, the maximum possible magnetic field
is about 1.5 T and RTM3’s magnetic field is already 1.29 T. Another problem is the dimension of the
magnets. Since the magnets weight increase with the third power of the output energy, the magnets
would require a mass of more than 3000 t per dipole if the output energy of RTM3 would be doubled
[78]. Consequently, another solution was required by using a Harmonic Double-Sided Microtron
(HDSM). A schematic overview of the HDSM is shown in Fig. 2.4. Instead of using two heavy
dipole magnets that bend the electron beam by 180°, four lighter dipole magnets are implemented
which each bend the beam by only 90°. By that, the electrons can also pass the two LINACs. To
avoid defocusing effects and to reach a stable beam, one of the LINACs is driven at the fundamental
frequency (2.45 GHz) and the other one at the first harmonic frequency (4.9 GHz). Finally, an energy
of up to 1602 MeV with an uncertainty of only 10 keV can be extracted and guided towards the A2
experimental hall [78].
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Fig. 2.4: Overview of the Harmonic Double Sided Microtron (HDSM). Shown is the HDSM with the two
linacs LINAC I and LINAC II and the four dipole magnets (figure taken from [78]).

2.1.3 Summary

The MAMI electron accelerator facility provides a continuous wave electron beam with a final energy
of 1602 MeV and an energy spread of only 110 keV. The electrons can either be unpolarized with a
maximum current of 100 µA or longitudinally polarized with a polarization degree up to 80% and a
maximum current of 20 µA. An overview of the main properties of MAMI is shown in Tab. 2.1.

Table 2.1: Overview of the main properties of the MAMI electron accelerator facility [82].

Unit Injector RTM1 RTM2 RTM3 HDSM

Injection Energy [MeV] 0.611 3.97 14.8 180 855
Extraction Energy [MeV] 3.97 14.86 180 855 16002
Energy Gain / Turn [MeV] 3.5 0.599 3.24 7.50 6.58-13.66
Number of Circulations - 18 51 90 43
Energy Spread (1σ ) [keV] 1.2 1.2 2.8 13 110
Norm. Emittance Hor. (1σ ) [π ·10−6] 0.05 0.07 0.25 13 27
Norm. Emittance Bert. (1σ ) [π ·10−6] 0.04 0.07 0.13 0.84 1.2
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2.2 Photon Beam

2.2.1 Goniometer

The A2 experiment makes use of a five-axis goniometer, which allows the goniometer to rotate in the
azimuthal, horizontal, and vertical direction at the same time. It is located in a vacuum chamber in the
beamline directly in front of the Glasgow Tagged Photon Spectrometer.

Fig. 2.5: The A2 goniometer. On the left side, the radiator wheel is shown with the diamond crystal located in
the center of the wheel. On the right side, the Møller radiator and its magnetic coil is depicted (figure taken
from [85]).

The radiator wheel is shown in Fig. 2.5 on the left side. It is equipped with different radiators for the
production of bremsstrahlung photons (see Chap. 3). For this thesis, the two most important radiators
are the diamond crystal and the Møller radiator. The diamond crystal, which is used for the production
of linearly polarized photons (see Sec. 3.2), is located in the center of the goniometer and can be
orientated with the five-axis goniometer to any position with respect to the electron beam. The Møller
radiator with its magnetic coil is shown in Fig. 2.5 on the right side. The purpose of the radiator is to
produce circularly polarized photons and to measure the polarization degree of the incoming electron
beam (see Sec. 3.3).

2.2.2 Glasgow Tagged Photon Spectrometer

The Glasgow Tagged Photon Spectrometer serves to determine the energy of the produced bremsstrahlung
photons and is located behind the radiators (see Sec. 5.1). A schematic overview of the spectrometer
is shown in Fig. 2.6.
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Fig. 2.6: Schematic overview of the Glasgow Tagged Photon Spectrometer. The schematic overview of the
Glasgow Tagged Photon Spectrometer depicts the dipole magnet and the bending of the deflected electrons and
their detection in the focal plane detector (figure taken from [86]).

The tagger consists of a large dipole magnet with a magnetic field strength of about 1.9 T at a current
of 440 A. Therefore, the main electron beam that does not interact with the radiator is deflected by
an angle of 79° and is guided into the beam dump. An additional Faraday cup serves to monitor the
beam current. Decelerated electrons with an energy in the range of 5-93% of the incoming electron
beam energy are deflected to lower angles according to their momentum. They are detected by the
focal plane detector, which is instrumented with 353 plastic scintillators. Each scintillator has a length
of 80 mm, a thickness of 2 mm, and a varying width of 9 mm to 32 mm. Therefore, the decreasing
width along the focal plane detector ensures that the detected energy range of each element stays
roughly constant. All elements are overlapping by slightly more than 50% with its neighboring
element resulting in 352 possible coincidental signals with an energy resolution of about 4 MeV [86].
The corresponding energy for each overlapping channel can be estimated by a calibration procedure
which will be explained in Sec. 6.1.1. The readout of each element is performed via photomultipliers
(PMTs), which are shielded from the dipole magnetic field via Mu-metal. To ensure a long lifetime of
the PMTs, the maximum count rate of an element is limited to 10 MHz. Since the bremsstrahlung
process follows a 1

Eγ
distribution, a high rate of low energetic electrons is expected. Therefore, it is

possible to turn off several sections of the tagger to reach an optimal rate for the desired experiment.
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2.2.3 Collimator

After the bremsstrahlung photons are produced in the radiator and the deflected electrons are detected
in the focal plane detector, the photon beam passes through a lead collimator with a 2 mm diameter
after a distance of 2.45 m. With that, the beam spot diameter is smaller than the target material
diameter to which the photon beam is guided after an additional distance of about 11 m. Furthermore,
the effect of collimation of the photon beam plays an important role in the achievable polarization
degree of the photons. A detailed explanation will be given in Sec. 3.2.4.

2.2.4 Pb-Glass Detector

For the analysis, a good knowledge of the number of photons which pass the collimator is mandatory.
Therefore, a Pb-glass detector with the dimensions 20×20×20 cm3 can be placed 5 m downstream
from the goniometer. In dedicated runs, named tagging efficiency runs, the Pb-glass detector is placed
inside the beamline and allows for comparison of the incoming electron flux in the tagger to the photon
flux on the target. At low beam currents and a rate of about 10 kHz in the Pb-glass detector, photons
which pass the target and enter the Pb-glass detector have a nearly 100% efficiency of converting
into an electron-positron pair [87]. By requiring a time coincidence of these detected particles and a
signal in a tagger channel, an electron hit in the tagger can be marked as photon tagged. The tagging
efficiency of a channel can afterward be determined via:

εtagg(ch) =
Ntagged,γ (ch)

Ne−(ch)
, (2.4)

where Ne−(ch) is the overall number of detected electrons in a tagger channel and the number with a
corresponding time coincidence with the Pb-glass detector is given by Ntagged,γ (ch).

2.3 Targets

The collimated photon beam is guided towards different targets, which are located in the center of
the Crystal Ball detector. For this thesis, two targets were available. The polarized butanol target
provides the required polarized protons for the measurement of the double polarization observables.
An additional carbon target is used for reactions on unpolarized protons and serves to study the carbon
and oxygen contribution inside the butanol target.

2.3.1 Polarized Target

For the measurement of the double polarization observables G and E, reactions on polarized protons
are required. For the alignment of the proton spins in the desired direction, a target material with a high
amount of unbound protons needs to be operated at low temperatures in combination with a strong
magnetic field. The most obvious target choice would be a liquid hydrogen target (LH2). However,
at very low temperatures, the two proton nuclear spins are aligned anti-parallel to each other, which
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results in a vanishing total spin. Consequently, the protons inside liquid hydrogen can not be polarized.
In addition, one of the severe problems of the alignment of the proton spin is its high mass, i.e. a
2.5 T magnet at a temperature of 1 K results only in a proton polarization degree of about 0.255%. At
similar conditions, electrons can reach a polarization degree of 93.3% due to its low mass compared to
the proton mass [88]. Based on this knowledge, the principle of dynamic nuclear polarization (DNP)
is used. It has the aim to transfer the electron polarization to the proton polarization [89]. To do so, the
A2 experiment utilizes a butanol target (C4H9OH). The non-existing spin of the carbon and oxygen in
combination with the high amount of polarizable protons of the hydrogen allows for polarizing a large
amount of protons inside the target without any background polarization. The butanol target is doped
with the paramagnetic radical TEMPO (C9H18NO) with a ratio of 10−4 [84]. The electrons of the
radical can be polarized to nearly 100% by applying a magnetic field of about 2.5 T in combination
with a rather low temperature of about 300 mK. Afterward, the achieved polarization of the electrons
can be transferred to the protons of the hydrogen atoms inside the butanol target. The transfer of the
polarization is realized by irradiating the target with a defined microwave frequency. The frequency is
selected in such a way that hyperfine transitions are stimulated and cause simultaneous spin-flips of
the electron and proton1. By that, the polarization will be transferred to the proton and an alignment of
the spin with respect to the magnetic field direction is possible. To ensure a high proton polarization
degree over a long period, the relaxation time must be maximized. This is achieved by the frozen-spin
method where small pellets of the doped butanol are kept at a temperature of about only 25 mK by
a 3He/4He refrigerator system (see Fig. 2.7). More details about the principles of the refrigerator
can be found in [91]. Due to the achieved low temperature, the holding magnetic field of 2.5 T can
be exchanged by a superconducting internal holding coil of only 0.65 T. A schematic overview of
the cryostat including the refrigerator system and the target is depicted in Fig. 2.7. The target can
reach a polarization of up to 85% and measurement periods of up to approximately one week in
the frozen spin mode [90]. The target polarization is measured with a Nuclear Magnetic Resonance
(NMR) coil with only a few windings which is attached to the target material basket [92]. It is a
serial resonance circuit and frequency is scanned over the Larmor frequency of the proton. During
the scan, the interaction between the spins of the target and the NMR coil causes a change in the
inductance of the coil and thus its impedance. By measuring the resulting NMR signal in thermal
equilibrium and frozen spin mode at the end of a beamtime period, the polarization degree of the
protons can be determined. The individual polarization degrees of a production run in a beamtime can
be extrapolated between these points. The resulting polarization values of the individual beamtimes
will be presented in Sec. 8.2.2.

1For a magnetic field of 2.5 T, the frequency is 70 GHz and is given by the difference in the Larmor frequencies of the
proton and electron [90].
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Fig. 2.7: Geometry of the front end of the polarized target cryostat. Shown is a schematic view of the
cryostat, including the 3He/4He refrigerator system and the target basket which is filled with frozen butanol
pallets. In addition, the NMR coil, the internal holding coil, and the carbon target can be seen (figure taken
from [14]).

2.3.2 Carbon Foam Target

The carbon target is used to determine the background contribution of the carbon and oxygen inside
the butanol target. Since the photoproduction cross section for carbon and oxygen behave in a similar
way [93], the oxygen distribution can be described by the carbon distribution. Since the butanol target
is used in the frozen spin mode, the helium mixture, which cools the target down to 2.5 mK, has to be
taken into account as well. Hence, the carbon density and length is selected in such a way that its
areal density is kept equal to the unpolarizable components of the butanol target plus the contribution
of the helium mixture [14]. In addition, the same experimental conditions are achieved by placing the
carbon target inside the same cryostat as the butanol target. With that, background coming from the
cryostat windows or shells can also be subtracted.

2.4 Crystal Ball Setup

2.4.1 Crystal Ball (CB)

The Crystal Ball detector is the main electromagnetic calorimeter of the A2 experiment and surrounds
the target, the PID, and the two MWPCs. A schematic overview has been presented in Fig. 2.1. Its
main geometry is an icosahedron, which consists of 20 triangles. Each triangle is split into four
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smaller equilateral triangles in which nine NaI(Tl) crystals are mounted in the form of a truncated
triangular pyramid (see Fig. 2.8).

Fig. 2.8: The geometry and arrangement of the CB crystals. On the left side, the geometry of the CB
crystals is shown and on the right side, its arrangement in one of the 20 main triangles (figure taken from [80]).

While a whole icosahedron is built up of 720 crystals, the CB only consists of 672 crystals. This
is because the CB surrounds not only the target but also the beamline. An entry and exit point for
the beam must be available, referred to as the tunnel region. Therefore, 48 crystals in the forward
and backward directions are taken out, which results in a total of 672 crystals. These crystals are
installed into two hemispheres and the upper one can be lifted for maintenance work. As a result of
the two hemispheres, an inactive region of 2 mm×1.5 mm steel plates in combination with a 5 mm
air gap is present. Based on the fact that the crystals are very hygroscopic, both hemispheres are
air-evacuated to ensure that the crystals are protected from dust and moisture. The crystals have a
length of 40.6 cm, which corresponds to 15.7 radiation lengths. The front edge length of the pyramids
is 5.1 cm, whereas the back length is 12.7 cm (see Fig. 2.8 on the left). Each crystal is wrapped in
reflector paper and aluminized Mylar. With that, the crystals are optically isolated. The readout of
the crystals is performed at the outside of the hemispheres by SRC L50 B01 photomultipliers. The
produced scintillating light in the crystals is optically guided towards the PMTs via a glass window
and a 5 cm air gap. The four-momentum of a particle is then reconstructed based on its reconstructed
electromagnetic shower in the crystals. For further details about the reconstruction, see Sec. 5.2. The
polar angular coverage of the CB is 21° to 158° with nearly full coverage in the azimuthal direction
except for a small section between the two separated hemispheres.

2.4.2 Particle Identification Detector (PID)

The PID is in the form of a barrel and is located between the target and the two MWPCs. It consists of
24 EJ204 plastic scintillators with each scintillator covering 15° in azimuthal direction. Consequently,
charged particles can be detected over the full azimuthal angular range. In contrast to the CB, the
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Fig. 2.9: The geometry of the PID plastic scintillators. The different geometries of the PID are shown (figure
taken from [80]).

PID provides no polar angular information. Still, the length of the PID is selected in such a way
that its polar angular coverage matches the one of the CB. Thus, by requiring an azimuthal angular
correlation with the CB, a track in the CB can be marked as charged by detecting a signal in the
corresponding PID element. Most importantly, different charged particles, i.e. electrons, charged
pions, and protons, deposit a different amount of energy in the scintillators. Therefore, by plotting
the deposited energy in the PID as a function of the deposited energy of the particle in the CB, a
selection of distinct charged particles becomes possible. A detailed explanation of this reconstruction
and selection will be described in Sec. 5.2.4 and Sec. 7.9.1. The geometry of each element is shown
in Fig. 2.9 in which the cross-sectional view of the scintillator and its base parameters are depicted. It
can be seen that the elements have a trapezoidal form to minimize the gaps between each other which
results in a full azimuthal angular coverage. For optical isolation between the individual scintillators,
each of them is wrapped in aluminum and the entire detector is isolated via a black Tedlar layer. The
readout of the crystals is performed via light guides and PMTs (Hamamatsu H3164-10), which are
located in the upstream direction. The purpose is to minimize the material between the target and the
main calorimeters and thus, the amount of background produced in forward direction.

2.4.3 Multi-Wire Proportional Chambers (MWPCs)

Two MWPCs are installed between the PID and the CB for the tracking of charged particles. The exact
reconstruction of these will be discussed in detail in Sec. 5.2.3. Each MWPC has an anode consisting
of gold-coated wolfram wires with a diameter of 20 µm and a spacing of 2 mm. The wires are aligned
parallel to the beam axis. They are surrounded by an inner and outer layer of aluminum cathode
strips with a width of 4 mm and thickness of 0.1 µm. The strips, each having a distance of 0.5 mm to
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its neighbor, are glued on a cylinder with Kapton foil and are mounted in the shape of a helix with
an angle of 45° with respect to the beam axis. Most importantly, the inner and outer strips have a
reversed direction of rotation. Due to that, each strip crosses each other twice, which is important for
the reconstruction of a charged track. The MWPCs are filled with a gas-mixture of 65.5% argon, 28%
ethane, 0.5% freon (CF4), and 6% alcohol. Between the wires and strips, a typical high voltage of 2.5
kV is applied. Thus, a charged particle ionizes the gas, and the ionized electrons/holes drift to the
anodes/cathodes, which results in a changing voltage and a signal to readout. A schematic picture of
the MWPC and the parameter details of each MWPC is shown in Fig. 2.10.

Fig. 2.10: The geometry of the MWPC and its main parameters. On the left side, the geometry of a MWPC
is shown and on the right side the corresponding main parameters are listed (figure taken from [94]).

2.5 TAPS Setup

2.5.1 C̆erenkov Detector

The photon beam in combination with the target induces not only the desired photoproduction
reactions but also undesirable electromagnetic backgrounds such as pair production and Compton
scattering. This electromagnetic background is roughly five orders of magnitude larger than the
photoproduction events [95]. Since the high energetically photon beam boosts the produced electrons
and positrons in the forward direction, a gas threshold C̆erenkov detector can be placed between the
CB system and the TAPS. Its task is to reject the huge amount of electromagnetic background. To
do so, it is filled with a gas mixture of the radiator gas C4F8 with a refractive index of n = 1.0013.
With that, electrons with an energy above 10 MeV produce C̆erenkov light, which is focused via a
concave mirror on photomultipliers. Charged pions need an energy of at least 2.7 GeV and thus, do
not produce any light in this experiment [96]. As will be shown in Sec. 4.2, the signal of the C̆erenkov
detector is used on the first level trigger of the data acquisition as a Veto signal and allows to reduce
the amount of electromagnetic background in the forward direction. The dimensions of the detector
are selected in such a way that the detector covers the same polar angular range as the TAPS and the
full azimuthal polar range.
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Fig. 2.11: Front and back view of the C̆erenkov detector. On the left side, the front view of the detector is
shown and the right side shows the back view (figure taken from [95]).

2.5.2 Two Arm Photon Spectrometer (TAPS)

The TAPS is an electromagnetic calorimeter and serves to detect the final state products in the forward
direction. The detector covers the full azimuthal angular range and the polar angular range from 1°
to 20°. For the case that the C̆erenkov detector is installed, the TAPS has to be moved backward
by about 32 cm, resulting in a decreasing polar angular coverage of only up to 17.5°. The detector
consists of 366 BaF2 and 72 PbWO4 crystals, which are arranged in six logical sectors and eleven
rings (see Fig. 2.12 on the left side).
The 366 BaF2 crystals have the form of a hexagonal polyhedron with a length of 22.5 mm (see Fig.2.12
on the right top side). The length of the crystal in combination with a 2.5 cm long cylindrical end cap
corresponds to 12 radiation lengths. Note that the BaF2 crystals are very fast inorganic scintillators
with a fast component of 0.9 ns for a scintillating wavelength of 220 nm and a slow component of
650 ns for a scintillation wavelength of 300 nm. The first provides, in combination with PMTs as a
readout, a very good time resolution of about 0.6 ns and the latter one a good energy resolution. The
existence of a short and fast component paired with a signal integration over a short and long time
interval allows determining two different energy depositions, namely the long gate and short gate
component. This components together can be used to identify particles via the Pulse-Shape Analysis
technique, which will be explained in Sec. 6.1.4. To ensure good optical isolation, the crystals are
wrapped in eight layers of 38 µm thick reflecting Teflon foil and one layer of 15 µm aluminum [77].
As readout, PMTs of the type Hamamatsu R2059-01 are installed at the end caps of the crystals. In
the high forward direction, the crystals are exposed to a very high rate, mainly due to atomic Compton
scattering [80]. Therefore, instead of BaF2 in the inner two rings, 72 PbWO4 crystals are installed.
PbWO4 has a higher density than BaF2 and thus less space is required for these crystals. Instead of
installing one BaF2 crystal, four PbWO4 crystals are used and the rate in each element is reduced by
a factor of four (see Fig. 2.12 on the middle right side). In addition, PbWO4 crystals have a shorter
decay time than BaF2 and thus, optimize the conditions of high rate stability. The individual crystals
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Fig. 2.12: The arrangement of the TAPS crystals and their dimensions. On the left side, the arrangement
of the 438 TAPS crystals is shown. On the right side, the individual elements are depicted. In the upper row, the
dimensions of a BaF2 crystal are illustrated together with the EJ-204 plastic scintillators whereas in the middle,
the decomposition of one BaF2 into four PbWO4. The lower row shows the dimension of one PbWO4 crystal
(figure modified from [97]).

are 20 cm long which corresponds to 22.5 radiation lengths. The optical isolation is achieved by
wrapping each crystal in 70 µm reflector foil VME2000 and an additional layer of 20 µm aluminum
foil. The readout is performed by a PMT of the type Photonics XP 1911 [77].

2.5.3 TAPS Veto Wall

To also identify charged particles in the TAPS acceptance region, the Veto Wall is mounted in front
of the TAPS. In front of each BaF2 crystal and a group of four PbWO4 crystals, a hexagonally
formed EJ-204 plastic scintillator with a thickness of 5 mm is installed. They are individually read
out by a BCF-92 wavelength shifting fiber coupled to PMTs of the type Hamamatsu H6568. The
deposited energy in these plastic scintillators can afterward be connected to the deposited energy
in the corresponding TAPS crystals. Similar to the PID scintillators, electrons, charged pions, and
protons deposit a different amount of energy in the plastic scintillators and thus a separation between
these particles is possible. For further information, see Sec. 6.1.5 and Sec. 7.9.1.





Chapter 3

Production of Photons

The purpose of this thesis is to measure polarization observables via photoproduction induced reactions.
Therefore, the electron beam coming from MAMI is guided towards different radiators (see Sec. 2.2.1).
In the electromagnetic field of an atomic nucleus of the radiator material, electrons are deflected and
decelerated. To ensure energy conservation, the lost kinetic energy of the decelerated electrons are
radiated off by a photon. This process is called bremsstrahlung. The leading order Feynman diagrams
are shown in Fig. 3.1.

Fig. 3.1: Leading order Feynman diagrams for the Bremsstrahlung process. The two leading order
Feynman diagrams for the bremsstrahlung process e−+N → e−+N + γ on an atomic nucleus with the atomic
number Z are shown (figure taken from [45]).

The bremsstrahlung process has to fulfill several kinematic constraints which will be discussed in
Sec. 3.1. In general, bremsstrahlung photons are not polarized. However, for the measurement of
polarization observables, certain configurations of the incoming electron beam in combination with
a radiator can produce linearly, circularly, or elliptically polarized photons. The different kinds of
polarization will be discussed in the following sections as well.
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3.1 Kinematics

The reaction and kinematics for the bremsstrahlung process is as following:

Ee = Ee′ +T +K, (3.1)

pe = pe′ +q+ k,

where Ee and pe are the energy and momentum of the incoming electron, Ee′ and pe′ are of the
outgoing electron, K and k are of the emitted photon, and T and q are of the recoiling participating
nucleus, respectively [40]. Since the nucleus is heavy compared to the electron, it’s momentum after
the collision is negligibly small and its kinetic energy T can be neglected in the following calculations.
Under this assumption, kinematic constraints can be derived in first-order approximation for the
recoil momentum q of the participating nucleus using Eq. (3.2) [98]. Due to rotational symmetry
of the bremsstrahlung process around the axis of the incoming electron momentum pe, the recoil
momentum is split into a momentum part, which is longitudinal (ql), and one transverse (qt) to the
electron momentum. The calculation will show that most of the recoil momentum is carried in the
transverse direction with respect to the incoming momentum pe and that the longitudinal component
is comparably small. Using Eqs. (3.2) and the angles defined in Fig. 3.2, the split momenta are given
by:

ql = pe − pe′ cosΘe − k cosΘk, (3.2)

q2
t = pe′Θ

2
e + k2

Θ
e
k2+2pkΘeΘk cosΨ, (3.3)

where Θe and Θk are the emission angles of the electron and photon with respect to the incoming
electron direction and Ψ is the azimuthal angle between the planes (pe,k) and (pe,pe′). The minimum

Fig. 3.2: Momentum relation for the bremsstrahlung process. Shown are the momentum relations parallel
(left side) and perpendicular (right side) with respect to the incoming electron momentum pe. It is important to
note that this is not to scale, and in reality q ≪ pe, pe′ ,k and Θe,Θl ≪ 1 (figure modified from [99]).
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longitudinal momentum qmin
l is obtained if the electron and photon are both emitted in forward

direction (Θe = Θk = qt = 0) and is given by:

x =
Ee

k
, qmin

l = δ (x) =
1

2E0

x
1− x

, (3.4)

where x is the relative photon energy. An approximated upper limit can be estimated by using the
characteristic angle of the emitted bremsstrahlung photon as the upper limit for the polar angle of the
emitted photons. Therefore, the characteristic angle Θc is the polar angle of a cone around the beam
axis in which half of all produced photons are emitted and is given by:

Θc =
mec2

Ee
. (3.5)

Since emission angles larger than Θc are rare, this condition is a good approximation for the upper
limit of the longitudinal momentum qmax

l which is given by:

qmax
l = 2δ (x). (3.6)

The maximum transverse momentum is obtained for the case that Ψ is zero. This yields to:

qmax
t = 2x. (3.7)

Finally, the following approximated constraints have been found for the recoil momentum of the
nucleus:

δ (x) ≤ ql ≤ 2δ (x),

0 ≤ qt ≤ 2x. (3.8)

As mentioned before, the constraints in Eq. (3.8) already give a good approximation on the allowed
momentum region. However, for the minimum longitudinal momentum ql given by Eq. (3.4), the
calculation assumed a vanishing transversal momentum qt which is only valid if the momentum
transfer q is relatively small. An exact calculation, described in detail in [98], gives the final
constraints:

δ (x)+
(qmax

t )2

2Ee
≤ ql ≤

δ (x)
x

, (3.9)

0 ≤ qt ≤ 1 (3.10)

with the maximum transversal component

qmax
t =

√
2Ee(ql −δ (x)). (3.11)
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These conditions are known as the "pancake" constraints as depicted in Fig. 3.3. The allowed
kinematic regions are indicated by the gray box for the approximated and for the exact constraints by
the dashed area. Clearly visible is that the allowed momentum transfer is dominated by the transversal
component, as already mentioned in the introduction.

Fig. 3.3: "Pancake" region for the allowed recoil momentum q to the nucleus. Shown are the allowed
regions for the recoil momentum q. Thereby, the gray box shows the approximated limits, following Eq. (3.8),
and the dashed area the exact limits, follwing Eq. (3.10) (figure taken from [45]).

3.2 Linearly Polarized Photons

Bremsstrahlung photons can be produced incoherently or coherently. The incoherent bremsstrahlung
is not polarized, whereas the coherent is. Thus, after a short summary of the main features of
incoherent bremsstrahlung, this section will explain the production of linearly polarized photons via
coherent bremsstrahlung.

3.2.1 Incoherent Bremsstrahlung

Incoherent bremsstrahlung takes place if electrons are irradiated on an amorphous radiator. An
amorphous radiator does not have lattice structures and thus does not construct any further constraints
on the recoil momentum q of the nucleus. Therefore, in the incoherent bremsstrahlung process, single
atoms can absorb any allowed momentum in the "pancake" region. As a result, no preferred plane
between the incoming electron and outgoing photon momentum is present and no preferred orientation
of the electric field vector of the photon and consequently no linear polarization of the photon. The
energy distribution of incoherent bremsstrahlung can be derived by the three times Bethe-Heitler
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differential cross section. After integration, the bremsstrahlung photons energy distribution is in good
approximation proportional to the inverse of the photon energy K. Thus, the amount of produced
photons is decreasing with increasing photon energy.

3.2.2 Coherent Bremsstrahlung

By replacing the amorphous radiator with a crystalline radiator with a defined lattice structure,
additional kinematic constraints on the recoil momentum q of the nucleus exist, which finally leads to
a preferred plane and an orientation of the electric field vector. The lattice structure of a crystal is
given by the reciprocal lattice vector g⃗ and is defined as:

g⃗ =
3

∑
i=1

b⃗i ·hi, (3.12)

where b⃗i are the basis vectors and hi are the Miller indices of the reciprocal lattice. Therefore, the
lattice can be described as a function of the Miller indices [h1,h2,h3]. For the production of linearly
polarized photons, the Laue condition must be fulfilled, namely that the recoil momentum q must
be a multiple of the lattice vector g⃗. In that case, a defined recoil momentum q is selected and the
produced photons can interfere constructively, resulting in coherent bremsstrahlung and an orientation
of the electric field vector of the photons. Studies have shown that the maximum polarization degree
of the photons is achieved by the lattices [0,2,2] and [0,2,2̄] [100]. To select these lattices for the
production of the coherent bremsstrahlung, the crystal must be aligned relative to the incoming
electron momentum. For this purpose, three angles are defined as depicted in Fig. 3.4 on the left.
Thereby, φ is the angle between the [022] lattice and the lab horizontal, c the angle between the
electron momentum and the [022̄] lattice and i the angle between the electron momentum and the
orthogonal planes [100]. The angle c serves to control the position of the coherent peak, which is
the position of highest polarization. It occurs at the relative photon energy x where the lattice vector
leaves the allowed longitudinal momentum region of the pancake. Using Eq. (3.4), the corresponding
fractional energy is given by:

xd =
2Eeδ (x)

1+2Eeδ (x)
. (3.13)

The coherent peak appears as a sharp discontinuity at x = xd in the enhancement distribution as it is
depicted in Fig. 3.4 on the right. After the coherent peak position has been adjusted, the angle i can
be used to adjust the lattice contributions. Thereby, c is selected in such a way that the lattices [022]
and [022̄] fall in the allowed momentum regions and higher lattices are rejected so that interference
with them can be avoided. Finally, to also avoid systematic effects due to detector inefficiencies, the
φ angle is selected in such a way that the polarization plane is once parallel to the lab horizontal
and once perpendicular. Thereby, it is sufficient to adjust the φ parallel to the lab horizontal. The
perpendicular setting is reached by swapping the values for c and i. In the following section, the basic
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Fig. 3.4: Angles for the alignment of the crystal and the resulting coherent bremsstrahlung enhancement.
On the right side, the resulting energy dependent enhancement for coherent bremsstrahlung is shown together
with their corresponding lattices. The spectrum is adjusted with the angles i,c,and φ as defined on the left side.
Note that the enhancement is normalized with an incoherent reference spectrum to 100 in a region where no
contribution is present from incoherent bremsstrahlung (figure modified from [100]).

principles of the adjustment of the angles are given which is performed with the Stonehenge technique
developed by Ken Livingston [100].

3.2.3 Stonehenge Technique for the Crystal Alignment

As mentioned above, the crystal has to be aligned in such a way that a desired lattice lies in the
allowed momentum range. To do so, the A2 experiment makes use of a five-axis goniometer which,
in addition to allowing movement in the vertical and horizontal directions (x,y), allows the radiator
to be rotated about the azimuthal, horizontal and vertical axes (roll, pitch, yaw). The horizontal and
vertical scanning is reached by varying an angular radius Θr of a cone around the crystal axis via:

Θh = Sh +Θr cosφr,

Θv = Sv +Θr sinφr, (3.14)

where φr is varied from 0 to 360◦ and Sv and Sh are the origin of the scan with respect to the origin
of the goniometer axes. In small steps, the values of Θh and Θv are changed and for each setting the
distribution in Fig. 3.4 is recorded and saved. Afterward, the distribution is plotted as a function of the
variables Θh and Θv. The photon energy increases radially outwards from 0 MeV at the inner circle to
the maximum energy of 1488 MeV at the outer circle. The intensity of the distribution is indicated by
the color scheme where red corresponds to a high intensity. The resulting plot is shown in Fig. 3.5 and
is referred to as a Stonehenge plot. On the left side, the Stonehenge plot is shown for a polarization
plane orientated at +45◦ and a scan started from Sv = Sh = 0. Four clear enhancements are visible
which originate from the [022] and [022̄] lattice. Due to the symmetry of the lattice, these four points
need to construct two orthogonal lines where the intersection points determine the position of the
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Fig. 3.5: Angles for the alignment of the crystal and the resulting energy-dependent photon distribution.
On the right side, the resulting energy-dependent photon distribution for coherent bremsstrahlung is shown
which is adjusted with the angles i and as defined on the left side (figure taken from [101]).

electron beam B relative to the center of the scan S. As a further cross-check, additional lines with a
respective angle of 45◦ are drawn which correspond to the [044] and [044̄] lattice and also indicate a
small enhancement. Adjusting the scan origins Sv and Sh to the calculated beam position results in the
final Stonehenge plot shown on the right side of Fig. 3.5. With this plot and an additional scan with a
known rotated angle φs of the crystal, the necessary offsets are determined so that finally the crystal
can be aligned as desired. A detailed explanation is given in [100].

3.2.4 Collimation

As mentioned earlier, the collimation of the photon beam is used to increase the degree of linear
polarization. This effect can be explained by the fact that the emission angular distribution of inco-
herently and coherently produced photons differ. Whereas the incoherent distribution is independent
of the photon energy and only depends on the incoming electron energy (cf. Eq. 3.5), the angular
distribution of the emitted photon highly depends on the photon energy. As shown in reference
[98], the emission angle of the bremsstrahlung photons becomes more forward-directed towards the
coherent edge position. Consequently, a collimation of the photon beam allows for accepting the
forward-directed coherent distribution and simultaneously rejecting the incoherent distribution at
similar photon energies. At the same time, low energetic photons in the coherent peak will be rejected
and thus narrow the coherent peak. As a result, the ratio between coherent to incoherent distribution
can be increased and also the degree of linear polarization. The effect of the collimation can be seen
in Fig. 3.6 where the enhancement is shown once before the collimation and once afterward. Since the
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intensity of the enhancement is related to the degree of linear polarization, this figure nicely illustrates
the effect of the collimation.

Fig. 3.6: Enhancement spectrum before and after collimation. Shown are the enhancement before the
collimation (red) and after the collimation (blue). It is clearly visible that the collimation increases the intensity
of the enhancement and that the coherent edge is narrower compared to the uncollimated one. Note that the
enhancement is plotted as a function of the tagger channel. A high tagger channel corresponds to low photon
energies and vice versa (figure taken from [102]).

3.2.5 Determination of the Polarization Degree

As previously mentioned, the photons are polarized if they are produced coherently. In fact,
bremsstrahlung photons produced on a crystal also have an incoherent distribution which origi-
nates from thermal vibrations of the crystal lattices. For the calculation of the polarization degree, an
enhancement plot is constructed which is the bremsstrahlung spectrum of the crystalline normalized
with the spectrum of the amorphous radiator. The amorphous radiator serves to describe the incoherent
distribution in the coherent bremsstrahlung spectrum and thus a normalization is required in the region
where no enhancement from coherent bremsstrahlung is present. Since the photon beam is passing
a collimator, the enhancement and the determination of the linear polarization degree should only
be considered for the photons which pass the collimator. Therefore, the enhancement is produced
by taking daily tagging efficiency runs (see Sec. 2.2.4). The enhancement is afterward fit with a
complex phenomenological function and from its parameters, the degree of linear polarization can
be extracted. The function is based on the formalism of coherent bremsstrahlung production and
includes additional smearing parameters that takes experimental aspects such as beam divergence
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and multiple scattering into account [103]. A typical enhancement fit with the phenomenological
function is depicted in Fig. 3.7 on the left and the resulting linear polarization on the right. Once an

Fig. 3.7: Enhancement spectrum with the fitted function and the resulting polarization degree. On the
left side, the enhancement as a function of the beam photon energy for a typical tagging efficiency run is shown.
The distribution is fitted with the function (red line) which has been mentioned in the text above. The resulting
polarization degree of the photons as a function of the beam photon energy is shown on the right side (figure
modified from [104]).

enhancement fit is available, the polarization degree can be determined for any coherent edge position.
Thus, the extracted fit parameters for the enhancement are used for the active determination of the
degree of linear polarization. Active determination means that after 10,000 events in a production
run, new polarization degrees are determined. The necessity of this procedure is justified by the fact
that small shifts in the crystal radiator position or drifting of the electron beam cause a change in the
crystal lattices orientation and the position of the coherent edge as well. Therefore, the coherent edge
position is estimated after 10,000 events are accumulated. From the determined edge position, new
polarization degrees are determined. A detailed study of the stability of the coherent edge position
and its determination was a part of the systematic error studies of the polarization observables in
Sec. 8.2.1.1.

3.3 Circularly Polarized Photons

For the production of circularly polarized photons, the MAMI accelerator provides a longitudinally
polarized electron beam with a polarization degree pe, which interacts with a radiator. With that,
the helicity of the electron is transferred to the emitted bremsstrahlung photon resulting in circularly
polarized photons with a polarization degree pc. Since the helicity of the electron beam polarization
is flipped with a frequency of 1 Hz (see Sec. 2.1.1), the polarized photons are produced with positive
and negative helicity. The degree of polarization is calculated by QED and is given by:

pc = pe ·
4EγEe −E2

γ

4E2
e −4EγEe +3E2

γ

, (3.15)
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where Eγ is the energy of the produced photon and Ee is the incoming electron energy. The resulting
photon polarization degree as a function of the photon energy is shown in Fig. 3.8 on the left side.
Important to note is that the maximum polarization degree of the photons is limited by the maximum
polarization degree of the electrons and is reached at the maximum photon energy.

Fig. 3.8: Degree of polarization of the produced photons and the incoming electron beam. On the left
side, the polarization degree of the photons as a function of the photon energy is shown, following Eq. 3.15.
On the right side, the extracted degree of polarization of the electron beam is shown for the two independent
polarimeters. Thereby, the blue points indicate the measured polarization degree extracted from the Møller
polarimeter whereas the red points from the Mott. The systematic errors are given by the shaded areas (figure
on the right taken from [105]).

Two independent measurements are performed for the calculation of the photon polarization degree
since the polarization degree of the electrons is mandatory. On the accelerator side, a Mott polarimeter
is located directly behind the injector LINAC. Electrons in a gold target interact via spin-orbit coupling
with the longitudinally polarized electrons from MAMI resulting in an asymmetry in backscattering.
From the asymmetry, the polarization degree of the electrons can be extracted. More details about
the Mainz Mott polarimeter can be found in [106]. In addition, the A2 experiment has a Møller
polarimeter, which is located at the goniometer and thus directly at the position of the photon
production. It consists of a 10 µm thick foil of Vacoflux surrounded by a magnetic coil. The magnetic
coil serves to polarize the electrons inside the Vacoflux. These polarized electrons with a known
polarization degree interact with the incoming electron beam via the Møller-scattering process, which
depends on the spin orientation of the electron beam. By measuring the spin asymmetry again of
this process, the polarization degree of the incoming electron beam can be determined. For further
details about the Møller-polarimeter, see [107] and [84]. For all beamtimes, the consistency between
both methods has been checked by S. Costanza of the A2 collaboration [105]. The result for the
November 2013 beamtime is depicted in Fig. 3.8 on the right. It is visible that both methods are in
good agreement within their systematic uncertainties with polarization degree of about 70%. Since
the statistical uncertainty of the Mott measurement is smaller than that of the Møller measurement,
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the polarization values of the Mott measurements are used to calculate the photon polarization using
Eq. (3.15).

3.4 Elliptically Polarized Photons

Elliptically polarized photons are photons which have a linearly and circularly polarized component
at the same time. They are produced by combining a longitudinally polarized electron beam with
a crystalline radiator. The circularly polarized photons occur due to the helicity transfer from the
electrons to the photons as described in Sec. 3.3. The linearly polarized photons are produced by the
reciprocal lattice constraints by the crystalline radiator (see Sec. 3.2). Within the G/E measurements,
the elliptically polarized photons are used to extract the double polarization observables E and G.
Whereas E requires the circularly polarization component, G needs the linear polarization component.
By comparing the results with recent data, an experimental study of elliptically polarized photons
becomes possible. Here, it is important to check if both polarizations influence each other. An analysis
of F. Afzal showed that within the statistical precision a very good agreement between results for the
double polarization observable E with elliptically polarized photons and only circularly polarized
photons is achieved [14] in the pπ0 channel. This thesis will present similar results for the nπ+

channel. The obtained results for the double polarization observable G within this thesis do also
not show any evidence that the linearly polarized component of the elliptically polarized photons
disagrees with the directly produced linearly polarized photons.





Chapter 4

Data Acquisition and Software

The analog signals from the PMTs of the individual detector elements are collected by the data
acquisition system (DAQ), which stores all recorded information into digital files. Time to digital
converters (TCDs) are used for time information, analog to digital converters (ADCs) for energy
information and scalers as counters. The different possible readouts are discussed in this chapter. For
the later analysis, only events with a defined pattern are of interest and thus, before the information
are saved, the collected signals have to pass a trigger system. Finally, an overview of the acquired
data for this measurements is presented and the software which is used to store and analyze them.

4.1 Read Out

4.1.1 Glasgow Tagged Photon Spectrometer

After the analog signal of a focal plane detector element exceeds a preset discriminator threshold,
a logical signal is sent to a CATCH1 multi-hit TDC. As the name indicates, the module allows
recording the time of multiple hits in an event. More details about CATCH TDCs can be found
in [108]. Moreover, a signal is led to a FASTBUS scaler unit. This unit counts the number of
detected hits in each element. Since the energy information of the detected particle is determined via
a geometric-based calibration (see Sec. 6.1.1), the detector has no ADC readout.

4.1.2 CB

The analog signals of the 672 NaI(Tl) crystals are first sorted to 42 Uppsala fan out modules with each
module connecting 16 channels. Afterward, each fan-out module splits the signal into three separate
branches.
The first one is the Energy Sum trigger branch in which the 16 individual analog signals are added up
to one analog signal. In the next step, the resulting analog signal of each fan-out module is added up
to a single analog signal, which represents an overall sum of the deposited energy in the CB. This

1COMPASS Accumulate, Transfer and Control Hardware
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signal finally runs through two discriminators, each having their own defined threshold. One of them
has an adjustable threshold and is used to set up the ESum trigger (see Sec. 4.2). The other one has a
threshold of only a few MeV to achieve a better timing for the main trigger. Only if both thresholds
have been crossed, a logical signal is generated, which can be used as a first-level trigger.
The second branch from the individual 42 fan-out modules is the Timing/Multiplicity trigger branch.
The Multiplicity trigger allows for triggering on a rough lower limit on the number of detected
particles in the final state. To do so, the 16 analog signals are fed into a dual-threshold discriminator.
A low discriminator threshold of about 3 MeV is used to suppress electronic noise. If this threshold
is passed, the individual signals of the channels are sent to CATCH TDCs for the time information.
The other discriminator, which is used for triggering, is set to a threshold of about 20 MeV for each
analog signal. The 16 resulting logical signals of one fan out module are fed into a 16 channel OR.
Since the CB readout electronics are built up of 42 fan-out modules, this results finally in 42 possible
logical signals. If these individual signals again exceed the threshold, the multiplicity is increased by
one so that in total a multiplicity of 42 in total is possible in the CB. Note again that this trigger is
just an approximation for the number of detected particles. For instance, if two particles are detected
within one fan out module, the multiplicity is increased only by one instead of two. On the other hand,
a high energetically particle can spread its energy over two or more fan out modules and thus cause a
higher multiplicity than one [77]. Nevertheless, the multiplicity trigger can be used as a second level
trigger and will be discussed in Sec. 4.2.
The final branch of the fan-out modules is the Energy branch. In this branch, the individual analog
signals are delayed by about 300 ns and fed into sampling ADCs where the signals are integrated. The
signal is then proportional to the deposited energy in the crystals. For more information about sADCs
see reference [109].

4.1.3 PID and MWPCs

Both the PID and the MWPC are not included in the trigger and thus its readout is simple. The
energy information from the PID is provided by traditional ADCs, whereas the MWPC strips energy
information, similar to CB, is given by sampling ADCs. The time information for both are read out
by CATCH TDCs.

4.1.4 C̆erenkov

The C̆erenkov PMT signal is split into three parts [95]. The first one, after passing a discriminator, is
used to obtain the time information via a CATCH TDC. The second one is delayed by 20 ns, amplified
and fed into a traditional ADC for the energy information. The last one is used for vetoing in the
trigger system and will be discussed in Sec. 4.2.
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4.1.5 TAPS

TAPS is read out by customized VME2 modules. For the BaF2 crystals, one board has four readout
channels [110]. Each channel is equipped with a constant fraction discriminator (CFD), two leading
edge discriminators (LED1 & LED2), four charge to amplitude converters (QADCs), and one time
to digital converter (TAC). As a first step, the CFD is set to a threshold of about 3 MeV to reject
electronic noise. Its logical output signal serves to start the integration gate of the fast scintillation
component of the QADCs and the TAC for the time information. The four QADCs, responsible for the
energy information, integrate the signal over different time periods and gains. As already mentioned
in Sec. 2.5.2, only two of the four QADCs have been used, the "short gate" ADC and the "long gate"
ADC. The first one only integrates the fast component of the scintillating light and the latter one the
whole signal. In addition, two LEDs are available for triggering (see Sec. 4.2). The LED1 threshold
of each element is used to set a trigger on the condition that TAPS has seen any particle. Therefore,
the six logical sectors of TAPS can contribute as well to the multiplicity of the CB, which results in
a total of 48 possible logical signals for the multiplicity. The LED2 thresholds can be used for an
additional multiplicity trigger for TAPS.

4.2 Trigger

The A2 trigger consists of a two-level decision trigger with the possible conditions presented in
Tab. 4.1. By combining different trigger conditions, desired reactions can be prefiltered during the
data recording. The two important triggers for the G/E beamtime will be discussed in detail in the
following section.

Table 4.1: Overview of the main trigger possibilities and their aims in the A2 experiment.

Trigger Task

CBEsum (low/high) minimum energy deposited overall in the CB
TAPS LED1 or BaF2 at least one crystal per logical sector above LED1 threshold
TAPS LED2 M2+ BaF2 at least two TAPS sector with a crystal above the LED2 threshold
TAPS Ped. Pulser read out of pedestals for TAPS calibration
M(X)+ at least X logical multiplicity signals
C̆erenkov signal from C̆erenkov

4.2.1 CB Energy Sum

In the first level trigger, a trigger condition on the CBEsum low trigger was set. The threshold of
about 30 MeV was selected so that a trigger signal is started if the energy sum is above the noise
level. In the second level trigger, the CBEsum high ensured that the overall deposited energy is above

2Versa Module Eurocard
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a certain higher value. This value is selected in such a way that the beamtimes are sensitive to the
desired reactions, namely γ p → pπ0/p2π0/pη/nπ+. Whereas the first beamtime in November 2013
had a very open ESum high trigger (>40 MeV), the other beamtimes had a higher threshold so that
a higher sensitivity to the η → 2γ and 2π0 → 4γ final states could be achieved3. An upper limit of
120 MeV has been chosen so that low energetic mesons in the ∆(1232)3/2+(P33) resonance region
which are decaying in the CB can be analyzed as well. For the analysis of the double polarization
observables, it is mandatory to detect the particles over the entire polar angular range. However, the
CBEsum trigger alone is mostly only sensitive to events where both photons are detected in the CB.
If one of the photons is detected in the TAPS, the other low energetic photon in the CB would not
activate the CBEsum trigger. An additional problem of the CBEsum trigger is the fact that this trigger
is not very sensitive to the nπ+ final state. Consequently, for the first time in the A2 experiment, an
additional TAPS trigger is applied, referred to as the TAPS Anti C trigger. A logical OR between both
of these triggers finally defines the trigger for the G/E beamtimes.

4.2.2 TAPS Anti C

In addition to the CBEsum trigger, an additional TAPS LED1 or BaF2 trigger was activated in the
first level, which allows to detect particles in the TAPS with at least one crystal per sector having an
energy above the LED1 threshold. The threshold has been selected in such a way that the trigger is
selective on charged pions in the TAPS. As mentioned in Sec. 2.5.1, a huge amount of electromagnetic
background is produced in the forward direction which would trigger the TAPS LED1 or BaF2 trigger
and cause a ratio of roughly 1:10 between the CBEsum and TAPS trigger [111]. As a result, the TAPS
trigger had to be extended by an additional trigger signal from the C̆erenkov detector. The final TAPS
Anti C is an AND condition between the TAPS LED1 or BaF2 trigger and the C̆erenkov trigger. By
varying the individual LED thresholds, the ratio between the TAPS Anti C and the CBEsum trigger
was adjusted in such a way that slightly more CBEsum triggers existed.

4.2.3 Multiplicity Trigger

In the second level trigger, it is possible to set an additional condition on the multiplicity of an event.
With that, a rough requirement on the number of particles in the final state can be achieved. beamtimes
which are aiming at having a π0 or η in the final state require a multiplicity of two or more4. For
the analyzed beamtime within this thesis, the multiplicity trigger is not selected because one of the
studied final states is nπ+. The neutron can not always be detected in the calorimeters, especially at
low beam photon energies. Therefore, only the π+ is seen. Consequently, a multiplicity trigger of two
or more would reject these kinds of events.

3A beamtime of the Basel group had a threshold of about 300 MeV to reject the π0 channel and only be sensitive on the
η channel [77].

4One multiplicity for each photon from the π0/η decay.
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4.2.4 Trigger Overview

An overview of the selected trigger adjustments can be seen in Tab. 4.2. As mentioned in Sec. 2.2.2,
the tagger system has a maximum allowed rate for its elements. Therefore, tagger sections have been
switched off in several beamtimes to maximize the luminosity for the desired final states. For an
example, the reaction γ p → pη has a threshold production of 707 MeV and thus the low energetic
tagger sections (F-H) are turned off in dedicated beamtimes5. In addition, for the extraction of the
double polarization observable G, only beam photon energies in a defined region of the coherent edge
are of interest and especially at high coherent edges, the low energetic sections of the tagger were
turned off (see Tab. 4.2). The coherent edge is the position of maximum degree of linear polarization
and is discussed in detail in Sec. 3.2. Besides adjusting the tagger sections, the trigger was selected as
well for the coherent edge positions. Since coherent edges below 750 MeV do not play an important
role in the extraction of the double polarization observable G in the pη channel, the trigger thresholds
for the lower edges are optimized for pπ0/nπ+ and are thus a bit lower than the 750/850 MeV edge
position. The May 15 beamtime was dedicated to optimize the statistics for the pη channel and a
high CBESum threshold was selected. Unfortunately, due to a gas leakage in the C̆erenkov detector
and a poor calibration of the TAPS LED1s, the TAPS Anti C trigger was dominating the readout.
To compensate for this problem, the TAPS LED1 thresholds had to be increased to 120 MeV. This
trigger configuration rejected a lot of possible nπ+ candidates and is discussed further in Sec. 8.1.2.3.

Table 4.2: Overview of the main settings of trigger thresholds and tagger sections for the beamtimes analyzed
within this thesis.

Beamtime Coh. Edge [MeV] Tagger Sections CBESum high TAPS LED1
threshold [MeV] threshold [MeV]

November 13 350,450,550,650,750 A- H 40 40
April 14 350,450,550,650,750,850 A-F 90 60
May 14 850 A-F 90 60
May 15 750,850 A-G 120 120

450 A-G 70 60
September 15 650 A-G 90 80

850 A-G 90 80

4.3 Beamtimes

4.3.1 Overview

For the G/E measurements, five separate beamtimes were performed in total, namely in November
2013, April 2014, May 2014, May 2015, and September 2015. In the past, experiments for the
double polarization observable G and E were mostly performed in two individual beamtimes. For the

5These are the tagger sections, which are far below the η production threshold.
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extraction of the double polarization observable G and E, a longitudinally polarized target must be
combined with linearly polarized photons for G and circularly polarized photons for E.
For the G/E measurements performed at the MAMI accelerator in Mainz with the A2 experiment,
the beamtimes made use of the frozen spin butanol target which has been discussed in Sec. 2.3. To
reduce systematic uncertainties, the polarization was set once in the direction of the beam and once
in the opposite direction. Elliptically polarized photons, which are assumed to be circularly and
linearly polarized at the same time, were produced via longitudinally polarized electrons impinging
on a thin diamond radiator. Thereby, the electron beam was provided by MAMI with an incoming
energy of 1557 MeV and an helicity flip of the electron spin with a frequency of 1 Hz. Special interest
was paid to the degree of circular polarization of the photons and the influence of using elliptically
polarized photons for the extraction of the double polarization observable E. Therefore, additional
measurements with a Møller radiator were performed. With this radiator, only circularly polarized
photons were produced serving as a reference measurement. In addition to the butanol target, data
were taken in November 2013, April 2014, and September 2015 with a carbon foam target to study the
unpolarized components inside the butanol target. Between the May 2014 and May 2015 beamtime,
offline analysis of the author and F. Afzal [14] revealed that the carbon foam target alone is not able
to describe the unpolarized components inside the butanol target. Therefore, additional tests were
performed in September 2015 with the carbon target. In November 2013 and April 2014, no helium
was included in the data taking of carbon, additional measurements with helium circulating inside the
cryostat were performed in September 2015. To investigate the helium contribution in more detail, a
few hours were used to take data with helium only. As a last check, the influence of the magnetic field
of the holding coil was investigated by taking data with the magnetic field turned off and on. As will
be seen later in the analysis, all of these performed tests are important for a reliable understanding of
the experimental conditions. An overview of the beamtimes is given in Tab. 4.3. Note that between
November 2013 and May 2014, the data acquisition readout was optimized. Therefore, in one hour
data taking in May 2014, roughly 3.4 times more events were recorded than in November 2013. To
compare the overall hours of data taking, the recorded hours of November 2013 are scaled by 1/3.4.
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Table 4.3: Overview of the main settings and parameters of the G/E beamtimes. Target (+/-) indicates the
target polarization vector in direction (+) and opposite direction (-) to the photon beam whereas hours(+/-)
represents a rough estimation of the hours of good data taking with the two target polarization settings.

Beamtime Radiator Target Coh. Edge [MeV] Hours (+/-)

November 13 diamond butanol (+/-) 350 7/4
diamond butanol (+/-) 450 4/6
diamond butanol (+/-) 550 11/9
diamond butanol (+/-) 650 8/12
diamond butanol (+/-) 750 4/4
Møller butanol (+/-) - 5/5

November 13 diamond carbon 350 1
diamond carbon 450 1
diamond carbon 550 3
diamond carbon 650 4
diamond carbon 750 4
Møller carbon - 7

April 14 diamond carbon 350 9
diamond carbon 450 13
diamond carbon 550 10
diamond carbon 650 16
diamond carbon 750 20
diamond carbon 850 13
Møller carbon - 9

May 14 diamond butanol (-) 850 0/86
Møller butanol (-) - 0/36

May 15 diamond butanol (+/-) 750 24/35
diamond butanol (+/-) 850 74/0
Møller butanol (+/-) - 39/8

September 15 diamond butanol (+/-) 450 27/18
diamond butanol (+/-) 650 44/25
diamond butanol (+/-) 850 18/0
Møller butanol (+/-) - 33/25

September 15 diamond He 850 28
Møller He - 9

September 15 diamond carbon+He 850 30
Møller carbon+He - 11

September 15 diamond carbon+no He 850 2
Møller carbon+no He - 1
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4.3.2 Problems

The G/E beamtimes were the first beamtimes after the DAQ upgrade, which caused several problems
in the detector readout. In November 2013 and April/May 2014, the PID, in particular, was affected.
During the DAQ upgrade in November 2013, the experimental trigger was roughly 140 ns delayed.
Due to this delay, the PID gate came slightly later than the trigger window and thus the first part of
the ADC signal was lost [112]. As a result, the whole deposited energy in the PID was not recorded,
which compromises the ∆E −E spectrum resolution and the overall PID efficiency. This effect got
even worse in May 2014 such that for the May 2014 analysis the PID ∆E −E spectrum was not
used at all. In addition, the same problems occurred for the PbW04 of TAPS. In that case, a timing
misalignment caused that the information from them was not reliable. Consequently, all events in the
analysis including the PbW04 crystals are rejected. Finally, an offline analysis performed by F. Afzal
and cross-checked by the author revealed a mistake in the measured target polarization degree. Since
this mistake was discovered before the start of the September 2015 beamtime, only the beamtimes
before September 2015 are affected. Due to an ice layer on the outer NMR coil of the target cell, the
unpolarized background protons in the ice influenced the determination of the polarization inside the
butanol target and resulted in a too low polarization degree [88]. A detailed analysis of the necessary
correction factors are given in [14] and are summarized in Sec. 8.2.2.

4.4 Software

In the following sections, the main software packages for the analysis of the recorded data will be
discussed. These include the main software package AcquRoot, the calibration software CaLib, and
the final analysis software GoAT. In addition, the A2 simulation package will be explained, which has
been used to simulate data.

4.4.1 AcquRoot

AcquRoot is an object-orientated analysis software written in C++ [113]. It is based on the CERN
ROOT framework [114] and is used to decode the raw file information into physical quantities.
AcquRoot consists of a hierarchy of classes. All detectors have the same base classes where common
features and properties of all detectors are gathered. In addition, each detector has its own detector
class. There the raw ADC and TDC information are converted into physical quantities (see Chap. 6)
and particle tracks are built through reconstruction algorithms (see Chap. 5). The communication
between the detectors is finally realized by additional apparatus classes, which are collections of
detectors. For example, the Crystal Ball apparatus class combines the information from the detector
classes of the NaI, PID, and MWPC detector classes. Details about the reconstruction can be found in
Sec. 5.2.4.
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4.4.2 CaLib

For the decoding of the raw ADC and TDC information of the detectors, pedestals and conversion
gains of each detector element need to be known. In the past, the pedestals and gains of each element
were read in by ASCII files. However, during a long data taking period, these pedestals and gains
can vary over time and thus many ASCII files were needed. An easier approach to handle these
instabilities of the calibration parameters is the CaLib software package by the Basel group [77]. The
CaLib software is based on a SQL database system where the calibration parameters are given for a
defined run number interval. During data taking, these parameters are read in by a special class that
was included in the main AcquRoot interface. In addition, the CaLib software provides classes and
functions which can be used to calibrate the recorded data. These will be further discussed in the
calibration chapter (see Chap. 6). Several of the classes and functions have been optimized by the
author and F. Afzal.

4.4.3 GoAT

GoAT is an extension of AcquRoot and stands for Generation of Analysis Trees [115]. It is used to
preselect event patterns and reduce the size of the ROOT trees produced from AcquRoot. To do so,
the preselection is divided into three stages. In the first stage, individual particle tracks are identified,
i.e. if the particles are charged or neutral. The second stage allows for combining these particles
to mesons and the final stage can be used to handle the amount of final state particles, i.e. the pπ0

requires three reconstructed particles where two of them are neutral and one of them is charged. Most
importantly, the final selected information are stored in a ROOT tree structure which is optimized
to perform a physical analysis. Within this thesis, only the first and last stage was used. The meson
reconstruction was performed within a separate analysis script which makes use of the generated trees
from GoAT.

4.4.4 A2 Simulations

As the complexity of the experimental setup in physics has increased in the last decades, Monte Carlo
simulations were established as a commonly used tool to study the response of an experimental setup
with respect to a desired reaction. The A2 simulation package consists on the first stage of an event
generator, named AcquMC [113]. The generator produces the desired reactions which afterward
can be fed into the A2 package [116]. It is based on the Geant4 libraries [117, 118] and includes all
information on the A2 experimental setup (see Fig. 4.1 and App. A.2). In combination with physics
classes that describe the interactions between the particles and the experimental setup, the simulations
can be used to study the experimental results and further to understand the background contributions
in a desired reaction. An overview of the used simulated data is shown in Tab. 4.4. Further studies of
different available physics class and the inclusion of the charged reconstruction efficiency is given in
App. A.2.
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Fig. 4.1: Overview of the simulated A2 experiment. A schematic overview of the simulated setup based on
Geant4 is shown. Note that the CB setup was cut in half to show the inner parts of the setup (figure taken from
[77]).

Table 4.4: Overview of simulated data for the analysis.

Reaction # Simulated Events
γ p → pπ0 30×106

γ p → nπ+ 30×106

γ p → pη 30×106

γ p → nπ+π0 15×106

γ p → pπ+π− 15×106

γ p → pπ0π0 15×106



Chapter 5

Reconstruction of Particles

To apply a calibration followed by the data analysis, the recorded data of the individual detectors need
to be reconstructed first. For each detector, different algorithms are used to reconstruct the particles
from their corresponding electronic signals. The reconstructed information is then combined into
particle tracks. The principles of the reconstruction for the Crystal Ball setup, consisting of Crystal
Ball (CB), the Particle-Identification Detector (PID) and the two Multi-Wire-Proportional Chambers
(MWPCs), are described in this chapter. Tracks in forward direction are reconstructed using the TAPS
and the TAPS Veto wall, which will be discussed as well.

5.1 Tagger

As described in Sec. 2.2.2, the tagger system consists of 353 overlapping plastic scintillators. If a
scattered and deflected electron is detected in two neighboring elements, the hit is marked as a valid
hit. For these hits, the corresponding channel number and all time information are stored. Events in
which only one element has fired are rejected to reduce electronic noise and background coming from
outside the tagger magnet, i.e. cosmic muons (see Fig. 5.1). As shown in Sec. 6.1.1, the tagger energy
calibration connects the channel numbers with the electron energy Ee. Using energy conservation
and knowing the initial electron energy E0 of 1558 MeV from MAMI-C, the bremsstrahlung photon
energy Eγ is given by:

Eγ = E0 −Ee . (5.1)
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Fig. 5.1: Reconstruction of coincidence hits in neighboring plastic scintillators in the focal plane detector
of the tagger. Electrons which have been scattered on the radiator and bent in the magnetic field of the tagger
cause two neighboring elements to fire whereas cosmic muons from outside the Tagger system produce a hit in
only one element. This coincidence condition reduces the amount of noise and background significantly (figure
taken from [55]).

5.2 Crystal Ball Setup

5.2.1 CB

Particles detected in the CB typically do not deposit their whole energy in only one crystal. In fact, it
has been found that photons typically distribute 98% of their deposited energy over up to 13 elements
[84]. To detect also the remaining energy, additional 20 neighboring crystals would be required.
Taking into account that these additional crystals would cause more possible noise signals and also
overlapping reconstructed particles, only 13 neighboring elements are considered for the further
reconstruction of a particle track. Therefore, an algorithm is applied to the detected hits in the CB
which creates so-called clusters. A cluster is defined as a merger of neighboring crystal hits resulting
in a track with a given energy, time and direction information. An example can be seen in Fig. 5.2
on the left. As a first step for the cluster formation, a threshold of 2 MeV is applied to each CB hit
to reject noise and possible clusters resulting from it. Afterward, the remaining hits are sorted in
a list by their energies. The crystal with the highest deposited energy is assumed to be the central
crystal of the cluster. Starting from that, the clustering algorithm searches for neighboring crystals
and adds them to the cluster. The final cluster energy Eclust is given by the energy sum of the central
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and all contributing neighboring crystals. To reject also on this level clusters resulting from noise, the
cluster energy has to exceed a threshold of 15 MeV to be accepted as a valid cluster. Finally, all hits
contributing to the cluster are deleted from the list. The time information of the cluster is taken from
the time of the central crystal. The direction of the cluster is determined by estimating the impact
point r⃗cl which is defined as:

r⃗cl =

n
∑

i=1
r⃗i ·

√
Ei

n
∑

i=1

√
Ei

(5.2)

where Ei and r⃗i are the energy and direction information of the ith crystal in a cluster. This described
method is applied iteratively to the remaining CB hits until no further clusters can be constructed.

Fig. 5.2: Cluster formation in the CB. A typical cluster formation is shown. The black point indicates
the reconstructed impact point whereas the intensity of red illustrates the amount of energy deposited in the
individual crystals (figure taken from [55]).

5.2.2 PID

The PID, in contrast to the CB and the MWPCs, can only give information about the azimuthal angle
of a charged track. Nevertheless, the energy information can significantly contribute to distinguish
charged particles like protons and pions (see Sec. 7.9.1). Since charged particles with different polar
angles have different path length through the scintillating plates, the energy is multiplied by sin(θ)
(see Fig. 5.3). Thereby, all tracks pass independently of the polar angle the same length through the
scintillators.
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Fig. 5.3: PID energy correction. Due to the different path length of the charged tracks through the scintillating
plates, the tracks are normalized to the track with θ = 90◦ (figure modified from [119]).

5.2.3 MWPCs

The two MWPCs allow to improve the tracking and angular resolution of charged particles. As
mentioned in Sec. 2.4.3, both MWPCs consist of a layer of anode wires which are aligned parallel to
the beam and are surrounded by an internal and external layer of cathode strips. As a first step of the
reconstruction, the individual clusters of the fired strips and wires are calculated by determining the
impact position. For the strips, the hit index si and charge amplitude distribution of adjacent strips Ai

is used to determine the impact position s̄ via:

s̄ =

N
∑

i=1
Ai · si

N
∑

i=1
Ai

. (5.3)

For the wires, only the hit index wi is known and thus the impact position w̄ of N neighboring wires is
given by:

w̄ =
1
N

N

∑
i=1

w⃗i . (5.4)

Afterward, with the determined impact positions, the azimuthal angles φI,E of the internal-external
strip interactions are constructed and compared to the azimuthal angles φW of the wire clusters. Since
each pair of inner and outer strip cross each other at least twice (see Fig. 5.5), the best match of the φ

angle difference with a limit of ±10◦ among the possible combinations determines the intersection
point (see Fig. 5.4 on the left).
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Fig. 5.4: Correlation of strips, wires and tracks. For all possible inner (I) and external (E) strip intersections,
the correlation with fired wires (W) is checked as can be seen on the left side for both MWPCs. On the right
side, the φ -correlation between intersections in the MWPC1 and MWPC2 are shown.

Approximately 75 % of all intersection possibilities are of these kind and are marked as true in-
tersections. Intersections in which only two parts have fired and can be correlated are marked as
candidate intersections. As a next step, the reconstruction correlates the intersection points of both
MWPCs to construct tracks as can be seen in Fig. 5.4 on the right for the azimuthal angular correlation.
Thereby, a track is marked as true track if both intersections are true intersections. If one of those
intersections is a candidate intersection, the track is marked as a true-candidate track. All other tracks
are marked as candidate tracks. An overview of all possibilities in the MWPC reconstruction and their
contribution in a typical production run can be seen in appendix A.1. For each accepted track, the
calculated pseudo vertex, which is the point of closest approach to {0,0,0}, must fulfill two additional
conditions. The first one is that the radius Rps of the pseudo vertex must be smaller than a maximum
defined radius Rmax. The radius is thereby selected in such a way that already on the first level of data
selection events are rejected which are far away from the target cell. The second condition is that the
reconstructed z-position Zps must be in the chamber length limits of the MWPC [94]. The track which
fulfills these conditions and has, in addition, the minimal distance between the intersections of the
MWPCs is chosen as the best track. As the last step, a maximum distance between the intersections
of both MWPCs is applied to the best track by which the polar angular reconstruction range of the
MWPC can be controlled. In the following analysis, a maximum distance of 0.55 cm was applied
so that only tracks above 20° are possible. With this angular limit, the reconstruction ensures that
a charged track is not counted twice since up to now no coincidence between the MWPCs and the
TAPS is implemented. For the further analysis, events are also accepted in which the MWPCs can not
construct a track. However, in these cases, a correlation with the CB and/or PID is required which is
part of the next section.
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Fig. 5.5: Ambiguity of the MWPC intersection. As mentioned in the text, the internal and external strip
cross each other at two position. The additional wire solves that problem and constructs the intersection point.
(figure modified from [120]).

5.2.4 Charged tracks in the CB setup

After the cluster algorithm has constructed the clusters in the CB, several correlations between
the CB and all MWPCs tracks/intersections and PID hits are checked. The hierarchy of the track
reconstruction can be seen in Tab. 5.1.

Table 5.1: Overview of the possible charged tracks, their angular limits and their track number.

Track type ∠CB,MWPC [◦] φtrack,PID [◦] Track number

CB + MWPC (both) + PID [0-20] [-50,50] 15
CB + MWPC (both) [0-20] - 14
MWPC (both) + PID - [-50,50] 7
MWPC (both) - - 6
CB + MWPC (1/2) + PID [0-60] [-50,50] 11/13
CB + MWPC (1/2) [0-60] - 10/12
MWPC (1/2) + PID - [-50,50] 3/5
CB + PID - [-15,15] 9
CB - - 8

First, all MWPC tracks are correlated with the CB clusters. Since the MWPC and the CB both provide
azimuthal and polar angle information, a vector-angle correlation is constructed between the MWPC
tracks and the CB clusters. A cut of [0-20]◦ is applied as shown in Fig. 5.6 on the top left in black. In
red, the corresponding correlation for events with only one MWPC intersection is illustrated. The
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different distributions, especially the width and the position of the maximum, can be explained by
the fact that the vector-angle correlation assumes that the CB cluster originates from the center of
the target, namely (0,0,0). In the case of only one MWPC intersection, the vector is also constructed
from the position (0,0,0) whereas, in case of two intersections, a clear vertex with the intersections
can be constructed. Based on that knowledge, the vector-angle correlation for the MWPC tracks is
broader compared to the MWPC intersections since the MWPC tracks reconstruct the origin of the
track inside the target more precisely compared to the CB track. Thus, after a correlation between the
MWPC and the CB is ensured, the MWPC angular information is used for the further analysis. In the
later analysis, it is helpful to have access to the ∆E −E spectrum which correlates a detected PID
energy ∆E with a CB cluster energy E. Thus, a corresponding hit in the PID is searched. Since the
PID only provides an azimuthal angle, a φ -correlation between the MWPC track and the PID hit is
performed as can be seen in Fig. 5.6 on the top right in black.
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Fig. 5.6: Angular correlation for charged tracks in the CB setup. On the top left, the correlation between
the MWPC and the CB track is presented. If both tracks correlate, the corresponding φ -correlation of the
MWPC track with the PID hit is checked as shown in the top right. On the bottom left, the φ -correlation of a
MWPC track and a PID hit is illustrated under the assumption that no correlated hit in the CB is available. If
the MWPC does not correlate, the φ -correlation between the CB and the PID is checked as can be seen in the
bottom right. The lines indicate the accepted angular limits for a charged track.
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xy yz

Fig. 5.7: Visualization of a nπ+ event in the CB charged reconstruction. On the left side, a cut through the
detector system in the xy-plane is shown. The red circle indicates the target, surrounded by the PID (gray)
and the two MWPCS (light blue/dark blue). In green, the CB sectors are shown whereas the filled green areas
illustrate if an area has fired. In red, the reconstructed track is depicted whereas in green and black the track
resulting from only CB or PID is depicted. On the right side, the corresponding yz-plane is presented in which
the different polar angles can be seen.

For a better understanding of the above-mentioned arguments, Fig. 5.7 illustrates on the left side
the xy-projection in the center of the CB detector system including the target, the PID, the MWPCs
and the CB for a selected nπ+ event. In red, the reconstructed MWPC track is shown whereas the
green line represents the CB track. The black line indicates the two-vector which is used for the
correlation of the PID with the MWPC track. On the right side of Fig. 5.7, the corresponding yz-plane
is presented in which the different polar angles of the tracks can be seen. In this event, both particles
had enough energy to reach the CB. Nevertheless, it is also possible that a low energetic charged
particle is stopped in the MWPCs. In that case, tracks are reconstructed with the MWPCs and PID
alone. On the bottom left in Fig. 5.6, the correlation between MWPC tracks/intersections (black/red)
and PID hits are shown. The structure of the correlation with MWPC tracks compared to the ones
with intersections is caused by the discrete φ spacing of the wires of the MWPCs. The different
widths can again be explained by the fact that the MWPC tracks can reconstruct the vertex inside the
target more precisely compared to the events with only intersections. Up to now, only tracks have
been considered in which the MWPCs have seen the charged particle. However, since the MWPCs
have not an efficiency of 100% for the detection of charged tracks, the φ -correlation between the CB
and PID can still be used to mark a track as charged as can be seen on the bottom right of Fig. 5.6.
The overall contributing tracks are listed in Tab. 5.1 and their contribution in a typical production run
is presented in Fig. 5.8. The highest contribution is coming from the CB alone standing events which
indicates a high amount of reconstructed neutral particles, mostly photons coming from the decay of a
neutral pion. The charged tracks are built up of many different combinations of the CB, the MWPCs
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and the PID and thus already points out on this level that the acceptance of the MWPC/PID for the
detection of charged particles is not 100 %.

track type
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Fig. 5.8: Distribution of different track types in the Crystal Ball setup. The distribution of the tracks, as
mentioned in Tab. 5.1, for a typical production run.

5.3 TAPS Setup

5.3.1 TAPS

Similar to the CB, the hits in the TAPS are merged into clusters. Thereby, as the first step for noise
reduction, all hits below a defined software threshold of about 5 MeV are rejected from the clustering.
From the list of passing hits, the hit with the maximum deposited energy is assumed to be the central
crystal of the cluster. Afterward, analogous to the CB, the neighboring crystals are checked for an
energy deposition and are added to the overall cluster energy (see Fig. 5.9). In contrast to the CB, the
TAPS clustering algorithm also searches for hits in a defined distance from any created cluster and
due its better time resolution also requires a time correlation withhin a 5 ns window with the central
crystal. These hits are then added to the cluster until no further hits can be added to a cluster. For the
final calculation of the impact point of the cluster, logarithmic weighting [121, 122] is used via:

Wi = max

0.5+ log

 Ei
n
∑

i=1
Ei


 , (5.5)
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r⃗cl =

n
∑

i=1
r⃗i ·Wi

n
∑

i=1
Wi

, (5.6)

where Ei is the energy deposition and r⃗i the position of the ith participating crystal in a cluster. In
doing so, the transverse dropping exponential behavior of the electromagnetic shower is taken into
account. Unfortunately, in contrast to the CB, the TAPS elements are not facing towards the target.
Therefore, caused by the energy-dependent shower depth of the photons, an additional correction on
the x and y coordinate of the impact point has to be applied [77]. The principles of the correction are
illustrated in Fig. 5.10 on the left side and explained in [77].

Fig. 5.9: Cluster formation in the TAPS. On the left side, a typical cluster formation is shown for only BaF2
crystals. If also PbWO4 participate in the cluster formation, the cluster size can increase from six neighboring
clusters to up to 18 as can be seen in the middle and right panel (figure taken from [80]).

Fig. 5.10: Shower depth correction and correlation with the Veto-Wall in the TAPS. On the left side, the
principles of the shower depth correction in the TAPS are shown. On the right side, the correlation for a
reconstructed TAPS cluster (blue) with a Veto-Wall element (red) is shown (figure taken from [97]).
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5.3.2 TAPS Veto Wall

The TAPS Veto Wall has the same purpose as the PID, namely the detection of charged particles.
Whereas PID covers angles above 20◦, the Veto Wall has the task to reconstruct charged particles in
the forward direction. In combination with the TAPS, the Veto-Wall can further be used to distinguish
charged particles (see Sec. 7.9.1). Similar to PID, the energy deposition in the Veto Wall is also
normalized in such a way that all Veto elements see the same path length through the plates. Since
the TAPS Veto Wall is tilted by 90◦ with respect to the scintillating plates of PID, all energies are
multiplied by cosθ instead of sinθ where θ is the polar angle of the charged track.

5.3.3 Charged tracks in the TAPS setup

After the TAPS hits are formed into clusters, the correlation with the TAPS Veto Wall is performed.
For each cluster, the algorithm checks if the Veto element in front of the central element of the TAPS
cluster has fired. If this is not the case all neighboring Veto elements are checked (see Fig. 5.10 on
the right). This is justified by the fact that charged tracks do not necessarily pass the Veto element in
front of a crystal but instead the neighboring ones [77]. If at least one of these elements has fired, the
track is marked as charged. For a further noise reduction and a correct assignment, a time correlation
between the Veto element and the TAPS cluster time is performed as can be seen in Fig. 5.11. The
second peak at approximately −10 ns is caused by the contribution of the Vetos in front of the PbWO4

crystals and will be further discussed in Sec. 6.2.4.

 [ns]VETO-tTAPSt
40− 20− 0 20 40

#

0

100

200

300
310×

Fig. 5.11: TAPS-Veto time correlation. The time difference between the TAPS cluster time and its corre-
sponding fired Veto time is shown. The red line indicates the limits in which a track is accepted as a charged
track.





Chapter 6

Calibration

To perform a data analysis, the four-momentum of the particles involved in a given reaction and their
relative times to each other need to be known. Therefore, the raw data are recorded with Analog-
to-Digital Converters (ADCs) for the energy and Time-to-Digital Converters (TDCs) for the time
information. Afterward, these information are converted via various calibration methods into physical
quantities. These methods will be presented in this chapter for the September 2015 beamtime along
with other important calibrations. Finally, an overview of the calibration and resolution optimization
of the simulated data is given.

6.1 Energy Calibration

The deposited energy of a certain crystal is determined by using Charge-to-Digital Converters (QDCs)
as ADCs which are integrating an analog input signal over a defined time window resulting in a digital
charge output signal. The output signal is proportional to the deposited energy and digitized into
channels which can be converted back into an energy Edep [MeV] via:

Edep = g · (Ach −Aped) (6.1)

where g is the so-called conversion gain [MeV/channel] and Aped [channel] the pedestal. Thereby, the
pedestal corresponds to the channel in which no energy is deposited. Both, the conversion gain and
the pedestal, need to be determined for each detector element individually which will be explained in
the following subsections.

6.1.1 Tagger

The tagger calibration was performed by the Glasgow group in the past. To determine the calibration,
MAMI-C provided low-intensity electron beams with well-known energies which are bent into the
tagger magnet with varying magnetic field strengths. Afterward, the deflected electrons are detected
in the tagger elements. By measuring with different electron energies and magnetic fields, a linear
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relation between the energy and the tagger elements can be constructed and interpolated for all
elements. Finally, small corrections were applied due to a slightly difference in the magnetic field
strength. For this beamtime, the electron energy was set to 1557 MeV in combination with a stable
magnetic field strength of the tagger dipole magnet. Applying the above-described calibration, a
direct relation between tagger element and detected energy can be constructed which finally gives the
energy of the bremsstrahlung photon.

6.1.2 CB

The energy calibration of Crystal Ball splits into two parts, namely the low energy and high energy
calibration.

Low energy calibration

The low energy calibration is already important on the level of the data acquisition and thus is always
performed before the start of a beamtime by J. Wettig of the A2 collaboration. In Sec. 4.2, the trigger
electronic was explained and the importance of the leading edge discriminator (LED) threshold was
underlined. Especially, the energy sum trigger in the CB was applied in our beamtimes and therefore
a relative calibration of all elements to each other was mandatory. For the calibration, a 241Am/9Be
source was used in which a chain reaction results in photons with a defined energy of 4.438 MeV
[123]. To reach a uniform calibration of all elements, the source was placed in the center of the CB
detector and photons are detected by the CB elements. A typical raw ADC spectrum, supplied by a
defined high voltage, is shown in Fig. 6.1.

Fig. 6.1: Raw ADC spectrum of the CB element 239 for two different supplied high voltages. An expo-
nential function (green line) is plotted in combination with a Gaussian function (blue line). The exponential
function serves to describe the neutron background whereas the Gaussian function to describe the signal peak
coming from the 4.438 MeV photons (figure taken from [123]).

A clear peak coming from the 4.438 MeV photons is visible. Furthermore, background originating
from neutrons, which are produced in the chain reaction, are creating a smooth background. For 10
different applied high voltages of the PMTs, the peak position is determined. Afterward, the fitted
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position, given in ADC channels, was plotted against the high voltage and a linear fit is applied.
Finally, for all PMTs, the high voltage is adjusted in such a way that the peak is sitting at the same
ADC channel for all elements. Thus an overall calibration is achieved.

High energy calibration

Photons produced in meson photoproduction reactions have typical energies in the region of several
hundred MeV and thus an additional high energy calibration needs to be applied. For this purpose, a
clean reaction signature is needed and found in the reaction γ p → pπ0. Since the π0 decays with a
branching ratio of nearly 100% into two photons [7], the invariant mass of these photons can be used
to calibrate the conversion gains of CB. Therefore, for each neutral cluster pair in the CB, the invariant
mass was calculated and plotted against the central detector element of both clusters. The resulting
two-dimensional plot is shown in Fig. 6.2 on the left side for both uncalibrated and calibrated data.
For each element, the invariant mass distribution was fitted with a Chebyshev polynomial of the third
order in combination with a Novosibirsk function1. For an illustration of the fit performance, the
overall projection of all elements can be seen in Fig. 6.2 on the right panel. From the signal shape, the
mean invariant mass mγγ for a given crystal can be determined and compared to the rest mass of the
π0. For the determination of the new gain, the presented calibration method takes advantage of the
fact that CB uses sampling ADCs (sADCs) for the read-out. By this, the pedestal of each element is
already subtracted and a direct proportionality between gain and energy is given. As a result, the new
conversion gain gn,i for each element i is given by Eq. (6.2):

gn,i = go,i
m2

π0

m2
γγ

(6.2)

where go,i is the uncorrected gain factor. Since in the calculation of the invariant mass of two photons
several elements are included for the particle reconstruction (see Sec. 5.2), the calibration needs
to be done iteratively. After seven iterations, all gains have been adjusted in such a way that the
invariant mass is aligned to the rest mass of the π0. The resulting calibrated mean invariant mass
lies at 135.01 MeV with a full width at half maximum of 20.67 MeV. Compared to the uncalibrated
data, this is an improvement of 7% in the energy resolution and emphasizes the importance of a good
calibration.

1The function are presented in App. B.



82 Calibration

 [MeV]γ γm
0 50 100 150 200 250 300

C
B

 e
le

m
en

t

0

100

200

300

400

500

600

700

1

10

210

310

410

510

 [MeV]γ γm
0 50 100 150 200 250 300

#

0

50

100

610×
 0.00) MeV±Mean: (138.75 

 0.00) MeV±FWHM: (22.17 

data
signal (Novosibirsk)
background (polyn.)
overall fit

 [MeV]γ γm
0 50 100 150 200 250 300

C
B

 e
le

m
en

t

0

100

200

300

400

500

600

700

1

10

210

310

410

510

 [MeV]γ γm
0 50 100 150 200 250 300

#

0

50

100

610×
 0.00) MeV±Mean: (135.01 

 0.00) MeV±FWHM: (20.67 

data
signal (Novosibirsk)
background (polyn.)
overall fit

Fig. 6.2: CB energy calibration. On the left panel, the invariant mass of two photons in the CB as a function
of their central cluster element is shown. The dotted line illustrates the position of the π0 rest mass. On the right
panel, the projection of all elements (black open circles) is presented in combination with several fit functions.
The Novosibirsk function (red line) is used to describe the signal shape whereas a Chebyshev polynomial
(blue line) for the background. The green line represents the sum of both signals. The upper row shows the
uncalibrated data and the lower row the final calibrated data.

6.1.3 PID

The PID energy calibration was performed by Lorenzo Zana of the A2 collaboration. As a first step,
the pedestal of each element was estimated by using special Pedestal runs and by determining the
position of the first appearing peak (see as well Sec. 6.1.4). Afterward, to reach a uniform calibration,
the proton band in the recorded data were matched with simulated data. To do so, a pπ0 selection on
the recorded data was performed including an invariant mass, missing mass, coplanarity and time
sideband cut. A further explanation of these cuts can be found in the Chap. 7. For the selected data, a
two-dimensional histogram was constructed in which the raw ADC signal from each PID element is
plotted as a function of the corresponding deposited energy in the CB. A typical example can be seen
in Fig. 6.3 on the left side. Ten projections on the y-axis are produced for cluster energies smaller
than 150 MeV in the CB. The range is thereby selected in such a way that a clear separation between
the proton band and the pion band background is possible. A typical projection is illustrated on the
right side of Fig. 6.3.
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Fig. 6.3: PID energy calibration. On the left side, the raw ADC signal of PID element eleven as a function of
the corresponding cluster energy in the CB is shown. The vertical dotted lines indicate the projection which is
shown on the right panel. A clear peak coming from protons is visible. An exponential function in combination
with a Gaussian function is used to determine the peak position of the proton peak.

Each projection was fitted with an exponential function for the background and a Gaussian function
for the signal. The background thereby is mostly coming from charged pions in the proton band.
The mean position of the Gaussian function, given in units of channel numbers, was extracted and
compared to the corresponding projection of the equivalent constructed simulated spectra. Finally, ten
points have been available which connect the experimental data with the simulated one. They were
plotted against each other and a linear fit was applied (see Fig. 6.4). By this, the new conversion gain
and pedestal were determined. Important to note is that the pedestal was already constrained by the
Pedestal runs before the fit was applied.
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Fig. 6.4: Peak position of the proton band in recorded and simulated data for the PID energy calibration.
Shown is the connection between the peak position in the experimental data of PID element 11 (as shown in
Fig. 6.3) as a function of the corresponding position in the simulated data. A linear fit is applied to extract the
new conversion gain and pedestal.
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6.1.4 TAPS

As mentioned in Sec. 2.5.2, the TAPS consists of two different kinds of crystals, namely BaF2 and
PbWO4. The PbWO4 crystals have not performed satisfactorily during the beamtimes and thus will
not be used for further analyses. The calibration, however, follows the same principles as for the
BaF2 crystals and thus all TAPS elements are calibrated simultaneously. Compared to CB, the analog
signals of TAPS are split into two separate ADCs. One of the ADCs is integrated over a longer time
period compared to the other one in order to take advantage of the two scintillation light components
in BaF2. The first is called Long Gate (LG) and the second Short Gate (SG) component. The LG
component is comparable to the CB energy signal since the integration time is long enough to detect
the whole signal of all particles. In the case of the SG component, the integration time is long enough
to detect the total signal of photons but not of nucleons and pions. Therefore, the combination of SG
and LG gives the possibility to distinguish between photons and neutrons via the application of the
so-called Pulse Shape Analysis (PSA). In the following subsection, the calibration method for the LG
and SG component will be presented.

Low energy calibration

Fig. 6.5: Raw ADC spectrum of a TAPS element using cosmic rays. An exponential function (red line) is
plotted in combination with a Gaussian function (blue line). The exponential function serves to describe the
background whereas the Gaussian function to describe the signal peak coming from the 37.7 MeV MIPs (figure
taken from [77]).

As discussed in Sec. 4.2, the trigger for these beamtimes was a combination of a CB trigger and a
TAPS trigger. Therefore, the alignment of the thresholds of the LEDs of the TAPS was crucial to
reject already electromagnetic background on the level of the data acquisition. Consequently, before
the start of the beamtime, N. Walford of the A2 collaboration performed a low energy calibration.
For the calibration, cosmic rays were used which deposit their energy in all crystals the same way.
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It has been found that the mean deposited energy of minimizing ionizing particles (MIPs) in the
TAPS elements is 37.7 MeV. Therefore, this information together with the raw ADC spectrum can
be used to determine the pedestal and the conversion gain of each element. A typical spectrum with
the corresponding fit functions for the extraction of the mean value for the MIP peak can be seen in
Fig. 6.5. By this, a first rough calibration of each element to each other is achieved.

High energy calibration

Pedestals for LG and SG

Compared to the CB read-out electronics, TAPS does not use sampling ADCs as read-out. Thus, the
pedestals of each element have to be determined first. For this purpose, special pedestal runs have
been taken during the beamtime. The individual runs were tested on time stability of the pedestals and
afterward were summed up. A Gaussian peak was fitted to the first visible peak in the corresponding
raw ADC spectrum which determines the pedestal of each element. A typical LG raw ADC spectrum
can be seen in Fig. 6.6. The spectra for the SG components look similar and the determination of the
pedestals follows the same procedure.
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Fig. 6.6: Pedestal determination for the LG component of a TAPS element. The raw ADC spectrum for
the LG component of crystal 264 of run 11646 is shown with a Gaussian fit (black line) to the first visible peak.
The red line indicates the position of the determined pedestal value.

Long gate calibration

After the determination of all pedestals, the individual conversion gain values of the TAPS LG
components can be determined. For this purpose, similar to the CB energy calibration, a two-
dimensional histogram was constructed in which the invariant mass as a function of the central cluster
element is plotted. Since the statistics are not sufficient for both photons being detected in the TAPS,
one photon is detected in the CB and one in the TAPS. Consequently, the CB energy calibration must
be performed before the TAPS energy calibration and the two-dimensional histogram was only filled
for the central cluster element of the TAPS hit. The corresponding spectra for the uncalibrated and
calibrated data are shown in Fig. 6.7. After several iterations, the calibrated mean invariant mass lies
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at 135.15()MeV with a full width at half maximum (FWHM) of 20.51()MeV. Compared to the CB
energy calibration, a similar energy resolution has been achieved.
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Fig. 6.7: TAPS energy calibration. On the left panel, the invariant mass of two photons (one in the CB and
the other in the TAPS) as a function of the TAPS central cluster element is plotted. The dotted line illustrates the
position of the π0 rest mass. On the right panel, the projection of all elements (black open circles) is presented
in combination with several fit functions. The Novosibirsk function (red line) is used to describe the signal
shape whereas a Chebyshev polynomial (blue line) for the background. The green line represents the sum of
both signals. The upper row shows the uncalibrated data and the lower row the final calibrated data.

Short gate calibration

The SG component calibration takes advantage of the fact that for photons the LG component can be
clearly related to the SG. Therefore, the SG component must be performed after the LG calibration.
For the calibration, two additional quantities, namely the PSA radius rPSA and angle φPSA, are defined
which connect the SG and LG components with each other. They are given by Eq. (6.3) and Eq. (6.4):

rPSA =
√

E2
SG +E2

LG, (6.3)

φPSA =

(
ESG

ELG

)
. (6.4)
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For all central elements belonging to a cluster hit in the TAPS, a two-dimensional histogram was
created in which the relation between the PSA radius and angle is plotted. An example is illustrated
in Fig. 6.8 on the left side.
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Fig. 6.8: Pulse shape analysis (PSA) for element 50 for the SG energy calibration of TAPS. On the left
panel, the PSA radius is plotted as a function of the corresponding PSA angle for the TAPS Element 50. On the
right panel, a y-projection for a cluster energy range 15 MeV to 150 MeV (indicated by the black dashed line
in the left plot) is shown. A clear photon peak is visible which is fitted with a Gaussian function (red line) to
determine its peak position.

First of all, a clear straight line at an angle of 45◦ is visible. This line corresponds to photons for
which the SG components behave the same way as the LG components. This is not the case for
nucleons and thus an additional banana-shaped band at lower angles appears. For two different PSA
radius regions, the projected PSA angle distribution was fitted and the position of the photon peak
was determined. An example can be seen on the right side of Fig. 6.8. By requiring that for these
photons the SG and LG component are identical, new pedestal and gain values were determined for
each crystal resulting in an overall calibration.

6.1.5 TAPS Veto wall

As a first step, the correlation between the TAPS elements and their corresponding Veto elements
needs to be checked. Therefore, a two-dimensional histogram was plotted in which the relation
between charged TAPS and Veto hits is plotted. If a charged track deposits energy in the TAPS
elements, the Veto element in front of the TAPS element or its neighbors should have fired as well
(see Sec. 5.3.3). As a result, a clear correlation between the TAPS and Veto elements should be
visible. For this beamtime, all Veto elements were placed at the correct position which has been
cross-checked with the CaLib software. After it has been assured that the correlation is correct, the
Veto energy calibration can be performed. Therefore, similar to the pedestal calibration of the TAPS
energy calibration, the pedestals of the Veto elements were calculated. As a next step, the conversion
gains of each element need to be determined. To do so, a two-dimensional histogram is created in
which the deposited energy EVeto

dep in the Veto elements is plotted versus the deposited energy ETAPS
dep in

the TAPS. An example of the Veto element 15 is shown in Fig. 6.9.
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Fig. 6.9: TAPS Veto energy calibration. On the left panel, the TAPS veto energy is plotted as a function of
the corresponding cluster energy for the Veto Element 15. On the right panel, a y-projection for a cluster energy
range 50 MeV to 60 MeV (indicated by the dashed line in the left plot) is shown. A clear proton peak is visible
which is fitted with a Gaussian function (red line) and an exponential background (blue line) to determine its
peak position.

A clear ”banana” band towards higher Veto energies and lower TAPS energies is visible. This
band corresponds to protons which have been detected and stopped in the TAPS. An additional
enhancement at about 200 MeV TAPS energy is present which is caused by fast charged pions and
protons which only deposit a certain amount of their energy in the calorimeter. Finally, stopped pions
in the calorimeter are responsible for the enhancement at about 100 MeV and below 50 MeV a high
amount of electromagnetic background is seen. For each Veto element, a y-projection was performed
integrated over a TAPS energy range where a clear separation between stopped protons and the other
types is possible. A typical projection can be seen on the right side of Fig. 6.9. The background,
coming from an overlap of the pion/electron band with the proton band, is described by an exponential
function and the signal shape with a Gaussian function. The peak position can be determined from the
mean position of the signal shape and was used to adjust the new proton band peak in such a way that
the peak position agrees with the corresponding position in simulated data. By this, all elements were
adjusted the same way. For this analysis, all peaks are aligned to 6 MeV as can be seen in Fig. 6.9 on
the right side.

6.2 Time Calibration

All recorded detector times are measured relative to the trigger time. Thereby, depending on the
detector, either the trigger signal or the detector signal serves as the start/stop signal of the TDCs. The
time difference between the start and stop signal is afterward digitized into channel values. Analogous
to the energy conversion (see Eq. (6.1)), the time [ns] is converted via:

t = g · (Ach −Aoff) (6.5)
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where g is the so-called conversion gain [ns/channel] and Aoff [channel] the time offset. The time
offset originates from different cable lengths and electronics of the individual read-out parts of the
detector elements. Thus, to reach an overall time alignment between detector hits corresponding to a
given event, the detectors and also the individual detector elements have to be calibrated with respect
to each other. This is always reached by looking at time differences of detector elements or detectors
to each other. Thus, the trigger time is always canceled out which is of high importance since the
trigger time is affected by jittering effects and thus decreases the resolution [77].

6.2.1 CB

The conversion gain for all elements is fixed to 0.117 ns/channel. Therefore, only the time offset of
each element must be determined. To do so, for each event, a two-dimensional histogram was filled in
which the time difference of all combinations of two neutral hits in the CB is plotted as a function of
the central element of the individual clusters. Since this method selects only neutral hits, most of the
particles are photons and thus their time difference is dominated by electronic delays. The resulting
two-dimensional plot is illustrated in Fig. 6.10 on the left side.
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Fig. 6.10: CB time calibration. On the left side, the two-dimensional relation between the time difference of
all CB hits as a function of the central cluster element is shown. On the right side, the overall projection of all
elements is illustrated and fit to determine the peak position and FWHM.

For each element, the time difference was fitted with a Gaussian function to determine the peak
position. An illustration of the fit performance is depicted in Fig. 6.10 on the right panel in which
the overall sum of all time differences is plotted. With the new mean peak position mi, the new time
offset value Aoff,n,i of element i can be determined via Eq. (6.6):

Aoff,n,i = Aoff,o,i +
mi

gi
. (6.6)

Similar to the energy calibration, the time alignment of the individual elements depends on the other
elements. Thus, the time calibration was done iteratively. After 6 iterations, all time offset were
adjusted in such a way that two neutral hits corresponding to a given event, are detected in coincidence
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with a time resolution of 18.62 ns. Note that the time resolution will be optimized in a final step with
the Time Walk correction (see Sec. 6.3).

6.2.2 PID

Similar to the CB and the tagger, the conversion gains for the PID are fixed to 0.117 ns/channel. To
calculate the time offset, for each event, the time difference of all charged particles detected in the
PID was plotted against the corresponding PID elements as can be seen in Fig. 6.11 on the left side.
Afterward, similar to the TAPS and CB time calibration, the resulting distribution was fitted and a
new time offset was calculated. The resulting resolution is 3.75 ns.
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Fig. 6.11: PID time calibration. On the left side, the two-dimensional relation between the time difference of
PID hits as a function of the corresponding PID hits is shown. On the right side, the overall projection of all
elements is illustrated and fit to determine the peak position and FWHM.

6.2.3 TAPS

The TAPS time calibration follows the same procedure as the CB time calibration except that the
conversion gains are not fixed. These have been determined by Tigran Rostoyman in November 2013.
Thereby, special runs have been recorded in which various cables of known length have been included
in the TAPS read-out. As a result, the stop signals of the TACs have been delayed by a known value
which can be used to determine the gains for all elements using a program called TAPSMaintain [77].
After the gains have been determined, the time offset calibration can be performed. The resulting plots
are shown in Fig. 6.12. For TAPS, the time alignment took 7 iterations and finally a time resolution of
0.55 ns was reached.
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Fig. 6.12: TAPS time calibration. On the left side, the two-dimensional relation between the time difference
of all TAPS hits as a function of the central cluster element is shown. On the right side, the overall projection of
all elements is illustrated and fit to determine the peak position and FWHM.

6.2.4 TAPS Veto wall

The TAPS Veto wall time was calibrated in the same way as the PID time. The resulting plots are
shown in Fig. 6.13.
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Fig. 6.13: TAPS Veto wall time calibration. On the left side, the two-dimensional relation between the time
difference of Veto hits as a function of the corresponding Veto hits is shown. On the right side, the overall
projection of all elements is illustrated and fit to determine the peak position and FWHM.

An additional peak at roughly −10 ns is visible which is caused by a time difference event between a
Veto element in front of a PbWO4 crystal and a BaF2 crystal. Since all events in the region of the
PbWO4 are rejected in the analysis, the additional peak is not present in the later analysis.

6.2.5 Tagger

To ensure that the tagger time is independent of the beam photon energy, all tagger elements have to be
calibrated relative to each other. Similar to the CB, all conversion gains are fixed to 0.117 ns/channel
and thus only the time offset has to be adjusted. Unfortunately, the tagger is running with a high rate
resulting in accidental hits in the tagger elements. As a result, a huge background is formed under the
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coincidence peak. To eliminate most of this background, the tagger time was calibrated relative to
the calorimeter with the best time resolution which is the TAPS. Since the individual TAPS elements
have been already calibrated relative to each other, the whole tagger can be calibrated relative to the
TAPS. Thus, again a two-dimensional histogram was created in which the time difference of tagger to
TAPS hits is plotted as a function of the tagger element as can be seen in Fig. 6.14 on the left side.
On the right side, the overall projection of all elements is shown. As mentioned, a huge background
is visible which is fit with a polynomial (blue line) function. The signal is aligned to 0.05 ns with a
resolution of 1.82 ns.
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Fig. 6.14: Tagger time calibration. On the left side, the time difference between all Tagger and TAPS hits as
a function of the Tagger element is shown. On the right side, the overall projection of all elements is illustrated
and fit to determine the peak position and FWHM.

6.3 Further Calibrations

6.3.1 CB Time Walk Correction

The slow rise-time of the NaI crystals in combination with the used LEDs cause an energy-dependent
time information, the so-called time walk effect. Thus, the time information of the CB hits need to be
corrected to ensure the best possible time resolution. This is achieved by plotting for all CB elements
the time difference between the CB hit and all tagger hits as a function of the deposited energy in the
CB element. To reduce the amount of background, this is only performed for events that fulfill the
kinematics of a π0 photoproduction reaction. Therefore, only CB hits were used with an additional
cluster in the CB which form together an invariant mass close to the π0 rest mass. Additionally, the
missing mass should be in the range of the proton rest mass. To reduce the time background, a sharp
time cut between the CB hit and the tagger hit was applied in combination with a sideband subtraction.
A detailed description of this technique is presented in Sec. 7.4.2. The resulting two-dimensional plot
for each CB element was fitted with a 4-parameter function:

t(E) = a+
b

(E + c)d . (6.7)
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A typical example can be seen in Fig. 6.15 for the element 12.
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Fig. 6.15: Time walk correction of the CB. On the picture, the time difference between all CB times and
tagger time of the CB element 12 as a function of the corresponding cluster energy is plotted. The fit, following
Eq. (6.7), is depicted as the solid black line.

The resulting parameters were written to the database and all measured times were corrected by
subtracting Eq. (6.6) with its individual parameters from the measured time. Since the tagger is used
to calculate the corrections, the tagger and CB times are aligned to each other which can be seen in
Fig. 6.16 on the right side in black. More importantly, the correction cancels the effect of the time
walk which can be seen by the comparison of the time difference before (red) and after (black) the
calibration. As a consequence, the time resolution of CB reduces from previously 18.62 ns to only
4.34 ns which is illustrated in Fig. 6.16 on the right.

6.3.2 CB Rise Time Correction

Due to a not perfectly working fit during the time walk calibration, the time difference between CB
elements and tagger time can be slightly shifted to each other. To correct for this effect, a last final
iteration has to be performed in which the peak position of the time difference has to be determined.
By this, the rise time parameter a can be reevaluated and adjusted in such a way that the time difference
peaks again at 0 ns.
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Fig. 6.16: CB Rise time and time walk correction. On the left side, the effect of the time walk correction is
illustrated. The time difference between the CB and tagger hits is plotted once before the calibration is applied
(red) and after the calibration (black). On the right side, the effect of the CB Rise time and time walk correction
on the CB time calibration is illustrated. The FWHM is reduced from 18.62 ns to 4.34 ns (cf. Fig. 6.10).

6.3.3 PID Azimuthal Angle

To ensure that a charged track detected in the CB also provides a valid hit in the PID, the orientation
of the PID inside the detector system must be determined. In doing so, events were selected with only
one CB cluster in combination with one PID hit. Afterward, the PID element was plotted as a function
of the azimuthal angle of the CB cluster and all projected elements are fit with a Gaussian function.
A typical spectrum can be seen in Fig. 6.17 on the right. The resulting correlation between the PID
element and the corresponding azimuthal angle is shown on the right and was saved to the database.
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Fig. 6.17: PID azimuthal alignment. On the left side, for each track with a hit in the PID and a cluster in the
CB, the φ angle of the CB cluster is plotted as a function of the corresponding PID element. Afterward, for
each PID element, the φ angle distribution is fit with a Gaussian function to determine the correlation with the
CB as can be seen on the right side for element 21.

6.3.4 Energy Loss Correction for Charged Pions

For a detailed analysis of the kinematics of a reaction, the four momenta of the initial state and the
final state particles need to be known as precisely as possible. The initial state is well determined by
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the energy of the beam photon traveling in z-direction towards the target. The target is assumed to
be unbound protons at rest. The polar and azimuthal angles of the final state were calculated from
the reconstructed tracks of the particles. The major problem, however, is the detected energy. Since
particles traveling through the materials of the detector setup lose energy between the production
point inside the target and the detection point, an energy correction must be applied. In section
6.1, the energies of the photons were calibrated by calculating the invariant mass of two photons.
Iteratively, the invariant mass was corrected to the rest mass of the neutral pion. In that process,
an energy loss correction was automatically performed for photons. The correct energy of the π+

was found by calculating the energy of the π+ in the γ p → nπ+ reaction under the assumptions
of an unbound-nucleon interaction by using Monte Carlo simulations followed by a final applied
correction on data. For this purpose, the initial state and the measured polar angles of the particles in
the final states are used to calculate the energy of the π+ and the neutron (for a detailed calculation see
App. B.3). Fig. 6.18 shows for MC simulations the two-dimensional relation between the calculated
and reconstructed kinetic energy of the π+ for three different polar angular ranges of the π+. An
angle-dependent correction is justified by the fact that different path lengths through the detector
materials need to be taken into account. Additionally, in the edge regions of the detectors, parts of the
energy can escape the detector system and thus the cluster does not reconstruct the whole energy.
First of all it should be noted that up to 300 MeV the calculated kinetic energy and reconstructed
energy are except for ionization losses nearly the same. This means that the π+ can completely be
stopped in the calorimeter. In this region, an energy correction can be applied. However, above
roughly 200 MeV the calculated kinetic energy becomes larger than the reconstructed because the π+

does not deposit the whole energy in the calorimeter and thus can leave it (a so-called Punch-Through).
At even higher energies, the π+ becomes a minimal-ionizing particle (MIP) and consequently deposits
only about 200 MeV in the calorimeter although the kinetic energy is much higher. Based on this
problem, the measured kinetic energy of the π+ does not correspond to the actual kinetic energy and
an energy correction cannot be applied. For the events where an energy correction is possible, the
reconstructed kinetic energy in a given calculated energy and polar angular range, was fitted with
a Gaussian function. The maximum of all these fits as a function of the corresponding calculated
energies was then fit with a polynomial of the third order. From the extrapolation of the fit functions
towards zero reconstructed energy, the polar angle-dependent energy losses can be extracted. In high
forward and backward regions, the calculated energy can be up to 40 MeV higher than the measured
one. In the other regions, an overall energy loss of about 20 MeV is found. Overall, the reconstructed
energy is slightly bigger than the calculated one which can be explained by an overcorrection of the
reconstructed energy due to the calibration of the data and MC with photons. In Fig. 6.19, the energy
difference between the reconstructed and calculated kinetic energy is presented for the corrected
reconstructed energies. They are presented for the MC simulation on the left side and for the butanol
data on the right side. A clear peak at 0 MeV is seen. Therefore, the energy correction performed
efficiently and with the corrected energy several cuts can now be applied to the data to identify the
γ⃗ p⃗ → nπ+ reaction described in the next section.
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Fig. 6.18: two-dimensional relation between the reconstructed and calculated kinetic energy of the π+
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6.4 Overview of the Calibration Results

An overview of the final calibrated data is presented in Tab. 6.1.

Table 6.1: Overview of the FWHM of the calibrated data of the September 2015 beamtime.

Type Quantity ∆ E [MeV] / ∆ t [ns]

Energy mπ0 (CB) 20.67
mπ0 (CB/TAPS) 20.51

Time CB-CB 4.34
TAPS-TAPS 0.55
PID-PID 3.75
tagger-TAPS 1.82
CB-tagger 2.9

6.5 Calibration of Simulated Data

For a later comparison of simulated and experimental data, the simulated data have to be calibrated in
the same manner as the experimental data.

6.5.1 Energy Calibration

For all detectors, the energy calibration was performed as described in the previous sections. As
an example to stress the importance of the calibration, Fig. 6.20 shows the comparison between
uncalibrated and calibrated data of the TAPS energy calibration.

Fig. 6.20: TAPS Energy calibration for simulated data. On the left panel, the invariant mass of two photons
(one in the CB and the other in the TAPS) as a function of the TAPS central cluster element is plotted. The
description of the individual parts is similar to Fig. 6.2.
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6.5.2 Energy Resolution

For a good comparison of experimental and simulated data, the energy resolution of both must be
matched. For this purpose, the deposited energy in the simulated data are smeared to match the
parameterized energy resolution of the experimental detectors given by Eq. (6.8):

∆E
Edep

=


0.2%

E[GeV ]0.36 for CB,

1.8%+ 0.8%
E[GeV ]0.5

for TAPS.
(6.8)

To do so, simulation of isotropically distributed photons of energies up to 1 GeV are generated.
Afterward, as a function of the generated energy, the deposited energy was fitted with a Novosibirsk
function and the energy resolution was extracted from the fit parameters. Iteratively, the deposited
energy of the simulated data was folded with a Gaussian function of an energy-dependent FWHM
given by Eq. (6.9):

∆E
Edep

=

0.027% ·E[GeV ]0.795 for CB,

0.00225% ·E[GeV ]0.565 for TAPS.
(6.9)

The resulting energy resolutions for the TAPS and the CB are depicted in Fig. 6.21 together with the
experimental resolution, given by Eq. (6.8) in red.
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Fig. 6.21: Energy resolution adjustment for MC simulations. Shown are in black the energy resolution as a
function of the deposited energy for both detectors. On the left, the resolution for the CB is presented whereas
on the right for the TAPS. The red curve indicates the experimental resolution obtained with Eq. (6.8).

6.5.3 Angular Resolutions

For the later analysis of the nπ+ final state, a good understanding of the angular resolution for neutrons
and charged pions in the Crystal Ball and TAPS is required. Therefore, neutrons and charged pions
have been generated. Afterward, the angular difference between the reconstructed and generated angle
is plotted as a function of the generated angles. For each generated angle, the angular difference is fit
with a Gaussian function to extract the angular resolution. The angular resolution for neutrons and
pions detected in the CB and the TAPS can be seen in Fig. 6.22. The peaks at about 20° are caused by



6.5 Calibration of Simulated Data 99

the transition region between the CB and the TAPS. The sharp peak close to 0° in the φ -resolution
of the neutron and the overall decreasing resolutions below θ ≤ 5° can be ignored as this range is
covered by the PbWO4 crystals which are ignored in the analysis.
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Fig. 6.22: Angular resolution for charged pions and neutrons. On the left side, the polar angular resolution
is presented as a function of the generated polar angle for both particles. On the right side, the corresponding
azimuthal angular resolution is depicted.





Chapter 7

Selection of the Reactions

For the extraction of the polarization observables G and E, the reactions γ⃗ p⃗ → pπ0 and γ⃗ p⃗ → nπ+

have to be selected from the experimental data. In this chapter, the selection process is described and
applied with respect to the desired reaction. This includes a first preselection based on the signature
of the reaction. To reduce the high amount of random events, the time coincidence between the initial
state and the final state particles is required. Afterward, energy and momentum conservation are used
to apply kinematic cuts which optimize the selection of the desired reaction and at the same time
reject background. The different cuts are explained and are discussed with respect to the contribution
of background reactions. Furthermore, background studies for the selected events are performed and
are presented at the end of this chapter.

7.1 Carbon, Oxygen and Helium contribution inside the Butanol Tar-
get

For the measurement of the double polarization observables G and E, reactions on polarized nucleons
are required. As mentioned in Sec. 2.3, only the hydrogen nucleons inside the butanol target can
be polarized. Consequently, the contribution of the unpolarized nucleons from carbon, oxygen, and
helium has to be subtracted from the data sample. This procedure allows for an optimal selection
of the contribution coming only from hydrogen nucleons inside the butanol target. Therefore, in
the following sections, all butanol and carbon beamtimes have been analyzed in the same way
and the resulting carbon distributions for the kinematic cut variables of the examined reaction are
scaled properly to match the unpolarized components inside the butanol target. Finally, the carbon
distributions are subtracted from the butanol distributions which results in the reconstructed hydrogen
distributions inside the butanol target. These distributions are used for determining the selection
criteria for the kinematic cut variables. Further details about the carbon contribution will be discussed
in this chapter and the proper scaling will be presented in Sec. 8.1.2.
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7.2 CB Energy Sum Adjustment

As has been mentioned in Sec. 4.2.4, the different beamtimes had different energy sum thresholds for
the CB trigger. Whereas most of the γ⃗ p⃗ → pπ0 events have in total an energy far above the energy
sum threshold, the situation is completely different for the γ⃗ p⃗ → nπ+ reaction as will be further
discussed in Sec. 8.1.2.3. In Fig. 7.1, the individual energy sum distributions of the different beam
and times coherent edge positions are illustrated.
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Fig. 7.1: Energy sum distribution of the different beamtimes. On the left side, the energy sum distributions
for all recorded data of all different beamtimes and some individual coherent edge positions are presented. On
the right side, a zoomed in area is depicted to show the different starting energy sum thresholds.

For the further investigation, it should be noted that the trigger setting of the carbon with helium
measurement in September 2015 behaves similar to the butanol measurements with the coherent
edge at 850 MeV in the same beamtime. The 450 MeV edge measurement of September 2015 and
especially all the measurement with different coherent edges of the November 2013 increase earlier
due to their lower energy sum threshold, whereas the 850 MeV edge measurement of May 2015
increases later. Since the carbon with helium measurement will be used to describe the unpolarized
component inside the butanol target, it is crucial that the energy sum thresholds for the butanol
measurements are set at the same value as the carbon with helium measurements. Therefore, as a first
step, for all beamtimes and each different energy sum threshold setting, the energy sum is plotted.
Afterward, the aim is to adjust all butanol settings to the reference settings which is the 850 MeV
edge setting of the September 2015 beamtime. To avoid enhancements in the energy sum which are
caused by different coherent edges, the adjustment is only performed with the Møller data. To do
so, the two butanol energy sum distributions are first normalized to each other in the region above
300 MeV where no trigger effects are expected. An example of the 450 MeV edge of September
2015 is depicted in Fig. 7.2 on the left side. Afterward, the distributions which need to be adjusted
are divided by the reference setting, resulting in a ratio histogram with values between 0 and 1. An
example of the ratio plot of the butanol 450 MeV edge of the September 2015 beamtime is depicted
in Fig. 7.2 on the right.
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of the 450 MeV and 850 MeV edge trigger setting of the September 2015 beamtime are shown. Note that only
the Møller data have been used. On the right side, the ratio of both is plotted. The resulting values are later
used to adjust the different trigger settings.

The final adjustment in the data analysis is achieved by giving each analyzed event a weighting factor
according to their ratio plot. More details about the goodness and the uncertainty from the trigger
adjustment are discussed in Sec. 8.1.2.3.

7.3 Signature of the Reactions

As a first step for the data analysis, a defined signature of the reactions is preselected within the
GoAT framework. The signature of the reaction is given by the final state products. In the case of the
reaction γ⃗ p⃗ → pπ0 , the main signature is given by the decay of the neutral pion into two photons
with a branching ratio of 98.8% [7]. By that, two separate clusters are built in the main calorimeters.
Together with a detected cluster formed by the proton, this signature is named 3 PED event where
PED stands for Particle Energy Deposition. At low beam photon energies, the proton can be lost due
to its low energy and thus can not reach the main calorimeters or pass the detector thresholds. Further
reasons for losing the proton are detector inefficiencies and small gaps in the detector setup, i.e. the
transition between the CB and the TAPS (-0.8 ≤ cosθπ0,CMS ≤ -0.6). As a result, only the clusters
from the two photons can be detected. These kind of events are called 2 PED events. A possible
solution to detect also protons with low energies and in regions with low detector efficiency is to
make use of the MWPCs with and without the PID. The events, where the proton is detected in this
charge sensitive detectors are called 2.5 PED events. Unfortunately, the MWPCs had to be repaired
between the May 2015 and September 2015 beamtime. During the reinsertion for the September
2015, the two MWPCs were not exactly aligned in z-direction between themselves and thus do not
show the same behavior as the previous beamtimes. As all beamtimes need the carbon with Helium
measurement of the September 2015 beamtime as a reference, the angular information of the MWPC
was not usable. In addition, as there is no fixed mechanical frame to hold the MWPCs inside the
CB tunnel, the relative position of the CB center to the one of the MWPCs can be different for each
beamtime. Consequently, the MWPC was only used as an additional charge identification detector.
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However, as will be shown and explained later in the data analysis, the reaction can be selected by
neglecting the charge information of the detectors. Thus, the reaction signature is simply given by
two or three detected clusters in the main calorimeters. The detection efficiency together with the
acceptance of the reaction of the different event types is illustrated as a function of the kinematic
variable cosθπ0,CMS and the beam photon energy Eγ in Fig. 7.3.
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Fig. 7.3: Detection efficiency and acceptance for the reaction γ⃗⃗p→pπ0 . The detection efficiency and
acceptance are presented for the 2 PED events on the left and for the 3 PED events on the right. They are
depicted as a function of the kinematic variable cosθπ0,CMS and the beam photon energy Eγ .

For the nπ+ final state, the charge information of the detectors can not be neglected. As a selection
criterion, a cluster in one of the main calorimeters must exist in combination with a correlated charge
information (see Chap. 5). In the case of a cluster in the CB, a correlated charge information must be
available in the PID and/or in the MWPCs whereas for the TAPS in the Veto Wall elements. These
kind of events are called 1 PED events and are mostly caused by the detection of a charged pion. At
low beam photon energies, the neutron has not enough energy to be detected in the calorimeters. In
addition, the detection efficiency of neutrons is estimated to be lower than 30% at kinetic energies
below 100 MeV [124]. Thus, only the charged pion can be detected. However, as the detection
efficiency of the neutron increases up to 40% at kinetic energies of about 200 MeV, the neutron can be
detected at higher beam photon energies and consequently an additional neutral track can be selected
in combination with the charged track. These events are called 2 PED events. An overview of the
distribution of the two event types is presented in Fig. 7.4. Note that the low acceptance is caused by
the CB energy sum adjustment as the physical energy sum already starts at about 30 MeV1 and the
low detection efficiency of the neutrons.

1As previously mentioned, the G/E measurements were not optimized at all for the nπ+ channel. The major aim was
the acquisition of data for the pπ0 and pη channels which required a much higher energy sum.
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Fig. 7.4: Detection efficiency and acceptance for the reaction γ⃗⃗p→nπ+ . The detection efficiency and
acceptance are presented for the 1 PED events on the left and the 2 PED events on the right. They are depicted
as a function of the kinematic variable cosθπ+,CMS and the beam photon energy Eγ .

7.4 Time Coincidence Cuts

7.4.1 Time Coincidence of Final State Particles

The photons of the π0 decay of the pπ0 channel are emitted at the same time and are traveling with
nearly the speed of light. Therefore, the detected time information of photons, which originate from
the decay of the π0, should be in coincidence. Fig. 7.5 shows the time difference of the two photons
as a function of the detector in which they have been detected. This is motivated by the fact that
the time resolution of the TAPS is by a factor of roughly 7 better than the CB (cf. Sec. 6.4). Clean
Gaussian-like time spectra are seen with only one defined peak at about 0 ns which emphasizes
that two photons are correlated in time. Nevertheless, a combinatorial background of the reaction
γ⃗ p⃗ → pπ0 is possible where a photon is correlated with a proton. This effect should especially be seen
if the proton candidate is detected in the TAPS. Due to its long flight distance and low kinetic energy,
the proton has a significantly longer flight time. Although no hint of combinatorial background is
present (blue curve), to ensure that a potential background is rejected for sure, a cut on the time
coincidence of the photons from −3 ns to 3 ns is applied as can be seen by the narrow lines in the
Fig. 7.5 on the left side. As the photons are now time coincidence, a final step is to correlate the final
state proton with the meson time as can be seen in Fig. 7.5 on the right. Note the second peak at
about 7 ns which corresponds to the low energetic protons in the TAPS. To ensure that these events
are selected as well, a time window cut for the proton in the TAPS (blue curve) is selected from −3 ns
to 15 ns and for the case in the CB (red curve) from −5 ns to 7 ns.
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Fig. 7.5: Time coincidence of final state particles for γ⃗⃗p→pπ0 . On the left side, the time coincidence
between the two photons of the π0 decay is shown as a function of the detector in which they were detected.
Black hereby indicates the case where both photons are detected in the CB, red the combination CB and TAPS
whereas blue both in the TAPS. The black dashed lines indicate the applied time coincidence cut. On the right
side, the time coincidence between the meson and the proton is illustrated with black points. Here, a distinction
between the detection of the proton in the TAPS (blue) and the CB (red) was made. The selection criteria are
indicated by the corresponding colored dashed lines.

For the nπ+ final state, the charged pion and the neutron are correlated in time. Hereby, the time
correlation is as well studied as a function of the detectors. This can be seen in Fig 7.6 on the left side.
If both particles are detected in the CB (black), a clear peak at about 2 ns is seen2. If the neutron is
detected in the TAPS (red), the peak is shifted towards more positive values which can be explained
by its high rest mass and the longer flight path. Finally, the detection of the charged pion in the TAPS
(blue) peaks roughly at the same position as the case where both are detected in the CB. To only
select final states which are in time coincidence, a conservative asymmetric cut from −10 ns to 20 ns
is applied.

7.4.2 Random Tagger Hit Subtraction

After the above explained time cut ensures the time coincidence of the final state particles, the
coincidence with the initial state is investigated. Therefore, the final state meson is correlated with the
detected time information of the tagger hits tγ,b:

∆treaction = tπ − tγ,b with tπ =

0.5 · (tγ1 + tγ2) for γ⃗ p⃗ → pπ0

tπ+ for γ⃗ p⃗ → nπ+
. (7.1)

As mentioned in Sec. 5.1, the tagger hits are directly connected to the produced bremsstrahlung
beam photons. Consequently, the beam photon that triggered the desired reaction should be in
time coincidence with the averaged time information of the final state photon candidates. The A2

2Note that the time difference between both photons peaks at about 0 ns. Thus, if a huge contribution of the nπ+ is
present in the pπ0 analysis, a second peak should be seen at about 2 ns in Fig. 7.5.
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Fig. 7.6: Time coincidence of the nπ+final state and the reaction time. On the left side, the time coincidence
between the charged pion and the neutron is shown as a function of the detector in which they were detected.
Hereby, the first detector in the legend corresponds to the detector where the charged pion is detected and the
second where the neutron is detected. The black dashed lines indicate the applied time coincidence cut. On the
right side, the reaction time ∆treaction is shown. The random time background events, which are indicated by the
red area, are used to subtract the random time background beneath the coincidence time window (blue area).

experiment runs with a very high electron beam current of about 4 nA and thus up to 35 hits per
event are recorded. This high intensity of electrons is causing the problem that also random time
background is below the time coincidence signal as it is depicted in Fig. 7.6. To subtract the random
time background events below the coincidence peak, the time window sideband subtraction is applied.
The technique makes use of the fact that the random time background is constant, flat and random.
Using these facts, the time background contribution should be equal for any selected time interval
[77]. Therefore, only events in three different time windows are selected which are illustrated in Fig.
The time window [t2,t3] is the coincidence time window, which includes the random background
events on top of the coincidence events. Two additional random time windows [t0,t1] and [t4,t5] are
selected where only random time background is assumed. Finally, these three time windows can be
used to subtract from a statistical point of view the time background beneath the coincidence peak.
Whereas events in the prompt window are scaled by a factor st = sprompt = 1, events in the random
time windows are scaled by:

st = srandom =
(t3 − t2)

(t1 − t0)+(t5 − t4)
=

6ns− (−6ns)
(−100ns− (−300ns))+(300ns−100ns)

= 0.03. (7.2)

With that, each histogram, which has been weighted according to the above scaling factor st , contains
only the contribution of the coincidence time events. In the following, all shown distributions are time
background subtracted.
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7.5 Kinematic Cut Variables

7.5.1 Mass Cuts

7.5.1.1 Invariant Mass

The π0 in the final state of the reaction γ⃗ p⃗ → pπ0 decays with a branching ratio of almost 100%
into two photons. Consequently, the invariant mass of these two photons can be used to identify if
they belong to the decay of the π0. In that case, the invariant mass should be in agreement with the
rest mass of the π0 (mπ0 = 134.9766(6)MeV) [7]. Using the four-momenta pγ of the photons, the
invariant mass is given by:

mγ1,γ2 =
√
(pγ1 + pγ2)

2

=
√
(Eγ1 +Eγ2)

2 − (p⃗γ1 + p⃗γ2)
2

=
√

2 ·Eγ1Eγ2 · (1− cosθγ1,γ2) (7.3)

where θγ1,γ2 is the opening angle between the photons and Eγ1,2 are the detected energies of the photons.
The selection criterion is:

mγ1,γ2

!
= mπ0 . (7.4)

For the nπ+ channel, the invariant mass of the π+ and neutron system makes no sense as only
information about the intermediate resonance state can be achieved.

7.5.1.2 Missing Mass

To identify the nucleon in the final state, the missing mass technique makes use of the fact that the
four-momentum of the beam photon pγ , the target proton pp, and the final state pion pπ are known3.
With respect to momentum- and energy conservation the missing mass of the system can then be
calculated which is given by:

pγ + pp = pX + pπ(
Eγ

p⃗γ

)
+

(
mp

0⃗

)
=

(
EX

p⃗X

)
+

(
Eπ

p⃗π

)
(

EX

p⃗X

)
=

(
Eγ

p⃗γ

)
+

(
mp

0⃗

)
−
(

Eπ

p⃗π

)
→ mX =

√
(Eγ +mp −Eπ)2 − (p⃗γ − p⃗π)2. (7.5)

3For the nπ+ channel, this is only true for the events which do not punch through the detector. Further details will be
discussed in Sec. 7.7.2.
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Hereby, the four-momentum pπ of the pπ0 channel is given by the sum of the four momenta of the
final state photons whereas for the nπ+ channel by the charged pion. If the initial finite momentum of
the target nucleon is neglected, the missing mass should be given by the rest mass of the nucleon N.
Thus, the selection criterion is:

mX
!
=

mp for γ⃗ p⃗ → pπ0,

mn for γ⃗ p⃗ → nπ+,
(7.6)

with mp = 938.272081(6)MeV and mn = 939.5654133(60)MeV [7]. A deviation from the rest mass
indicates either additional particles in the final states which are not detected or a detected particle
which is not a pion.

7.5.2 Angular Cuts

7.5.2.1 Coplanarity

The first angular cut which can be performed is the coplanarity cut which is only applicable if both
final state particles have been detected. Since the A2 experiment is a fixed target experiment and
with the assumption of the beam photon only traveling in z-direction towards the target, the initial
transverse momentum has to be zero. Thus, according to momentum conservation, the final state
nucleon N and the meson π have to fly back-to-back which results in a vanishing total transverse
momentum in the final state. Therefore, the difference between the azimuthal angle φ of the nucleon
and the π is calculated and is given by:

∆φ =

φN −φπ if φN −φπ ≥ 0

φN −φπ +360◦ if φN −φπ < 0.
(7.7)

If the reaction takes place on a nucleon at rest in the initial state, the kinematics should be fulfilled
and the particles in the final state have to fly back-to-back. With that, the following selection criterion
is given:

∆φ
!
= 180°. (7.8)

7.5.2.2 Polar Angle of the Nucleon

In the center of mass system (cms), the total momentum has to vanish. As already shown previously,
the final state particles already fly back-to-back in the xy-plane in the lab frame and the transverse
momentum is vanishing. Since the boost into the cms is in z-direction, only the longitudinal component
needs to be considered in the cms. For a vanishing longitudinal component, the proton and the meson
π need to fly back-to-back flight in z-direction. Consequently, the polar angular difference of the
nucleon N and the meson π in the cms has to fulfill the condition:

∆θcms = θN,cms −θπ,cms
!
=±180°. (7.9)
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Since the four momenta of the particles are given in the laboratory system, they first have to be
boosted in the z-direction into the cms. To do so, an exact knowledge of the energy of the participating
particles is mandatory. This is not guaranteed for the nucleons and the charged pions since at a certain
energy these punch through the detector. Thus another selection condition must be found which is
completely independent of the energies. A solution is given by the comparison of the reconstructed
polar angle of the nucleon and the calculated angle. For the pπ0 final state, the initial state information
and the photons from the π0 decay are used for determining the calculated polar angle. For the
nπ+ channel, the initial state information and the detected polar angle of the π+ can determine the
polar angle of the neutron under the assumption of the γ⃗ p⃗ → nπ+ reaction kinematics. A detailed
explanation of the calculations is presented in appendix B.3. Thus, a selection criterion is found
which is completely independent of the critical proton and charged pion energy. If the reconstructed
nucleon N belongs to the meson π in the reaction, the reaction kinematics should be fulfilled and the
difference between the calculated and reconstructed nucleon polar angle should be compatible with 0°
which leads to the final selection criterion:

∆θN = θN,calc −θN,rec
!
= 0°. (7.10)
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7.6 Iterative Selection of the Events

Since the distributions of the kinematic cut variables are contaminated by background reactions, the
determination of the correct selection criteria for the variables is not straight-forward. As a first step,
all kinematic variables are examined by eye and rough selection criteria are selected. Afterward, for all
kinematic variables, all other selection criteria are applied and a first fit is applied to the reconstructed
hydrogen distributions. Iteratively, the cut widths of the different kinematic variables are optimized
with respect to an optimal signal to background ratio. While in the first iterations, the kinematic cut
variables are integrated over all possible variables, in a second stage, the cut variables are investigated
as a function of the incoming beam photon energy Eγ , referred as to the 2-dimensional cut criteria.
In a final stage, the 3-dimensional cut criteria are applied by also considering the polar angle of the
meson in the center of mass system. With that, the selection criteria are optimized in the dimension in
which the double polarization observables are extracted. As will be seen in the following sections,
the 3-dimensional cut criteria are mandatory. Consequently, in the following sections, they will be
discussed with respect to the examined kinematic variable.

7.7 Application of Kinematic Cut Variables

7.7.1 Invariant Mass

For the pπ0 final state, Fig. 7.7 shows on the left side the invariant mass distribution of the butanol data
as a function of the incoming beam photon energy Eγ after all other cuts. For the beam photon energy
range from 400 MeV to 434 MeV the cosθπ0,CMS dependent invariant mass is depicted in Fig. 7.7 on
the right side. A clear peak around the π0 rest mass is visible which are the reactions of interest. An
additional clear peak at an invariant mass of about 550 MeV is visible which starts at a beam photon
energy of about 700 MeV. This peak belongs to the events where a η is detected instead of a π0. The
rest mass of the η is given by 547.862(17)MeV. The boundary conditions for the selection of the
neutral pions, indicated by the black lines, are determined by fitting a Novosibirsk function4 to the
reconstructed hydrogen contribution inside the butanol target. Afterward, events within a 2σ range
around the mean value of the fit are accepted as a signal event. Note, that under the assumption of a
Gaussian distribution, a 2σ cut ensures that 95.45% of all valid events are selected. However, due
to the low energy tail, a symmetric 2σ cut would select less than 95.45% of all events. Therefore,
another method was tested, namely the selection via confidence intervals. The confidence interval
selects all events within the smallest possible range where 95.45% of all events are located. As it
turned out, this method takes the low energy tail into account. Unfortunately, the confidence interval
method is very sensitive to background as the background events are also included in the calculation
of the interval range for the 95.45%. Consequently, the normal symmetric 2σ range around the mean
value is used as the selection criteria. Furthermore, this is motivated by the fact, that most of the

4The Novosibirsk function is used to take into account the low energy tail produced by the detector resolution [77].
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Fig. 7.7: Invariant mass distribution of the butanol data as a function of the beam photon energy Eγ and
as a function of cos θ

π0,CMS. On the left side, the invariant mass distribution is plotted as a function of the
beam photon energy Eγ and integrated over the full angular coverage range. The 2-dimensional cut criteria
limits are determined for each beam photon energy and are indicated by the black line. On the right side,
the cosθπ0,CMS dependent invariant mass is illustrated for the beam photon energy range from 400 MeV to
434 MeV. The horizontal red dashed lines in the figure on the left hereby indicate the selected beam photon
energy range. The dashed red line in the figure on the right shows the corresponding energy-dependent selection
criteria whereas the black solid lines the cosθ dependent. Note that all other cuts which are presented in this
chapter are applied to these data and that the distributions with cosθπ0,CMS < 0.22 only contain 3 PED events
whereas for cosθπ0,CMS ≥ 0.22 also 2 PED events.

background is located at lower invariant masses which are mainly from nπ+ events or electromagnetic
background. Ignoring the asymmetric energy tail towards lower invariant masses, therefore, rejects
more possible background. Finally, it is important to optimize the overall statistic in combination with
a low carbon contribution. A more detailed study has been performed in [60] and showed that a 2σ cut
is the optimal cut range. An illustration of the different invariant mass distributions and the boundary
conditions are shown in Fig. 7.8 for a beam photon energy range from 400 MeV to 434 MeV and as
a function of the kinematic variable cosθπ0,CMS. Note that the distributions with cosθπ0,CMS < 0.22
have detected the proton and the distributions with cosθπ0,CMS ≥ 0.22 also include events where the
proton is not detected. A remarkable observation is that the amount of reaction on bound nucleons is
increasing dramatically if the proton is not detected. Unfortunately, the invariant mass alone can not
be used to reject the contribution of bound protons since it only depends on the final state particles
which are independent on the initial state. As will be shown later, the situation is different for the
angular cuts which can reject a large portion of the reaction on bound protons. As these cuts are
only available if all final state particles are detected, the increasing number of bound protons for
cosθπ0,CMS ≥ 0.22 can be attributed to these missing angular cuts. Nevertheless, concerning the
contamination with background reactions, the reconstructed hydrogen distribution is compared with
Monte Carlo simulation for the signal reaction and can be nicely described by them. This already
indicates a good signal to background ratio.
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Fig. 7.8: Invariant mass distribution for Eγ = (400-434) MeV. The invariant mass distributions after all other
cuts are shown as a function of cosθπ0,CMS for a given beam photon energy range. The yellow area hereby
indicate the 2σ selection range. Note that the distributions with cosθπ0,CMS < 0.22 only contain 3 PED events
whereas for cosθπ0,CMS ≥ 0.22 also 2 PED events.
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7.7.2 Missing Mass

Similar to the invariant mass cut, Fig. 7.9 shows on the left side the missing mass distribution of
the butanol data after all cuts as a function of the incoming beam photon energy Eγ and on the right
side as a function of cosθπ0,CMS and for a beam photon energy from 400 MeV to 434 MeV. The
upper row presents the results of the pπ0 channel whereas the remaining two ones for the 1 PED and
2 PED events of the nπ+ channel. The butanol distributions clearly show an energy and cosθπ,CMS

dependence which can be explained by the energy resolution of the involved particles. Although
the relative energy resolution of the particles gets better with increasing energy (cf. Sec. 6.5.2), the
absolute resolution decreases and thus causes a broader missing mass distribution.
A detailed example of the 3-dimensional missing mass distribution is depicted in Fig. 7.13 for a beam
photon energy from 400 MeV to 434 MeV. A similar example for the nπ+ final state is presented
in Fig. 7.14 for the 1 PED events and in Fig. 7.15 for the 2 PED events. The boundary conditions
are applied to the reconstructed hydrogen distribution and are shown in the form of the yellow area.
Similar to the invariant mass, a Novosibirsk function is used to determine a 2σ range around the mean
value of the fit. Note, that also here, the confidence interval was tested. In addition to the problems
mentioned in Sec. 7.7.1, a not perfect carbon subtraction can artificially select a wrong confidence
interval. Further problems concerning the carbon subtraction is presented in Chap. 8 in Sec. 8.1.2.
Therefore, also for the missing mass, the 2σ fit was selected. In addition to the selection of the
desired reaction, the boundary conditions reject contributions from the bound nucleons. This can be
explained by the fact that the missing mass calculation assumes a target at rest. While this assumption
is valid for reactions on unbound nucleons, bound nucleons carry an additional Fermi momentum.
Consequently, reactions on bound nucleons trends towards higher missing masses. Similar to the
invariant mass, 2 PED events are included for cosθπ0,CMS ≥ 0.22 in the pπ0 channel. Due to the
missing angular cuts of the 2 PED events, an increasing amount of reactions on bound nucleons is
seen. Similar argumentation holds for the 1 PED events of the nπ+ final state.
Nevertheless, the reconstructed hydrogen distribution is compared with MC simulations for both
signal reactions and are in very good agreement with each other.
To emphasize the importance of the adjustment of the CB energy sum trigger in the nπ+ channel
(see Sec. 7.2), Fig. 7.10 shows as an illustration of the problem the missing mass distribution for
1 PED events for a beam photon energy range Eγ = (400−434) MeV and in the kinematic variable
region −0.44 ≤ cosθπ+,CMS <−0.33. The missing mass distribution is depicted on the left side for
the butanol measurements of the September 2015 beamtime with the coherent edge at 450 MeV and
on the right side for the coherent edge at 850 MeV. The inspection of Fig. 7.10 clearly presents the
problem of the different CB energy sum thresholds. Whereas the unpolarized component (red points)
inside the butanol (black points) can be nicely described for the 850 MeV edge, the 450 MeV edge has
significant problems in the carbon subtraction, especially the additional peak in the carbon subtracted
distribution (blue points) towards higher missing masses. At first sight, the conclusion would be to
assume that the second peak is coming from background events.
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Fig. 7.9: Missing mass distribution of the butanol data as a function of the beam photon energy Eγ and
as a function of cos θπ,CMS. On the left side, the missing mass distribution is plotted as a function of the
beam photon energy Eγ and integrated over the full angular coverage range. The 2-dimensional cut criteria
limits are determined for each beam photon energy and are indicated by the black line. On the right side, the
cosθπ,CMS dependent missing mass is illustrated for the beam photon energy range from 400 MeV to 434 MeV.
The horizontal red dashed lines in the figure on the left hereby indicate the selected beam photon energy range.
The dashed red line in the figure on the right shows the corresponding energy-dependent selection criteria
whereas the black solid lines the cosθ dependent. Note that all other cuts which are presented in this chapter
are applied to these data and that the distributions with cosθπ0,CMS < 0.22 in the pπ0 analysis only contain 3
PED events whereas for cosθπ0,CMS ≥ 0.22 also 2 PED events.
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Fig. 7.10: Missing mass distribution for non-adjusted energy sums. Shown is on the left side the missing
mass distribution of one kinematic bin (Eγ = (400-434) MeV,−0.44 ≤ cosθπ+,CMS <−0.33) of the 450 MeV
edge trigger setting of the September 2015 beamtime. The similar bin is presented on the right side for the
850 MeV of the September 2015 beamtime. The black points represent the butanol distribution, the red one the
scaled carbon with helium distribution and the blue on the reconstructed hydrogen distribution.

However, this assumption can be eliminated by the fact that the additional peak is not seen as well in
the 850 MeV edge position and the MC simulations (cf. Fig. 7.14). The analysis of the coherent edge
position are done in a similar way and thus should only enhance the amount of events in a defined
beam photon energy range and not produce any coherent edge dependent background contamination.
In conclusion, a CB energy sum adjustment is mandatory and is always applied in all spectra.
In contrast to the photon energies in the reaction γ⃗ p⃗ → pπ0 , the energy of the π+ is only correct in
the range where it is not punching through the detectors (cf. Sec. 6.3.4). For energies below the punch
through energy of about 180 MeV, the missing mass cut can be applied and is compatible with the
rest mass of the neutron. Above this region, the detected energy is much lower than the actual value.
Consequently, a too low value is subtracted from the missing mass calculation and thus an additional
broad distribution towards higher missing masses occurs. This is nicely seen in Fig. 7.9. Towards
higher beam photon energies, the energy of the π+ increases and thus its probability to punch through
the detector increases. Above a beam photon energy of about 1000 MeV, all pions punch through the
detectors and thus do not show any peak in the region of the rest mass of the neutron. As opposed to
this, the missing mass distribution of the pπ0 channel always has a peak structure at the rest mass of
the proton which can be explained by the fact that photons nearly never punch through the detectors.
Finally, the cosθπ+,CMS dependence reflects the energy of the π+ as well as high energetic pions more
likely fly in forward direction. Thus, the missing mass distribution contains also a broader distribution
towards higher missing masses for higher forward angles.
Of special interest is to investigate and understand the broad distribution towards higher missing
masses. Here it is important to know if the distribution is caused by punch through pions from the
signal reaction or from other background reactions. Fig. 7.11 shows the missing mass distribution
of several simulated final states for a beam photon energy below 842 MeV and integrated over the
kinematic variable cosθπ+,CMS . Whereas the left side shows the π+ candidates in the CB which do
not punch through the detector, the right side does.
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Fig. 7.11: Missing mass distribution for simulated data and their punch through behavior. The missing
mass distributions for different simulated final states and charged particle being detected in the CB are shown.
They have been integrated over all variables and up to a beam photon energy of 842 MeV. On the left side,
charged particles that do not punch through the detector are shown whereas on the right side they do. Note the
arbitrary unit for the y-axis since different amount of generated events were used.

In the case that the particles do not punch through the detector, the simulation can nicely be used
to identify background reactions towards higher missing masses as both the nπ+π0 (green) and the
pπ+π− (red) channel show a peak like structure. As these structures are not seen in any reconstructed
hydrogen distribution, the contribution of both these channels can be neglected for the not punch
through events5. The pπ0 channel has no structure at all towards higher missing masses and thus can
not be identified. Nevertheless, a broader peak below the missing mass peak is seen which contains a
small shoulder towards lower missing masses as well.
For the punch through events, all different channels show a broad distribution with small structures
towards higher missing masses. These structures, however, are not as pronounced which makes
the selection of punch through particles more difficult. Further information about the background
contribution will be given in Sec. 7.9.2.
Finally, the missing mass distributions in Fig. 7.9 show an additional broad distribution at lower
missing masses which is mainly pronounced in the backward direction and is dominated by the carbon
contribution. As will be shown later, these can be mostly assigned to background events on the carbon
and oxygen inside the butanol with a proton in the final state. However, as carbon and oxygen are
spinless particles, these background events do not contribute and affect the results of the double
polarization observables. Even after the carbon subtraction, a small shoulder towards lower missing
masses remains. Detail studies with simulations have shown that these features can be explained by
the interaction of the π+ within the scintillator crystal. If the π+ is at rest within the crystals, the π+

can decay with a branching ratio of nearly 100% into a µ+ and a νµ . Therefore, due to the rest mass
difference of about 34 MeV [7], additional energy can be detected. To proof this assumption, the
energy balance between the generated π+ energy and its reconstructed energy was investigated (see

5Although the missing mass distribution is shown here only integrated over all the variables, the distribution was studied
as a function of the beam photon energy and the kinematic variable cosθπ+,CMS as well. Even the separation between
punch through and not punch through pions was studied with respect to the reconstructed hydrogen distribution.
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Fig. 7.12 on the right). As it turned out, the energy balance for the events belonging to the broad peak
at lower missing masses showed a deviation from zero with a peak roughly at about 20 MeV. Taking
into account that the µ+ energy does not need to be detected completely within crystals and that the
additional νµ can carry energy as well, the energy balance is a first hint for this assumption. The final
proof nevertheless is given by studying the interaction of the µ+ with MC simulation. Two MC sets
were generated as illustrated in Fig. 7.12.
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Fig. 7.12: Test of π+ decay using simulated data. The two different MC samples for the missing mass
distribution of both analyzed PED events are shown on the left side. On the right side, the corresponding energy
balance between the reconstructed and generated energy is illustrated. The first sample is given by the blue
distribution, the second one by the red one. For information about the different samples, see in the text below.

The first one includes all physical interactions for the π+, including the decay of the π+ before it
reaches the detectors and the final decay at rest. The second one disallows the decay of the π+ ,
including the decay within the crystals if the particle is at rest. As it turned out, the additional broad
distribution in the missing mass distribution (see Fig. 7.12 on the left) vanishes and thus it can be
explained by the decay of the π+ within the crystals. Tests have further shown that nearly no π+

decays before it reaches the detector. This is however expected as the mean travel path of the pion is
in the order of 7.8045 m [7].
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Fig. 7.13: Missing mass distribution for Eγ = (400-434) MeV for the pπ0 final state. The missing mass
distributions after all other cuts are shown as a function of cosθπ0,CMS for a given beam photon energy range
for the pπ0 final state. The yellow area hereby indicates the 2σ selection range. Note that the distributions with
cosθπ0,CMS < 0.22 only contain 3 PED events whereas for cosθπ0,CMS ≥ 0.22 also 2 PED events.
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Fig. 7.14: Missing mass distribution for Eγ = (400-434) MeV for the nπ+ final state. The missing mass
distributions of the 1 PED events after all other cuts are shown as a function of cosθπ+,CMS for a given beam
photon energy range for the nπ+ final state. The yellow area hereby indicates the 2σ selection range.
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Fig. 7.15: Missing mass distribution for Eγ = (400-434) MeV for the nπ+ final state. The missing mass
distributions of the 2 PED events after all other cuts are shown as a function of cosθπ+,CMS for a given beam
photon energy range for the nπ+ final state. The yellow area hereby indicates the 2σ selection range.
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7.7.3 Coplanarity

Fig. 7.16 shows on the left side the coplanarity distribution after all cuts as a function of the incoming
beam photon energy Eγ and integrated over the variable cosθπ,CMS for the butanol target. On the right
side, the same distributions are presented as a function of cosθπ,CMS and for a beam photon energy
from 400 MeV to 434 MeV. The upper row belongs to the results of the pπ0 channel whereas the
lower one to the 2 PED events of the nπ+ channel. A peak at about 180° can be seen. However, due
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Fig. 7.16: Coplanarity distribution of the butanol data as a function of the beam photon energy Eγ and
as a function of cos θπ,CMS. On the left side, the coplanarity distribution is plotted as a function of the beam
photon energy Eγ and integrated over the full angular coverage range. The 2-dimensional cut criteria limits are
determined for each beam photon energy and are indicated by the black line. On the right side, the cosθπ,CMS
dependent missing mass is illustrated for the beam photon energy range from 400 MeV to 434 MeV. The
horizontal red dashed lines in the figure on the left hereby indicate the selected beam photon energy range. The
dashed red line in the figure on the right shows the corresponding energy-dependent selection criteria whereas
the black solid lines the cosθ dependent. Note that all other cuts which are presented in this chapter are applied
to these data.

to the internal holding magnetic field of the target and thus the deflection of charged particles, the
maximum is not exactly located at 180°. Detailed studies with MC simulations, which have included
the magnet field, revealed a deflection of the actual azimuthal angle of charged particle of about 0.6°
for protons and 1° for charged pions. For further details, see App. A.2. The overall distribution is
broader at lower beam photon energies compared to higher energies. The width dependence can be
explained by the fact that the pion and the nucleon are low energetic at low beam photon energies
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and thus are creating small clusters. As a result, the resolution in φ decreases which leads to a
broader distribution. In addition, the sin θ dependence of the φ -resolution of the CB and the different
resolutions of the CB and the TAPS play an important role. Finally, multiple scattering of the proton
and the charged pion inside the target cause higher deflection angles. The inspection of Fig. 7.16 on
the right side for the pπ0 channel reveals an additional very small enhancement at about 10° and 350°
for cosθπ0,CMS > 0. It has been found that these are caused by combinatorial background where the
proton was falsely identified as a photon [14]. These events can be completely rejected in the analysis
by the selection criteria which are indicated by the black and red lines in Fig. 7.16.
The different φ -distributions for a beam photon energy from 400 MeV to 434 MeV as a function of
cosθπ,CMS after all cuts is shown in Fig. 7.17 for the pπ0 channel and in Fig. 7.18 for the nπ+ channel.
The nucleons in the butanol target carry a finite momentum and thus affect the kinematics which results
in a broader φ -distribution. This effect is bigger for reactions on bound carbon/oxygen nucleons inside
the butanol target due to their additional Fermi momentum. Consequently, the boundary conditions
are determined by fitting a Gaussian distribution to the reconstructed hydrogen distribution and by
selecting a 2σ range around the mean value. By that, a huge amount of the reaction on the bound
nucleons can be rejected. The reconstructed hydrogen distributions are again compared with MC
simulations for the signal reactions and are in very good agreement with each other. Note that for the
pπ0 channel above cosθπ0,CMS > 0.22 nearly no 3 PED events are present anymore and thus 2 PED
need to be included in the analysis.
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Fig. 7.17: Coplanarity distribution for Eγ = (400-434) MeV for the pπ0 final state. The coplanarity
distributions after all other cuts are shown as a function of cosθπ0,CMS for a given beam photon energy range
for the pπ0 final state. The yellow area hereby indicates the 2σ selection range.
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Fig. 7.18: Coplanarity distribution for Eγ = (400-434) MeV for the nπ+ final state. The coplanarity
distributions after all other cuts are shown as a function of cosθπ+,CMS for a given beam photon energy range
for the nπ+ final state. The yellow area hereby indicates the 2σ selection range.



126 Selection of the Reactions

7.7.4 Polar Angle of the Nucleon

Fig. 7.19 shows the ∆θN distribution distribution after all cuts as a function of the incoming beam
photon energy Eγ and integrated over the variable cosθπ,CMS for the butanol target on the left side.
On the right side, the same distributions are presented as a function of cosθπ,CMS and for a beam
photon energy from 400 MeV to 434 MeV. The upper row belongs to the results of the pπ0 channel
whereas the lower one to the 2 PED events of the nπ+ channel.
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Fig. 7.19: ∆θN distribution of the butanol data as a function of the beam photon energy Eγ and as a
function of cos θπ,CMS. On the left side, the ∆θN distribution is plotted as a function of the beam photon energy
Eγ and integrated over the full angular coverage range. The 2-dimensional cut criteria limits are determined
for each beam photon energy and are indicated by the black line. On the right side, the cosθπ,CMS dependent
∆θN distribution is illustrated for the beam photon energy range from 400 MeV to 434 MeV. The horizontal
red dashed lines in the figure on the left hereby indicate the selected beam photon energy range. The dashed red
line in the figure on the right shows the corresponding energy-dependent selection criteria whereas the black
solid lines the cosθ dependent. Note that all other cuts which are presented in this chapter are applied to these
data.

A deviation from 0° in the polar angular difference is seen which can be explained by the target center
position. Detail studies can be found in Sec. 8.1.2.3 and App. A.3. The importance of a 3-dimensional
selection is already visible in the selection criteria which are included in Fig. 7.19. The different ∆θN

distributions for a beam photon energy from 400 MeV to 434 MeV as a function of cosθπ,CMS after all
cuts is shown in Fig. 7.21 for the pπ0 channel and in Fig. 7.22 for the nπ+ channel. Of special interest
is the transition region between the CB and the TAPS which can be seen in the third cosθπ,CMS bin
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and in more details in Fig. 7.20 where the energy and cosθπ,CMS dependence is shown as a function
of the polar angle of the proton in the pπ0 channel6. A well defined double-peak structure is visible
which is caused by the fact that the calculated nucleon polar angle is determined within the gap region
between the CB and the TAPS whereas the true nucleon is detected to some parts in the outer rings of
the TAPS or the entrance area of the CB.
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Fig. 7.20: Polar angle of the proton in the pπ0 channel. Shown is the polar angle Θp as a function of the
beam photon energy Eγ on the left and on the right side as a function of cosθπ0,CMS for a beam photon energy
range from 400 MeV to 434 MeV.

A further source of a double peak structure is the small cluster size of the nucleons. This is even
more pronounced for the nπ+ channel as the neutron makes smaller cluster sizes compared to the
proton. The two peaks are mostly seen for events where the nucleons deposit their whole energy in
one crystal. By that, the impact point is reconstructed at the center of the crystal although the actual
impact point could be at the edges of the crystals. In addition to the double peak structure, the ∆θN

distribution shows a 3-dimensional width dependence. This can be explained by the different detector
resolution where the particles are detected. The polar angular resolution of the TAPS is better than
the CB and thus shows as well a narrower ∆θ distribution for cosθπ,CMS <−0.78. Finally, as for the
calculation of the calculated nucleon angle, the initial proton was assumed to be at rest and bound
nucleons inside the butanol target carry additional Fermi momentum, the ∆θN distribution provides a
good separation between the reaction on bound and unbound nucleons. Since the distribution can
not be described by a Gaussian distribution, the boundary conditions are taken from the confidence
interval method. By that, a huge amount of the reaction on the bound nucleons can be rejected. The
reconstructed hydrogen distributions are again compared with MC simulations for the signal reaction
and are in very good agreement with each other. Only small differences are visible between data and
MC in the third cosθπ,CMS bin. This can be explained by the tunnel region of the CB which is not
perfectly included in the simulations. In detail, material is missing in the tunnel region and thus the
amount of detected particles in this region differs between data and MC simulations. Investigations of
solving this problem are ongoing [77].

6Similar behavior is seen for the neutron in the nπ+ channel.
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Fig. 7.21: ∆θp distribution for Eγ = (400-434) MeV for the pπ0 final state. Shown are the ∆θp distributions
after all other cuts as a function of cosθπ0,CMS for a given beam photon energy range for the pπ0 final state.
The yellow area hereby indicates the 2σ selection range.
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Fig. 7.22: ∆θn distribution for Eγ = (400-434) MeV for the nπ+ final state. Shown are the ∆θn distributions
after all other cuts as a function of cosθπ+,CMS for a given beam photon energy range for the nπ+ final state.
The yellow area hereby indicates the 2σ selection range.
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7.8 Further Selection Cuts

7.8.1 Cluster Size

Whereas photons deposit their energy mostly via pair production and a cascading electromagnetic
shower, the nucleons interact with the crystals via ionization and hadronic interactions. Therefore,
the cluster sizes of photons are larger compared to the ones of nucleons and charged pions. This is
illustrated in Fig. 7.23 where the cluster sizes of the individual particles are plotted as a function of
their detector in which they have been detected.
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Fig. 7.23: Cluster sizes of different final state particles. Shown are the cluster sizes in black of the butanol
data for the different particle candidates and as a function of the detector in which they have been detected.
The upper two rows present the result for the pπ0 final state whereas the lower two ones for the nπ+ final state.
The data are compared with their corresponding signal MC in red. The minimum or maximum cluster size is
indicated by the blue line and the direction of the arrow.

Inspecting the detector dependence of the cluster sizes, the cluster sizes in the CB are in general a bit
larger than the ones in the TAPS. This can be explained by the individual CFD/LED thresholds of the
detectors. The CB had mostly LED thresholds in the region of 2 MeV and the TAPS CFD thresholds
of 5 MeV. The data are compared to simulations and are in general in good agreement with the data.
Difference between both can be traced back to a not exact matching of the CFD/LED thresholds of the
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crystal, a not perfect adjusted CB energy sum trigger and especially in the nπ+ channel a not perfect
description of the interaction of neutrons and charged pions in the crystals. Due to these problems, no
cut on the maximum cluster size was applied. Comparing the cluster sizes of both analyzed channel, a
high contribution of photons in the nπ+ final state, e.g., from the decay of the π0 of the background
channels pπ0 and nπ+π0, can be ruled out. On the other hand, to reject contributions of the nπ+

final state in the 2 PED analysis of the pπ0 channel, a minimum cluster size of two is applied for the
photon candidates.

7.8.2 Pulse-Shape Analysis (PSA)

As already described in previous chapters, the PSA technique can be used to distinguish nucleons
from photons in the TAPS. The calibration of the short gate component of the TAPS BaF2 crystals (cf.
Sec. 6.1.4) ensures that photons are located at a PSA angle of φPSA = 45° over the entire range of the
PSA radius rPSA. Therefore, the selection can be optimized by looking at the PSA technique of the
selected photon candidates which are shown in Fig. 7.24 for the butanol data.
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Fig. 7.24: Pulse-Shape-analysis (PSA) for the particle identification. Shown are the PSA spectra of the
butanol data for the different particles and different channels. The upper row illustrates the photons and protons
of the pπ0 final state whereas the lower row the once of the charged pion and the neutrons of the nπ+ final
state. The black lines indicate a selection region whereas the red once a rejection region.

In the same way, the nucleon candidate can be identified by requiring a PSA behavior which is not
compatible with the one of a photon candidate. The red areas in the corresponding PSA spectra of the
proton and the neutron hereby indicate a rejection area for the nucleon candidates as here contribution
of photons are expected. With that knowledge, not only the combinatorial background can be studied
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for the 3 PED events of the pπ0 channel but also background reactions like γ⃗ p⃗ → nπ+ in the 2 PED
analysis. Comparing all distributions, a minimum number of neutrons contaminate the PSA spectra of
the photons and vice versa. Similar argumentation holds for the combinatorial background. As no
clear structure of the proton is seen, no combinatorial background is present as well7. Nevertheless, to
select only photons in the pπ0 channel, the PSA angle is fitted with a Gaussian function as a function
of the PSA radii. The resulting 2σ ranges are indicated by the black curve and are used as a selection
criterion to reject any falsely identified particles.
For the identification of the proton it is important to note that the PSA technique can only be used
to identify proton candidates if their kinetic energy is below the punch-through region. Above the
punch-through region, as has been shown in [97, 14], the PSA band structure of protons crosses the
one of the photons and consequently a discrimination of photons and protons is not possible.
The PSA behavior of the charged pions for the 1 PED events contains two structures that are well
separated. To study the behavior of the π+, the PSA spectra was investigated with the ∆E −E plot
(see Sec. 7.9.1). Although the ∆E −E plot is only used as a cross-check, two data sets were built.
In the first one, only events within the proton band were analyzed whereas in the second one only
events in the pion band. As it turned out, the PSA spectra of the second set selected all the events
which behave similarly to the photons. On the other hand, as expected, the first set selected the proton
band structure which can be seen for the proton candidate in the pπ0 channel. Thus, to only select
the π+ candidates and reject the proton candidates, the left half of the photon band selection range is
used which is indicated by the black curve. The cut to the right side of the Gaussian fit is not used
because the pions, similar to the protons, can also punch through the detector which result in higher
pulse shape angles. In fact, simulations and the data analysis have shown that nearly all π+ of the
2 PED events in the TAPS are punch through particles that explain the straight line enhancement seen
at about an angle of 47°. Contribution of proton can be rejected here as well by the same cut as for
the 1 PED events. However, it is noteworthy that even punch through protons still might be contained
in the enhancement. Their contribution is nevertheless assumed to be rather small as protons show a
much broader enhancement compared to the pions.

7.8.3 Time-Of-Flight Analysis (TOF)

The Time-Of-Flight analysis is very useful to distinguish between massive charged particles and
photons in the TAPS. The distance of the TAPS elements to the target center of about 180 cm in
combination with a very good time resolution of the BaF2 crystals, is perfectly suited to perform a
TOF analysis. In contrast, the CB with only a distance of about 45 cm to the target center and a time
resolution, which is roughly by a factor eight worse than TAPS time resolution (cf. Sec. 6.4), does
not provide a good enough flight path distance and time resolution to distinguish between massive
charged particles and photons.

7An additional check with simulations also has proven that in less than 1% of all signal events the proton was misidentified
as a photon. Consequently, the charge information of the particles is not required for the pπ0 analysis.
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To perform the TOF analysis, the deposited energy in the TAPS is plotted as a function of the time
time-of-flight tTOF which is given by:

tTOF =
∆t
s
+

1
c
, (7.11)

where c is the speed of light, s is the flight path distance, and ∆t is the time difference between the
detected particle in the TAPS and the corresponding tagged beam photon8. Note that the ’time’-of-
flight has not the unit s but is normalized with the flight path distance which leads to the unit ns

m . This
is motivated by the fact that the flight path distance of the particles depends on their reconstructed
polar angle9. Since all time calibrations were performed such that the time difference of photons is
located at zero (cf. Sec. 6.2), the additional term 1

c ensures that photons are always located at the
same position with the correct unit.
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Fig. 7.25: Time-of-Flight Analysis (TOF) for the particle identification. Shown are the TOF analysis for the
final state particles of the different analyzed channels. The upper row shows the photon and proton candidates
in the TAPS for the pπ0 final state whereas the lower row the charged pion and neutron candidate in the TAPS
for the nπ+ final state.

Fig. 7.25 illustrates the deposited energy in the TAPS as a function of the time time-of-flight tTOF for
different kinds of particles. Whereas photons always cause a straight line at about 3.3 ns

m over the
entire deposited energy range10, charged particles, like the proton, show a clear energy dependence
due to its high rest mass. The clear correlation between the deposited energy and the time-of-flight
will be referred as the banana band in the following. With increasing kinetic energy, the time-of-flight

8The tagger provides a better time resolution than the CB.
9Higher polar angle corresponds to higher flight path distances.

10Photons always fly with the speed-of-light and thus do not show any energy dependence.
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is getting smaller. Again at a certain kinetic energy, the proton starts to punch through the detector
which leads to a deviation from the banana band and a trend towards the photon band. In contrast
to the protons, neutrons cause a relatively broad and wide region in the time-of-flight and do not
really correlate with their deposited energy. This can be explained by the fact that the neutron energy
deposition in the crystals is much more complex than of charged particles. Additional secondary
particles, which can be produced in inelastic and elastic scattering or even nuclear reactions, make it
impossible to detect the entire initial energy. Nevertheless, although a nice correlation is not seen, a
clear separation based on both analyzed channels is still possible between photons and neutrons. As
neutron nearly always show a time-of-flight bigger than 3.7 ns

m , a cut was applied in the nπ+ channel
to reject any contribution of photons in the analyzed.
Unfortunately, as has been shown already with the PSA technique, the pion rest mass of about
140 MeV is not enough to clearly separate pions from photons. Furthermore, due to the correlation of
the beam photon with the charged pion11, the random time background events can not be subtracted
from the TOF spectra at all. This time background is, due to the lack of possible angular cuts for the
1 PED events, quite well pronounced and in combination with the huge contribution of carbon any
separation cuts for pions is not feasible. Only the punch through pions of the 2 PED events show
a clear bump at its punch through energy of about 200 MeV. Nevertheless, these pions are so high
energetically that they nearly fly with speed of light and thus can not be distinguished from photons
and protons at all.
In total, the TOF analysis does not help to distinguish protons and pions, especially for the 1 PED
events of the nπ+ channel. Nevertheless, the TOF can be used to distinguish between photons and
nucleons which helps to reject any contribution of photons from the pπ0 channel in the TAPS.

7.9 Quality of Event Selection

7.9.1 ∆E −E plot analysis

As mentioned in Sec. 2.4.2, the ∆E −E plot analysis can be used to distinguish different kinds of
charged particles. For charged particles in the acceptance region of the CB, the technique makes use
of the fact that electrons, charged pions, and protons deposit a different amount of their kinetic energy
∆E in the plastic scintillators of the PID. In the TAPS acceptance region, the deposited energy in the
Veto Wall is used as a reference. The correlation with the cluster energy E is presented in Fig. 7.26 for
both acceptance regions (CB and TAPS) and both charged particle candidates. Whereas the top row
shows the figure with no applied cuts, the bottom row includes all previously mentioned cuts. Hereby,
the second row corresponds to the proton candidate in the pπ0 final state whereas the remaining two
to the charged pion candidate in the nπ+ final state.

11This explains also the reason why the TOF spectra is cut off at 8 ns because only the events in the time coincidence
time window and the sidebands are analyzed.
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Fig. 7.26: ∆E - E plots for both analyzed channels. Shown are the ∆E −E plots for both acceptance regions
(CB and TAPS) and for the different charged particles. Whereas the top row presents the case for no selected
events, the second row corresponds to the proton candidate in the pπ0 analysis. The remaining ones illustrate
the plots for the charged pion in the nπ+ analysis and for the different event patterns.
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In the upper ∆E −E plot, three different main structures can be seen and are indicated within the plot.
As protons are much more massive than electrons and charged pions, more energy is deposited in the
PID/Veto Wall. Therefore, the band structure, which starts at low energies in the main calorimeters and
high PID/Veto Wall energies, corresponds to detected protons and shows a strong energy dependence.
An additional band is visible at lower PID/Veto Wall energies and has only a small energy dependence.
This band corresponds to charged pions. It’s low deposited energy in the PID/Veto Wall in combination
with its small energy dependence can be explained by the fact that charged pions are almost always
minimal ionizing particles in the detected kinetic energy region12. Furthermore, as shown in Sec. 6.3.4,
charged pions punch through the detector at energies of about 180 MeV and thus cause an additional
enhancement in the pion band. The enhancement at very low kinetic energies and PID/Veto Wall
corresponds to electrons.
As has been already mentioned in Sec. 4.3.2, the PID was not working identically good in all
beamtimes. In addition, it has been found that the overall resolution of the PID suffered from the
internal holding magnetic field of the target. More details can be found in [125]. All the different
problems in combination with the overall bad resolution lead to the decision to only use the ∆E −E
plot as a cross-check of the quality of the selection. This is as well justified by the fact that a cut on
the ∆E −E plot requires that the ∆E −E plot behaves similarly for the butanol and carbon beamtimes.
As this is not the case, the contribution of the carbon/oxygen/helium inside the butanol is not selected
correctly which results in a wrong carbon subtraction. Nevertheless, for the proton candidate in the
pπ0 analysis, the ∆E −E plot contains only the proton band even though a charged particle was not
required which emphasizes again the good selection of the 3 PED events. For the nπ+ final state, the
charge information is used but again a cut on the spectra is not applied. At first sight, it seems that the
selection is not good enough to reject protons in the CB as a clear banana band structure of the protons
is still seen after all cuts. However, all ∆E −E plots are shown for the butanol data and integrated
over all other variables. In addition, especially the 1 PED events have a huge contribution of reactions
on the bound protons inside the butanol data. Thus, the ∆E −E spectra was carbon subtracted and
plotted as a function of the beam photon energy. The carbon subtracted ∆E −E plot for the nπ+

final state of both event pattern are given in Fig. 7.28 whereas an example for the carbon subtraction
method is presented in Fig. 7.27. The carbon subtraction was performed for each beam photon energy
bin and the carbon scaling factor was taken from the energy-dependent scaling of the missing mass
distribution for the 1 PED events and the coplanarity distribution for the 2 PED events. As can be
seen from Fig. 7.27, the whole proton band can be described by the bound components inside the
butanol target. As these are all unpolarized, they do not contribute as background contamination in
the extraction of the double polarization observables G and E. A small remnant of the proton band
in Fig. 7.28 is more likely due to a not perfect matching calibration of the butanol and carbon with
helium data. As a final step, background contamination from reactions with an identified charged pion
in the final state need to be investigated.

12Protons behave only like minimal ionizing particles at kinetic energies above 300 MeV.
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Fig. 7.27: ∆E - E projections. Shown are the y-projections for the ∆E −E plots for a beam photon energy
from 400 MeV to 434 MeV. The ∆E −E correspond to the 1 PED events of the nπ+ channel. The carbon with
helium distribution (red) was scaled to the butanol distribution (black) to obtain the reconstructed hydrogen
distribution (blue). Thereby, the beam photon energy dependent scaling factor of the dilution factor was used to
properly scale the carbon. The reconstructed hydrogen distribution is compared to simulations and is in perfect
agreement with the data.
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plots in the CB acceptance regions of the butanol data for the two different event patterns of the nπ+ final state.

7.9.2 Background Contamination of Other Reactions

A final step is to investigate the background from other reactions which can pass the selection. For
the pπ0 final state, the carbon subtracted invariant mass of the two photons is used to investigate the
amount of background in the selected range. Therefore, as a first step, the behavior of all possible
background reactions after all cuts was studied. These include the final states nπ+ , pπ+π−, nπ+π0,
pπ0π0 and pη . It has been found that the background beneath the peak of the rest mass of the neutral
pion can be modeled by a flat distribution. Thus, the distribution outside the peak range is fitted with
a linear fit as can be seen by the red dashed lines in Fig. 7.29 for an energy range from 400 MeV to
434 MeV. The resulting background contamination as a function of the beam photon energy Eγ and
the kinematic variable cosθπ0,CMS is depicted in Fig. 7.30. Overall, the background shows nearly
no energy dependence and is mostly far below 1%. Only in the high forward direction, where the
2 PED events dominate, bigger values are obtained. This can be traced down to the high amount
of electromagnetic background at invariant masses of about 50 MeV (cf. the last bin in Fig. 7.29).
Although their contribution below the peak is assumed to be small, the increase towards lower invariant
masses affect the quality of the linear fit. Thus, the high amount of background should be treated as
an upper limit for the amount of background. Furthermore, the background contamination in high
forward directions exceeds 5% in a beam photon region where the extracted polarization observables
have such a high statistical uncertainty that an exact knowledge of the amount of background is not
further studied.
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Fig. 7.30: Background contamination for the pπ0 final state. Shown is the background contamination as a
function of the beam photon energy Eγ and the kinematic variable cosθπ0,CMS .

For the nπ+ final state, the situation is a bit more complicated as no clear kinematic cut variables
can be selected to determine the amount of background. As has been discussed in Sec. 7.7.2, the
contribution of background contamination can be studied by investigating the structure of the missing
mass distribution at higher missing masses. A try to fit the reconstructed hydrogen distribution with
signal and background MC simulation however failed. This can be traced down to the not perfect
matching of the charged pion and neutron interactions between data and MC. This includes a not
perfect adjustment of the energy sum threshold, the individual crystal LED thresholds and the charge
efficiency adjustments. In addition, the physical interactions are not perfect as well, i.e. the punch
through behavior and the deposited energy at all. Nevertheless, the different missing mass distribution
could be used to support the upper limit on the amount of background in the selected data. To estimate
a value for the upper limit, the acceptance of the background MC reactions are compared to the one
of the signal MC (see Fig. 7.31). Together with the approximated magnitude of the total cross section
of the individual reactions13, the ratio of both can give a statement of the size of possible background.
As it turned out, the 2 PED events are nearly background free as the angular cuts reject most of
the background. Only the nπ+π0 final state pass these cuts and contribute above 500 MeV with an
acceptance ratio in the order of 10−3.
The 1 and 2 PED events have the strongest background contributions by the nπ+π0 final state. Whereas
below 434 MeV the 2 PED events are nearly background free, the 1 PED events have background
contributions in the region where the π+ is detected in higher backward direction (cosθπ+,CMS < -0.6).
In this kinematic region, the remaining particles either do not have enough energy to be detected or

13The total cross section is only an upper limit as the angular dependence should be taken into account as well. This is
however not possible as the angular dependence of the background reactions is not well-known.
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get lost in the transition region between the CB and the TAPS. However, the ratio of the acceptances is
still in the order of 10−3 and the total cross section of the nπ+π0 final state is in the order of only 1 µb
[126] whereas the one of the nπ+ exceeds 100 µb [75]. Thus, as the cross section of nπ+ is by a factor
of 100 bigger, the ratio with the inclusion of the cross section assumptions goes down to even 10−5

which is a clear hint to small background contamination in the selected data. Towards higher beam
photon energies, the contribution of this channel in backward direction gets even smaller and thus can
be ruled out completely. The situation is different towards higher forward angles, as the acceptance
ratio increases up to 10−2 or even higher. The total cross section for the nπ+π0 final state exceeds
20 µb at an energy of 600 MeV and has its first maximum with about 50 µb at roughly 750 MeV. Over
this whole region, the total cross section of the nπ+ final state is still in the order of 100 µb. Thus, the
cross section ratio is at least 0.5 and together with the acceptance ratio, a contribution above 5% can be
ruled out. Furthermore, nearly all pions are punch through particles in that energy region and no clear
evidence for a background contribution was seen in the missing mass distributions. Finally, the 1 PED
events in this kinematic region are not analyzed. Due to the punch through behavior of the pions, no
clear region is available for the carbon scaling and thus a proper determination of the dilution factor d
is not possible. As this is however mandatory for both double polarization observables (see Sec. 8.1),
these events are excluded from the analysis. Furthermore, this kinematic region is already covered by
the 2 PED events which have in comparison to the 1 PED events a much higher dilution factor and
thus lower systematic uncertainties as well.
The contribution of the pπ+π− channel in the analyzed regions is negligibly small in both event
patterns. First, the acceptance ratio is in the order of 10−4 or even lower. Second, the total cross
section below 434 MeV never exceeds 10 µb [127] and thus the ratio between the nπ+ and pπ+π−

final state is in the order of 10−5. The low acceptance ratio can be mainly assigned to the number of
tracks that have been seen in the MWPCs. The analysis required only one track in the MWPC which
correlates with a hit in the CB. Simulations have shown that in the energy region below 500 MeV, one
or even two additional tracks in the MWPCs were seen in more than 95% of the cases. These tracks
correspond to the remaining two charged particles of the pπ+π− channel. Thus, limiting the number
of tracks in the MWPCs to only one rejected nearly all the background from this channel. Only in
very high forward directions, where the π+ is detected in the TAPS, the acceptance ratio increases.
As the forward point is nearly completely dominated by carbon and the missing mass distribution can
also not be described by the signal MC, the last bin is rejected from the Lmax fit procedure which will
be presented in Sec. 9.2. Nevertheless, for completeness reasons, the results will also be shown for
the last bin in the forward direction.
Although the cross section of the pπ0 channel is in the same order as the nπ+ channel, the overall
ratio is in the order of 10−3 or even lower in the analyzed kinematic region. In contrast to the final
states where the π+ is detected, the quality of the background contamination of pπ0 channel can be
tested by the carbon subtracted ∆E −E plots. As no proton band is seen, the pπ0 channel with an
identified proton in the final state can be ruled out as a possible background. In addition, under the
assumption of pπ0 kinematics, the proton from the pπ0 background channel can not be above a polar
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angle of 90° in the laboratory system. Thus, protons from the pπ0 channel in backward direction can
be ruled out as a possible background source. In fact, it has been found that even a small amount
of nπ+ events showed a structure inside the proton band. Finally, the missing mass can reject all
contribution of a detected proton as the rest mass difference of about 800 MeV results in a missing
mass in the region of about 1400 MeV or even higher. The only possibility is that a photon is falsely
identified as a charged particle. To test this effect, the charge identification was not applied in the MC
simulation of the pπ0 channel and again the acceptance ratio has been compared. As the ratio was
still in the order of 10−3, the contribution of the pπ0 channel is assumed to be low as well.
Finally, simulations have shown that the p2π0 final state have a similar acceptance ratio as the pπ0

and pπ+π− final state. Together with a maximum of 10 µb in the analyzed beam photon energy
region, a significant contribution of this channel can be ruled out [126].
In total, the acceptance ratios of all these final states with respect to the signal reaction together with
the not seen clear structure in the missing mass distribution lead to the conclusion that an upper limit
of 3% of these background reactions can be assumed. The comparison of the results of the 1 PED
events with the 2 PED events in App. A.9 strengthens these assumptions as no huge deviations are seen.

In Tab. 7.1, the number of selected events within the analyzed energy- and acceptance region
after all cuts are presented for each beamtime, both radiators and for the individual event patterns. For
the pπ0 final state, 11.9×106 events are selected for the 2 PED events and 20.0×106 for the 3 PED
events. For the nπ+ final state, 4.1×106 events are selected for the 2 PED events and 37.0×106 for
the 1 PED events.

Table 7.1: Overview of the number of selected events. Shown are the number of selected events in the
butanol data for each beamtime, target, radiator type and event pattern. Note that all all cuts which have
been introduced in this chapter are applied and that only events are selected within the analyzed energy- and
acceptance region.

Beamtime Target Radiator
γ⃗ p⃗ → pπ0 γ⃗ p⃗ → nπ+

2 PED 3 PED 1 PED 2 PED

November 2013 butanol diamond 5.21×106 1.61×106 9.87×106 5.46×105

butanol Møller - - 8.94×105 3.88×104

May 2014 butanol diamond 1.28×106 8.91×105 2.74×106 3.09×105

butanol Møller - - 2.81×105 1.63×105

May 2015 butanol diamond 9.26×106 3.24×106 2.14×107 1.10×106

butanol Møller - - 6.60×106 3.00×105

September 2015 butanol diamond 1.14×107 3.77×106 2.43×107 1.22 ×106

butanol Møller - - 6.64×106 3.86×105

carbon (withHe) diamond/Møller 2.03×105 2.36×106 5.22×106 8.95×104
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Fig. 7.31: Background estimation for the nπ+ final state. Shown are the ratios of the acceptances of the
background channel to the signal reaction γ⃗ p⃗ → nπ+ on the left side for the 1 PED events and on the right side
for the 2 PED events. The red line starting at 434 MeV indicates the starting position from where on the 1 PED
events are not included in the analysis anymore.





Chapter 8

Extraction of the Polarization
Observables

As introduced in Sec. 4.3.1, the G/E measurements used a longitudinally polarized electron beam
which interacts with a diamond radiator to produce linearly and circularly polarized photons at
the same time. The differential cross section for linearly polarized photons in combination with a
longitudinally polarized target is given by:

dσ

dΩ
(Eγ ,cosθ ,ϕ) =

dσ

dΩ

∣∣∣∣
0
(Eγ ,cosθ) ·

(
1− pLΣcos2ϕ + pL pzGsin2ϕ

)
, (8.1)

whereas the one for circularly polarized photons in combination with a longitudinally polarized target
is:

dσ

dΩ
(Eγ ,cosθ) =

dσ

dΩ

∣∣∣∣
0
(Eγ ,cosθ) ·

(
1− pC pZE

)
. (8.2)

dσ

dΩ

∣∣
0 (Eγ ,cosθ) is the unpolarized differential cross section, which does not depend on the azimuthal

angular distribution, pL/C are the polarization degrees of the linearly/circularly polarized photons, pZ

is the polarization degree of the longitudinally polarized target, and ϕ is the angle between the beam
photon plane and the reaction plane. For the studies of systematic effects and detector inefficiencies,
the target polarization was measured with two polarization orientations. Thereby, p↑z indicates the
polarization vector which lies in the beam direction whereas p↓z is against it. In addition, the linearly
polarized photons were produced with two different angles ϕ0 of the beam photon plane with respect
to the laboratory system plane, namely parallel (∥) and perpendicular (⊥) (see Fig. 8.2 on the left
side). Thus, by using Eq. (8.1), in total four possible distributions are possible, which are given by1:

dσ

dΩ

∣∣∣∣L(∥/⊥)

T (↑/↓)
=

dσ

dΩ

∣∣∣∣
0
·
(

1− p∥/⊥L Σcos2(φ +ϕ0)+ p∥/⊥L p↑/↓Z Gsin2(φ +ϕ0)
)

(8.3)

1In all following equations, the dependencies of the cross-sections will be neglected.
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where ϕ0 is 45° for the parallel setting and −45° for the perpendicular setting. The angle φ thereby is
the angle between the laboratory system plane and the reaction plane. The definition of the angles are
illustrated in Fig. 8.1 As an example, Fig. 8.2 depicts on the right side normalized φ -distributions,

π

N

π

θπ

ϕπ

φπ

−ϕπ

ϕ0

Fig. 8.1: Definition of the angles for the differential cross section. The reaction frame (x, y) for the pi-
system and the laboratory frame (xlab, ylab) with their respective angles to each other are shown. In addition,
the beam photon polarization vector and its angle ϕ0 are presented. The negative value for ϕπ is selected so
that it agrees with the definition in [42] (figure adapted from [128]).

following Eq. (8.3), for the γ⃗ p⃗ → pπ0 final state in a given kinematic range. The red line indicates
thereby the beam polarization plane. The left side of the figure illustrates the orientation of ϕ0 and the
target polarization vector pZ .
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Fig. 8.2: Normalized φ -distributions for the four different settings. The left side presents coordinate sytems
for the four different configurations of the linear polarization and target polarization orientations which are
defined by Eq. (8.3). The reaction plane is hereby indicated by the blue box. On the right side, corresponding
normalized φ -distributions are shown for the pπ0 final state in the kinematic region Eγ = 400−434 MeV and
0.11 < cosθπ0,CMS ≤ 0.22. The amplitude of the cos2ϕ distribution gives access to the contribution of the
beam asymmetry ΣB, whereas the shift of this cos2ϕ modulation from the beam polarization plane (red line)
indicates the contribution of the double polarization observable G (figure on the left taken from [129]).

Taking into account the additional distribution of the circularly polarized photons, which can either be
produced in the helicity up state (p↑C) or in the down state (p↓C), the overall number of combinations
becomes eight. The helicity dependent cross-section can be split into two parts: the anti-parallel (1/2),
which is given by Eq. (8.4), and the parallel spin configuration (3/2) of the photon helicity and proton
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target spin, given by Eq. (8.5).

dσ

dΩ

∣∣∣∣1/2

=
dσ

dΩ

∣∣∣∣L(∥/⊥),H(↑/↓)

T (↓/↑)
=

dσ

dΩ

∣∣∣∣L(∥/⊥)

T (↓/↑)
+

dσ

dΩ

∣∣∣∣
0
·
(

1+ p↑/↓C p↓/↑Z E
)

(8.4)

dσ

dΩ

∣∣∣∣3/2

=
dσ

dΩ

∣∣∣∣L(∥/⊥),H(↑/↓)

T (↑/↓)
=

dσ

dΩ

∣∣∣∣L(∥/⊥)

T (↑/↓)
+

dσ

dΩ

∣∣∣∣
0
·
(

1− p↑/↓C p↑/↓Z E
)

(8.5)

Note that in Eq. (8.5) p↓Z = |p↓Z| has been assumed and note the resulting sign change in the term in front
of E. Since the A2 butanol target (see Sec. 2.3.1) consists of hydrogen, carbon, and oxygen, the overall
cross section is split into a polarizable hydrogen contribution and an unpolarizable carbon/oxygen
contribution. The combination of Eq. (8.1) and Eq. (8.2) results in the hydrogen cross section. Since
the nucleons in carbon and oxygen are spinless and thus unpolarized, the sin2ϕ modulation, and
thus G, vanishes. In addition, as no coupling of the photon helicity with the target spin is available,
the cross section shows no E contribution. Taking into account that the differential cross sections
behave almost similarly for different nuclei with increasing mass number [93], the carbon differential
cross-section, given by Eq. (8.6), can be used to describe the unpolarizable contributions.

dσ

dΩ

∣∣∣∣
C
=

dσ

dΩ

∣∣∣∣
C0

·
(

1− pLΣC cos2ϕ

)
. (8.6)

The differential cross section of the carbon and oxygen contribution is solely a cos2ϕ modulation of
the unpolarized cross section with an amplitude proportional to the beam asymmetry ΣC for bound
nucleons. Combining the unpolarized and polarized differential cross section, the overall cross section
for the butanol target results in:

dσ

dΩ

∣∣∣∣
B
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dσ

dΩ

∣∣∣∣
H
+

dσ

dΩ
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·
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·
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cos2ϕ
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=
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B0
·
(

1− pLΣB cos2ϕ +d pL pZGsin2ϕ −d pC pZE
)
.

(8.7)
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Hence, the butanol differential-cross section can be used to extract the unpolarized cross-section, the
beam asymmetry ΣB, and the double polarization observables G and E. Please note that the beam
asymmetry Σ is defined for the reaction on unbound nucleons Thus, the results of the beam asymmetry
ΣB are only considered as a cross-check and will not further be used as new input for the complete
experiment.
As a first step, the following section will introduce the prerequisites, which include the polarization
degrees of the polarized photons pL/C and the target protons pZ , and the number of polarizable protons
inside the analyzed butanol data. The latter one is referred to as the dilution factor d. Afterward,
two different methods for the extraction of the polarization observables will be presented. The latter
one is referred to as the dilution factor d. Afterward, the extraction of the polarization observables
will be performed using two different approaches. As will be described in Sec. 8.3.1, binned event
yield asymmetries are fit based on a χ2 minimization. Finally, Sec. 8.3.2 will present an unbinned
event-based maximum likelihood fit.

8.1 Dilution Factor

8.1.1 Definition

As already mentioned in the introduction of this chapter, the butanol target consists of hydrogen,
carbon and oxygen. However, for the determination of the double polarization observables G and E, a
good knowledge of the amount of reactions on unbound polarizable protons is mandatory. Within
the butanol target, the hydrogen nuclei provide the unbound protons, whereas the carbon and oxygen
nuclei provide bound protons and neutrons. The bound ones are both spinless and thus can not be
polarized. Moreover, coherent meson photoproduction off the carbon and oxygen nuclei contributes,
though with a negligible cross section compared to the incoherent processes [60]. In Eq. (8.7), the
dilution factor d has already been introduced and is given by:

d =
dσ

dΩ

∣∣
H0

dσ

dΩ

∣∣
H0 +

dσ

dΩ

∣∣
C0

=
dσ

dΩ

∣∣
B0 −

dσ

dΩ

∣∣
C0

dσ

dΩ

∣∣
B0

=
dσ

dΩ

∣∣
unbound

dσ

dΩ

∣∣
unbound +

dσ

dΩ

∣∣
bound

. (8.8)

Please note that carbon can represent the oxygen contribution, and therefore the sum of hydrogen and
carbon can describe butanol. Inspecting Eq. (8.8), the dilution factor can, therefore, be interpreted as
a probability that a beam photon initialized a reaction off an unbound polarizable proton inside the
butanol target. Up to now, the dilution factor has been written as a ratio of differential cross sections.
In general, a differential cross section can be written as:

dσ

dΩ
(Eγ ,cosθ) =

N(Eγ ,cosθ ,ϕ)

εdet(Eγ ,cosθ ,ϕ) ·A(Eγ ,cosθ ,ϕ) ·nγ(Eγ) ·nt ·Γ(M → X)
, (8.9)

where N is the event yield, εdet the detector efficiency, A the acceptance of the considered reaction, nγ

the photon flux, nt the target area density and Γ(M → X) the branching ratio of meson M to decay
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into X . As the butanol and carbon measurements were performed for the same reaction, the branching
ratio Γ(M → X) cancels out, leading with Eq. (8.8) and Eq. (8.9) to:

d =

(
NB

εdet,B·AB·nγ,B·nt,B

)
−
(

NC
εdet,C·AC·nγ,C·nt,C

)
(

NB
εdet,B·AB·nγ,B·nt,B

) =
NB −

(
εdet,B·AB·nγ,B·nt,B
εdet,C·AC·nγ,C·nt,C

)
·NC

NB
=

NB − sC ·NC

NB
(8.10)

In Eq. (8.10), the carbon scaling factor sC has been introduced which can be determined via two
independent methods. They will be presented in the following section.

8.1.2 Carbon Scaling Factor

8.1.2.1 Determination via Photon Flux Normalization

The first method is already written down in Eq. (8.10) and will be referred to as the Flux Normalization
Scaling and is given by:

sC =
εdet,B ·AB ·nγ,B ·nt,B

εdet,C ·AC ·nγ,C ·nt,C
. (8.11)

It requires an absolute normalization of the butanol and carbon measurement, including the knowledge
of the target area densities of the bound nucleons in both targets and their corresponding photon fluxes.
The target area density of the bound nucleons inside the butanol target is given by nbound

t,B = 0.5875 b−1

whereas the one of the carbon target by nt,C = 0.6798 b−1. As both targets are cooled down by
helium, the additional contribution of the flowing helium with nHe

t,B = 0.0843 b−1 needs to be taken
into account. Therefore, the ratio of the target area densities, defined in Eq. (8.11), is given by:

nt,B

nt,C
=

nbound
t,B

nt,C
=

0.5875+0.0843
0.6798+0.0843

= 0.882. (8.12)

More detailed derivations and explanations are presented in [14].
The photon flux nγ was determined by P. Pauli for all beamtimes and can be calculated by the number
of detected electrons ne(c) in the tagger channel c and their corresponding tagging efficiency εtagg(c)
via [102]:

nγ(c) = εtagg(c) ·ne(c). (8.13)

As mentioned in Sec. 4.1, the tagger hits are read out by scalers, which are not inhibited by the
experimental trigger. Thus, electrons are also counted by the scalers in the time window when
digitization is taking and no further events can be recorded. In order to account for that, additional
correction factors in the offline analysis need to be applied on the electron scalers, namely the
lifetime factors. This achieved by determining the ratio of a free-running clock and an inhibited
clock, which is halted if the data digitization is taking place. As has been discussed in [14] and [102],
different beamtimes need an additional correction factor for the lifetime since these were not recorded
correctly during the beamtimes. Consequently, this method is only used as a rough estimation of the
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systematic uncertainty of the determination of the scaling factor, which has been performed by two
A2 collaboration members [14, 102]. Comparison with the determination of the scaling factor using
the event yield method showed that the deviations between the methods are less than 3%.

8.1.2.2 Determination via Event Yields

Another method, which requires no absolute normalization, takes advantage of the additional carbon
data along with the butanol data. It was already partly introduced in Sec. 7.1. The aim is to scale the
carbon data to the reactions of the bound nucleons inside the butanol data. Therefore, a kinematic
variable distribution was selected in which the reactions off the unbound protons inside the butanol
target can nicely be separated from the bound protons. For the 3 PED events in the γ⃗ p⃗ → pπ0 analysis
and the 2 PED events in the⃗γ p⃗ → nπ+ analysis, the coplanarity distribution was selected. As the
nucleon angular information is not available for the 2 PED events in the γ⃗ p⃗ → pπ0 analysis and the 1
PED events in the γ⃗ p⃗ → nπ+ analysis, the kinematic variable of choice here is the missing mass. Since
bound protons carry additional Fermi momentum, the coplanarity and missing mass distributions for
bound protons are broader compared to the unbound ones. In Chap. 7, the selection criteria for the
coplanarity and missing mass distributions were optimized to select the reactions off the unbound
protons. Taking the extracted σ of the Gaussian fit, a 3σ anti-cut 2 around the mean value was applied
to only select the reactions off bound protons. As has been in Sec. 7.7.2, an additional problem arises
in the 1 PED events of the nπ+ channel because the selection of the reaction on the unbound protons
is more complex, especially at lower missing masses. It has been shown that simulations can explain
the shoulder towards lower missing masses but can not perfectly model the data. Furthermore, the
background from the pπ0 channel can also contribute to this region. Thus, 1 PED events need to
be selected carefully to not scale background reactions as well. In regions where a clear separation
between signal and background reactions is not 100% guaranteed, an additional systematic uncertainty
of 5% in the scaling factor is included to account for the small discrepancies between the reconstructed
hydrogen distribution and the signal MC, and the possibility of small background contamination.
Afterward, the scaling factor can be determined by matching the integral of the selected events in a
given kinematic range of the butanol data with the integral of the carbon data. The advantage of this
method compared to the Photon Flux Normalization is that it can be determined not only as a function
of the incoming beam photon energy Eγ but also as a function of the kinematic variable cosθM, CMS of
the meson M. In fact, the scaling factor should only be energy-dependent as shown in the Photon Flux
Normalization. A cosθM,CMS dependence would indicate that the product of the detector efficiency
and the reaction acceptance of the butanol and carbon target data are not similar. Therefore, in the
following section possible sources of the cosθM,CMS dependence and their impact on the acceptance
will be discussed.

2Assuming a normal Gaussian distribution for the reconstructed reactions off the unbound protons, 99.73% of all
reactions on unbound protons are rejected.
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8.1.2.3 Studies of the Acceptance and their Impact on the Scaling Factor

Three major problems have been found which can cause a difference in the acceptance, namely:

• Different PMT holes in the CB cause a change in the detector efficiency,

• Different positions of the target center change the selection criteria and thus the reaction
acceptance,

• Different trigger conditions in the data acquisition change the selection criteria and the detector
efficiency as well.

Reconstruction Holes

One problem of the individual beamtimes is the PMTs of the CB, e.g., several PMTs were dead in May
2014 and thus create holes in the CB cluster reconstruction. An overview of the φ −θ distribution
of all recorded clusters in the four analyzed beamtimes is depicted in Fig. 8.3. It is clearly visible

Fig. 8.3: Cluster map distribution in the CB. The φ −θ distribution of all recorded clusters of the different
beamtimes are shown. As can be seen, especially for the November 2013 and May 2014 beamtimes, noisy or
broken PMTs cause holes in the cluster map (figure taken from [14]).

that more holes are present in the November 2013 and May 2014 beamtime compared to the May
2015 and September 2015 beamtime, especially at higher polar angles. As the carbon measurements
were performed in September 2015, the influence of the CB holes on the acceptance is studied by



152 Extraction of the Polarization Observables

comparing the CB holes of September 2015 with the ones of May 2014. To do so, two Monte Carlo
simulation sets have been produced where one has the holes of the May 2014 and the other the ones
of the September 2015 beamtimes.

Target Center Position

In the experiment, the CB detector system is moved over the target. The aim is that the target cell
center is located exactly at the center of the CB. Unfortunately, as the CB is moved mechanically over
the target, a precision of several millimeters is only achieved. However, as the target cell length is
only 2 cm, a few millimeters deviation in the placement of the target cell already causes noticeable
changes in the kinetic variables as will be shown later. As a first estimation of the target center
position, the z-vertex reconstruction of the MWPCs can be used. Therefore, P. Pedroni from the A2
Collaboration determined the z-vertex position using only a calibration of the MWPCs relative to each
other in which the center of the second MWPC was chosen as the reference z= 0 mm position. For
November 2013 and May 2014, a value of −0.63 mm was obtained whereas for May 2015 a value
of 3.1 mm. The obtained value for September 2015, unfortunately, can not be used as reparations
between May 2015 and September 2015 were performed. Although a not perfect alignment in the
z-direction between both MWPCs can be corrected with a calibration, the overall misalignment of the
MWPCs with respect to the CB can be not be corrected to a precision of less than a few millimeters.
The overall misalignment can be traced back to the fact that the MWPCs are not mechanically fixed
by a frame inside the CB tunnel. Furthermore, a precise correction with a calibration is not possible
since the reference z= 0 mm position of the CB is not known accurately as the CB is not a perfectly
spherical ball. Nevertheless, a first conclusion from the vertex position test is that the target positions
of the November 2013 and May 2014 beamtimes are similar and that the May 2015 beamtime is
shifted by about 4 mm.
To determine the position of the target cell independently from the MWPCs, a detailed study of the
polar angular difference ∆θp = θp,calc −θp,rec between the calculated and reconstructed proton polar
angle in the reaction γ⃗ p⃗ → pπ0 is used. The calculated proton polar angle is determined from the four
momenta of the incoming beam photon, the target at rest and the photons in the final state. As the
photons are reconstructed and calibrated under the assumption that the target cell is located at the
center of the CB, a deviation from 0° in the polar angular difference indicates that the actual reaction is
produced at a different z-position inside the target cell. The position of the target cell was determined
by simulating Monte Carlo data sets with the target cell center sitting at different z-positions. It
has been found that the November 2013 and May 2014 beamtimes had the target cell located at
about 0 mm whereas the May 2015 and September 2015 beamtimes at about −3.3 mm. Fig. 8.4
shows the polar angular difference ∆θp for November 2013 (left side) and September 2015 (right
side) for the beam photon energy range from 400 MeV to 434 MeV and the kinematic variable range
−0.44 ≤cosθπ0,CMS <−0.33. The simulations for the corresponding target position of the beamtimes
is indicated by the green line whereas the one of the other in violet. It is clearly visible that both
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Fig. 8.4: ∆θp distributions of different target center positions. On the left side, the different distributions
of the November 2013 beamtime for butanol (black), scaled carbon (red), and reconstructed hydrogen (blue)
are shown for the kinematic region Eγ = (400-434) MeV and −0.44 ≤ cosθπ0,CMS <−0.33. This beamtime
corresponds to the target position center at z = 0 mm with its simulated MC indicated by the green line. The
MC simulation of the other target position center at z = −3 mm is included as the violet line. On the right side,
the same distributions are depicted for the September 2015 beamtime with its connected simulation in green
and the one of the other setting in violet.

reconstructed hydrogen distributions (blue dots) do not agree with each other and that the individual
MC simulations can nicely reproduce the distributions. In App. A.3, all butanol distributions are
scaled to each other for all cosθπ0,CMS bins for the beam photon energy range 400 MeV to 434 MeV.
Inspecting these distributions, a clear conclusion is that September 2015 and May 2015 behave
similarly and thus have the same target position with z ≈−3.3mm 3. A similar argumentation holds
for the May 2014 and November 2013 beamtime with a target center sitting at z ≈ 0mm.

Influence on the Acceptance

To study the influence of the target position and the CB holes on the acceptance 4, the May 2014
simulations have been produced at a target cell center position of 0 mm whereas the September 2015
at a position of −3 mm. Note that these simulations also have the corresponding CB holes of the
beamtimes included. Fig. 8.5 shows the ratio of the acceptance for the pπ0 final state as a function
of the beam photon energy Eγ and the kinematic variable cosθπ0,CMS on the left side, and one beam
photon energy projection on the right side. It can be seen that the wrong target position and the CB
holes of the butanol May 2014 beamtime relative to the carbon September 2015 beamtime cause a
relative change of the acceptance of up to 5%. To take this effect into account, the energy dependent
scaling factor is modified by these relative changes via:

sC(Eγ ,cosθM,CMS) = sC(Eγ) ·
εMC,0mm

εMC,−3mm
(cosθM,CMS) with M = π

0/π
+. (8.14)

3Similar behavior was observed for all beam photon energies and over the whole kinematic range.
4In the following, acceptance means the product of detection efficiency and reconstruction efficiency.
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Trigger Conditions

As has been mentioned in Sec. 4.3.1, the CB energy sum thresholds and TAPS LED1 thresholds
of all beamtimes were set to different values. Consequently, different threshold values between the
butanol and carbon data would cause different acceptances. The physical energy sum for the 3 PED
events of the γ⃗ p⃗ → pπ0 reaction starts far away from any trigger effects. The situation is different
for the 2 PED events in the forward direction5 and especially for all 1 PED/2 PED events in the nπ+

final state. To illustrate this effect, Fig. 8.6 shows a two-dimensional map of the starting position of
the energy sum for the 3 PED and 2 PED events in the pπ0 channel in the top row for the butanol
450 MeV edge position of the September 2015 beamtime. Similarly, the bottom row presents the
2 PED and 1 PED events of the nπ+ channel. Since the energy sums need to be adjusted to the
carbon with helium setting which has an energy sum trigger of about 90 MeV, it becomes clear that
the 3 PED events of the pπ0 channel are not affected by any trigger effects. The 2 PED events of the
pπ0 channel start at an energy sum of about 120 MeV and thus only minor adjustments were needed.
The situation is different for the 1 PED and 2 PED events of the nπ+ channel, especially at lower
beam photon energies Eγ . Here the energy sum already starts at about 60 MeV and thus an adjustment
of the trigger is mandatory. It is noteworthy that the energy sum of the November 2013 beamtime
starts already at 30 MeV. As has been shown in Sec. 7.2, it was nevertheless possible to adjust the
different energy sum thresholds of the individual beamtimes to each other. To estimate the remaining
uncertainty from the trigger adjustments, the energy sum distributions of the adjusted settings are
normalized to the reference setting. Afterward, the ratio of the integral of both settings is used as an
estimator of the uncertainty coming from the trigger adjustment6 Fig. 8.7 shows the case for the 1

5Note that the smaller CB energy sum in the forward direction is caused by the TAPS trigger where the CB energy sum
did not trigger.

6If the adjustment was performed and worked perfectly, both distributions should be identical and should result in a ratio
of 1.
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Fig. 8.6: Physical CB energy sum of different event patterns for both analyzed channels. The starting
points of the physical energy sums of the different event patterns are shown as a function of the beam photon
energy Eγ and the kinematic variable cosθM,CMS with M = π0/π+. The upper row shows the 2 PED and 3
PED events of the pπ0 channel whereas the lower row the 1 PED and 2 PED events of the nπ+ channel.

PED events of the nπ+ channel. Only small deviations between the ratio of the carbon with helium
and the corresponding butanol integral are seen which can be explained by an imperfect adjustment
of the energy sum triggers due to the lack of statistics. As these deviations are only on the order of
5%7 in the region where the carbon scaling is performed, an uncertainty of 5% is assumed for effects
coming from the trigger adjustment in the energy-dependent scaling factor.

8.1.3 Determination of the Dilution Factor

With the count rates of butanol NB and the scaled count rates of carbon sC ·NC , it is now possible to
determine the dilution factor as a function of the incoming beam photon energy Eγ and the kinematic
variable cosθM, CMS via:

d(Eγ ,cosθM, CMS) = 1− sC(Eγ) ·
NC(Eγ ,cosθM, CMS)

NB(Eγ ,cosθM, CMS)
. (8.15)

As already mentioned in Sec. 4.3.1, it is crucial that the determination is performed with the carbon
measurements including the helium mixture in the cryostat. An analysis by F. Afzal [14], and

7Similar results were obtained for the 2 PED events.
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confirmed in this analysis, revealed that the Fermi momentum and the final state interaction of carbon
and helium differ. Consequently, the forms of the coplanarity and the missing mass distributions
differ for carbon and helium. With that, it was shown that the carbon measurements without helium
overestimated the dilution factor by about 10-15%.
To handle the effects of different acceptances of the beamtimes, the energy-dependent scaling factor
sC(Eγ) and thus the dilution factor d(Eγ ,cosθM, CMS) were first determined for the coherent edge
setting at 850 MeV of the September 2015 beamtime. The main advantage of just taking this setting
as a reference is that it has the same trigger conditions as the carbon with helium measurement.
Furthermore, effects from an incorrect target position and reconstruction holes do not appear as the
data are taken within the same beamtime. As a next step, the obtained dilution factor can be used to
constrain the scaling factors of all other coherent edges by rewriting Eq. (8.15) to:

sC(Eγ ,cosθM, CMS) =
(
1−d(Eγ ,cosθM, CMS)

)
·

NB(Eγ ,cosθM, CMS)

NC(Eγ ,cosθM, CMS)
. (8.16)

Taking into account the uncertainties which are mentioned above, the scaling factor of the other
coherent edge settings should only vary within these uncertainties. The statistical error of the dilution
factor is determined via Gaussian error propagation and is given by:

∆dstat = sC ·

√(
∆NC

NB

)2

+

(
NC ·∆NB

N2
B

)2

. (8.17)
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As the statistical uncertainty is given by ∆N = 1√
N

and NB ≫ NC, the contribution of ∆NB to the
statistical error of the dilution can be neglected which results in the approximation:

∆dstat ≈ sC ·
(

∆NC

NB

)
. (8.18)

With that, due to the vanishing contribution of the butanol data, no correlation between the dilution
factor and the butanol data needs to be respected [60]. The systematic uncertainty of the dilution
factor is given by the systematic uncertainty of the scaling factor sC via:

∆dsyst = ∆sCsyst ·
NC

NB
=

∆sCsyst

sC
· (1−d) . (8.19)

Consequently, the systematic uncertainty of the dilution factor increases with a decreasing dilution
factor. In fact, the biggest systematic uncertainty contribution to the double polarization observables
for the 2 PED events in the γ⃗ p⃗ → pπ0 analysis and the 1 PED events in the γ⃗ p⃗ → nπ+ is dominated by
the dilution factor uncertainty. In App. A.4, the resulting dilution factors of all beamtimes and coherent
edges together with their systematic uncertainties for both analyzed channels are included. Indeed
only small deviations between the dilution factors of the individual coherent edges and beamtimes are
seen. Therefore, the systematic uncertainties are well understood. The mean dilution factors of all
coherent edges and beamtimes are illustrated as a two-dimensional map in Fig. 8.8 for both analyzed
channels and the different event types. It is clearly visible that the 3 PED events in the γ⃗ p⃗ → pπ0

analysis have a much higher dilution factor compared to the 2 PED events. This can be explained
by the non-existing angular cuts in the 2 PED events. Especially, the proton polar angular difference
cut significantly decreases the contribution of reactions off bound proton as has been discussed in
Chap. 7. In addition, the transition region between the CB and the TAPS (third cosθπ0,CMS bin)
is clearly visible as the dilution factor suddenly decreases within one bin and afterward increases
again. This can be explained by the lack of detected protons within the transition region between the
CB and TAPS. The lack of angular cuts also shows a huge effect on the dilution factor values for
the 2 and 1 PED events in the γ⃗ p⃗ → nπ+ analysis which are shown in the lower column in Fig. 8.8.
Special attention should be given to the 1 PED events in the backward direction. As can be seen, the
dilution factor here is close to zero. A possible explanation is that only events with an additional
Fermi momentum can overcome the CB energy sum trigger. In fact, simulations have shown that most
of the possible nπ+ events in this kinetic region have energies far below the adjusted energy sum of
about 90 MeV. The same argument holds for the π+ in the forward direction where they are detected
in the TAPS. The TAPS LED1 thresholds were set to 90 MeV which are as well far above the physical
energy sum of the nπ+ channel8. In addition, it is important to mention that the dilution factor for the
1 PED events can only be determined for events where the actual energy of the π+ is known. If this is
not the case, the scaling factor can not be determined accurately as the reactions on unbound protons
can not be distinguished from the bound ones. Therefore, all events with a beam photon energy above

8Note again that the G/E measurements were not optimized for the nπ+ channel.



158 Extraction of the Polarization Observables

434 MeV and towards forwarding angles are rejected within this analysis. Fortunately, the 2 PED
events can cover the lost acceptance region.
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Fig. 8.8: Dilution factor d. The mean dilution factors d for the different final states and event patterns are
shown as a function of the beam photon energy Eγ and the kinematic variable cosθπ,CMS. The upper row
corresponds to the pπ0 channel whereas the lower ones to the nπ+ channel. The white area in the 1 PED
distribution for the nπ+ channel indicates the rejected kinematic region in the analysis.

8.2 Polarization Degrees

8.2.1 Beam Polarization

8.2.1.1 Linearly Polarized Photons

The production and determination of the linearly polarized photons have been explained in detail in
Sec. 3.2.5. To ensure the optimal statistics in certain beam photon energy ranges in combination with
a high polarization degree, the linearly polarized photons have been produced at different positions
of the coherent edge. Tab. 8.1 gives an overview of the combined coherent edges for the different
beam photon energy ranges in combination with the highest achievable polarization degree. Fig. 8.9
shows an overview of the different polarization tables, starting with a coherent edge at 350 MeV and
ending with an edge at 850 MeV. Consequently, the beam asymmetry ΣB and the double polarization
observable G are extracted in the beam photon energy range from 230 MeV to 842 MeV.
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Fig. 8.9 & Table 8.1: Coherent edges for the different beam photon energy ranges. The linear polarization
degrees for different coherent edges starting at 350 MeV and ending at 850 MeV are shown on the left side.
The right side presents an overview of the combined coherent edges as a function of the beam photon energy.

Moreover, the beam polarization is split into the two diamond settings, namely parallel (∥) and
perpendicular (⊥). Since the coherent edge positions of both these settings are not always adjusted
completely at the same coherent edge position during data taking, small deviations in the polariza-
tion degree can occur. Fig. 8.10 shows the obtained polarization degrees for a coherent edge of
450 MeV for the parallel (red) and perpendicular (black) setting on the left side. On the right side,
the ratio between both settings is illustrated. As already has been stated in [104], the uncertainty in
the polarization degree increases further away from the coherent edge position as in this area the
systematic uncertainty of the fit has the biggest effect. Nevertheless, these deviations are less than 5%.
In addition, as will be shown later in Sec. 8.3, the extraction methods of the polarization observables
are able to handle the effects of the small deviations in the polarization degrees of both settings.
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Fig. 8.10: Polarization degrees for the parallel and perpendicular settings of the 450 MeV edge. The left
panel shows the obtained polarization degrees for the parallel (red) and perpendicular (black) settings whereas
the right panel presents their ratio.

The systematic error of the linear polarization degree is mainly dominated by the active edge fitting,
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which has been introduced in Sec. 3.2.5. A significant source of systematic error in the polariza-
tion degree is the production of the enhancement which is used to obtain the polarization degrees
(cf. Sec. 3.2.5). Thereby, the major source of uncertainty comes from the normalization of the
enhancement and the determination of its baseline. The baseline indicates the level where no coherent
bremsstrahlung contribution is present and thus the ratio between the distribution of the diamond and
amorphous radiator should be once. It is located between the first and second enhancement. However,
as the collimation of the photon beam was not narrow enough, the coherent contribution between
both enhancement regions could not be suppressed completely. The systematic uncertainty due to a
wrong baseline fit can be estimated with the relation between the enhancement ε and the resulting
polarization degree pL [103]:

∆pL

pL
=

1
(ε −1)

· ∆ε

ε
. (8.20)

Therefore, a larger enhancement maximum results in a lower fractional error in the polarization degree.
As the enhancement decreases with increasing coherent edge positions, the fractional error of the
polarization degree grows with the increasing coherent edge. The enhancement of the coherent edge
at 450 MeV has a maximum of 4. whereas at 850 MeV it has a maximum of 2.5. Further studies
and comparison with previous works [115] show that an upper limit of 5% can be assumed for the
enhancement uncertainty. Therefore, the fractional error of the polarization degree is in the range
from 2.5% to 5%.
The second source of systematic errors lies in the proper fitting and determination of the actual
coherent edge position. In the past, the coherent edge position in the active determination of the
polarization degree was performed by fitting a Gaussian function with a baseline close to the falling
edge of the coherent edge. Afterward, the derivation of the Gaussian function was calculated and its
maximum position was chosen to be the coherent edge position. To ensure that the fit is performed
close to the falling edge, a starting point for each coherent edge setting was defined in a config file.
Starting from there, the bin content with the highest count rate was chosen as the starting point of the
fitting routine and the endpoint of the fit was set at roughly the starting point plus 40 MeV. A drawback
of this method is finding the correct starting point of the fit. Missing or noisy channels can artificially
select a wrong starting point of the fitting routine and thus often cause an incorrect determination of
the coherent edge position. Therefore, within the thesis, a new fitting routine was developed with
collaborators in Bonn. Under perfect conditions, the enhancement can be approximated by a linearly
increasing function with a sharp discontinuity at the coherent edge position d and afterward a flat
distribution. Therefore, the function is given by:

f (x) =

a+b · x if x < d

c if x ≥ d.
(8.21)

However, as experimental aspects like beam divergence and multiple scattering need to be taken into
account, the function is smeared out. This smearing can be respected by convoluting the linear function
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Fig. 8.11: Stability check of the determination of the coherent edge position. The left side shows the fitted
coherent edge position as a function of the scaler reads of a run. The middle represents the corresponding
enhancement as a function of the scaler read whereas the right side illustrates one projection together with the
fit function h(x). The plots are represented for a run with a coherent edge setting at 450 MeV.

with a gaussian function g(x) and solving the convolution h(x) = ( f ∗g)(x) with MATHEMATICA
[130]. Compared to the previous fitting routine, this method has two major advantages. First of all,
the new routine is much faster in the fitting because the parameter d directly gives the coherent edge
position without searching for the largest slope of the Gaussian function. Most importantly, however,
the linear part of the new fitting routine stabilizes the fit if statistical fluctuations in the enhancement
spectrum would set a wrong starting position for the previous fit routine.
To ensure the stability of the fitting routine for each run, a script was written. It creates three histograms
as can be seen in Fig. 8.11. The left one depicts the fitted edge position as a function of the scaler
read of a run whereas the right one illustrates the non-normalized enhancement for one scalar read
together with its fitted edge position. From the inspection of the figure, it becomes directly visible
how important the active fitting routine is. For the upper row, the coherent edge position suddenly
jumped from roughly 452 MeV to 457 MeV. To ensure that this jump is not caused by a wrong fit,
the middle panel is included in the check routine as a jump in the enhancement distribution is seen.
This can be explained by the fact that shift members were able to nudge and readjust the coherent
edge within a run. Although this was not desired, it was sometimes not avoidable. Another possible
explanation could be sudden jumps in the beam position. Nevertheless, in most cases, the coherent
edge position was very stable and oscillated only within one tagger channel. The tagger channels
hereby are indicated by the horizontal lines. To estimate an upper limit of the contribution of the
fitting routine to the overall systematic error, the enhancements were artificially shifted from their
fitted position by ± 2 MeV and the polarization degrees were extracted. An example can be seen in
Fig. 8.12 on the left where the black line indicates the fitted coherent edge position and the red and
blue lines the distribution where the position was shifted by ± 2 MeV. On the right side, the fraction
between the non-shifted polarization degrees and the shifted one is depicted. A conclusion of the
figure is that the data should only be analyzed below the coherent edge position as the fractional error
increases dramatically due to the large change in the absolute polarization degree. Therefore, only
events within the yellow region are analyzed. In addition, the figure reveals that an uncertainty in the
fitting of the edge position by ± 2 MeV is in the order of about 2%. Similar results were obtained
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Fig. 8.12: Systematic uncertainty test due to a shift of the coherent edge. The black line indicates the fitted
coherent edge distribution and the red and blue lines the distributions where the edge position was shifted by
± 2 MeV. On the right side, the fraction between the non-shifted polarization degrees and the shifted one is
depicted. The yellow region depicts the energy range in which the polarization observables are extracted. The
upper row shows the case for the coherent edge position at 450 MeV while the lower depicts the one for the
edge position at 650 MeV.

for other coherent edge positions which can be found in App. A.5. As the actual oscillation of the
final fit and the difference in both fitting models is mostly only in the order of 1 to 2 MeV, an upper
limit of 2% is assumed for the systematic uncertainty coming from the determination of the edge
position in data. These upper limits will later be strengthened by a comparison of the results of the
beam asymmetry ΣB for different coherent edge fit positions within a single coherent edge setting (cf.
App. A.5).
Combining this uncertainty in quadrature with the uncertainty mentioned above, an overall uncertainty
of about 3% is achieved for the 450 MeV coherent edge which increases to 5% for the 850 MeV
coherent edge.

8.2.1.2 Circularly Polarized Photons

In Sec. 3.3, the determination of the circular polarization degree was introduced. After each tagging
efficiency measurement in the individual beamtimes, Mott measurements were performed by the
MAMI group to determine the polarization degree of the electrons. An overview of the measured
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values as a function of the run number and the beamtimes is given in Fig. 8.13. These values are
used to determine a linear interpolation for the extraction of the electron polarization as a function
of the run number. In combination with the incoming electron energy Ee and Eq. (3.15), the circular
polarization degree for each event can be determined. The overall systematic uncertainty for the
circular polarization degree is 2.7%. Further details can be found in references [84] and [106].
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Fig. 8.13: Electron polarization degree as a function of the run number of each bean time. The Mott
measurements of the MAMI group for the individual beamtimes are shown in blue. In addition, a linear
interpolation between the points is performed and the resulting fit results are given (figure taken from [14]).

8.2.2 Target Polarization

In Sec. 2.3.1, the procedure for the determining target polarization has been explained. The target
polarization was measured at the beginning and at the end of a data taking period using the NMR
technique. Thereby, a data taking period can either be a repolarization of the target, a change
of the polarization orientation9 or a new measurement of the polarization degree. Afterward, the
initial polarization degrees pi

Z and the final polarization degrees p f
Z can be used to determine the

relaxation time ∆τ . An overview of the individual polarization degrees and relaxation times of the
four beamtimes is given in Tab. 8.2. Special attention needs to be paid to the smaller relaxation times

9Indicated in Tab. 8.2 by the sign change.
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Table 8.2: Overview of the main parameters for the determination of the target polarization run by run.
The initial target polarization measurements pi

Z and final target polarization values pi
Z and their corresponding

relaxation times ∆τ obtained by the A2 target group are shown. Furthermore, the run number of the run directly
after the polarization measurements is given. Note that a repolarization of the target was not performed each
time between a NMR measurement. The smaller relaxation times of the May 2015 beamtime can be explained
by a small helium leak which caused a sub-optimal cooling of the target.

Beamtime Run number pi
Z [%] p f

Z [%] ∆τ [h]
November 2013 320 63.00 59.25 3707

860 -64.69 -53.14 1223
May 2014 4181 -62.90 53.14 1082
May 2015 8607 70.50 66.40 472

8642 66.40 52.75 307
8790 64.20 54.70 699
9030 66.10 58.30 548
9098 -70.50 -66.90 995
9178 -66.90 -65.44 974

September 2015 11159 -84.90 -81.65 1038
11203 -80.50 -73.90 1038
11390 87.15 79.02 1736

of the May 2015 beamtime compared to the others. This can be explained by a helium leak in the
refrigerator system which caused a sub-optimal cooling of the target cell and consequently smaller
relaxation times. With the values obtained in Tab. 8.2, and assuming an exponential behavior between
the data taking periods, the target polarization degree of each run can be calculated via:

pZ(t) = pi
Z · exp(−t/∆τ), (8.22)

where t is the time that has passed from the beginning of the data taking period to the start of the
considered run. The resulting target polarization degrees as a function of the run number and their
corresponding beamtime are shown in Fig. 8.14. As already mentioned in Sec. 4.3.2, in all beamtimes
except September 2015 the target polarization degree was not measured correctly. The problem was
detected in an offline analysis performed by F. Afzal in which the double polarization observable E
was extracted in the γ⃗ p⃗ → pπ0 and γ⃗ p⃗ → pη final state [14]. Two major observations in the results
suggest a problem with the target polarization, namely:

• a large discrepancy between the extracted double polarization observable E and the PWA
solutions in the ∆(1232)3/2+(P33) -region for the reaction γ⃗ p⃗ → pπ0 (Eγ ≈ 320 MeV to
360 MeV),

• a value for E above 1 for the γ⃗ p⃗ → pη final state in the η photoproduction threshold region
(Eγ ≈ 700 MeV to 900 MeV).

First of all, the double polarization observable E has a large amplitude in the ∆(1232)3/2+(P33) region
for the γ⃗ p⃗ → pπ0 final state and the resonance is quite well understood from the different PWA groups.
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Fig. 8.14: Target polarization degree as a function of the run number of each bean time. By using the
values in Tab. 8.2 in combination with Eq. (8.22), the target polarization degree values are obtained and are
shown in black. The corrected target polarization values (see text) are depicted by the red points. In addition,
the coherent edge settings are included by the vertical, dashed lines.

Second, from theory it is well known that the observable E for the γ⃗ p⃗ → pη final state in the η

photoproduction threshold region is 1 and should not exceed 110. Inspecting Eq. (8.7), the double
polarization observable E depends on the dilution factor d, the circular polarization degree of the
photon pC and the polarization degree of the target pZ . Each contribution will be discussed shortly
within this thesis. For more details see [14].

Dilution factor Detailed studies were performed by F. Afzal and within this thesis to show that
the dilution factor is well understood. An independent analysis was performed by Prof. P.
Pedroni of the A2 collaboration. The difference of the helicity dependent cross sections
∆σ = σ3/2 −σ1/2 was extracted for the November 2013 beamtime and compared to recent
GDH data (see Fig. 8.15). This method is independent of the dilution factor and needs similar
target polarization correction factors as have been found in [14].

Circular polarization degree of the photons The circular polarization degree is well understood
from QED calculations. The systematic uncertainties of the polarization degree of the incoming

10The dominant resonance contribution near threshold comes from the N(1535)1/2−(S11) resonance. From the definition
of E (cf. Sec. 8.4), it follows that the observable E must be 1.
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Fig. 8.15: Helicity dependent cross section ∆σ = σ3/2 −σ1/2. Shown is the difference of the helicity depen-
dent cross section ∆σ = σ3/2 −σ1/2 as a function of the beam photon energy. The blue data points indicate
the results for the pπ0 channel of the November 2013 beamtime. They are compared to existing GDH data
[131]. The black line shows the PWA solution of MAID 2007. The left side presents the case without any target
correction factor whereas the right side includes a target correction factor of 1.25 (figure taken from [14]).

electrons are in the order of 3%, whereas the uncertainties of the incoming electron energy and
the tagged photon energy can be neglected in the calculation. The only remaining concern has
been that the linear polarization degree of the photons can affect the circular polarization degree.
Fortunately, data were taken with a Møller radiator, where only circular polarized photons are
produced. A study has proven that the polarizations do not affect each other [14].

Polarization degree of the target The only remaining source can be the target polarization degree.
As briefly mentioned in Sec. 4.3.2, the A2 target group has already proven that the target
polarization degree was not determined correctly for all beamtimes before September 2015.
Due to an ice layer on the outer NMR coil of the target cell, the unpolarized background protons
in the ice influenced the determination of the polarization inside the butanol target and resulted
in a too low polarization degree [88]. To solve this problem, in September 2015 the outer
NMR coil was replaced with an inner NMR coil. Note that September 2015 does not need any
correction factors for the target polarization degree. As a final cross-check, it is also important
to mention that all the results presented in this thesis, including G which is also sensitive to
the target polarization degree, include the correction factors which have been found in [14].
Especially, the double polarization observable G in the nπ+ channel is so large that the target
factors can be seen there as well (cf. Sec. 8.3.6). For a further cross-check of the analysis
performed in [14], the double polarization observable E has been extracted in an independent
analysis within this thesis for the reactions γ⃗ p⃗ → pπ0 and γ⃗ p⃗ → nπ+ . As will be shown in
Sec. 9.1.3, recent data for the observable E have been published by the CLAS collaboration [68].
These data are perfectly suited to be compared with the results obtained within this analysis.
Note that here target correction factors were also needed to match both data sets.
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To determine the correction factors, the E results of the individual beamtimes were normalized by the
unaffected E results of the September 2015 beamtime. Afterwards, each point is filled in a histogram.
A Gaussian fit to the distribution finally gives a mean value for the correction factors. The correction
factors were determined for the pπ0 and pη channel by F. Afzal and are summarized in Tab. 8.3 and
are illustrated in Fig. 8.16 in the upper and middle row [14].
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Fig. 8.16: Target correction factors obtained by the double polarization observable E. The ratios of the
extracted polarization observable values of the November 2013, May 2014 and May 2015 beamtimes are
shown with respect to the September 2015 beamtime. The upper row presents the results from the pπ0 channel
whereas the middle row for the pη . Both are determined within the thesis of F. Afzal [14]. The lower row
depicts the results for the nπ+ channel which have been determined within this thesis. The black gaussian
functions are used to determine the correction factors. The red line in the lower column indicates the position
of the correction factors which have been determined within the thesis of F. Afzal [14].

The histograms and the corresponding correction factors for the nπ+ final state are illustrated for the
2 PED events in the lower row in Fig. 8.16. Thereby, the correction factors were only determined for
the 2 PED events because the contribution of the systematic uncertainty, coming from the dilution
factor, is negligible in this case. Inspecting Tab. 8.3 and Fig. 8.16, it can be concluded that these
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Table 8.3: Overview of the target polarization correction factors. The obtained correction factors for the
individual final states and beamtimes are shown. The values for the pπ0 and pη channel were taken from [14] .

Channel
Beamtime

November 2013 May 2014 May 2015

pπ0 1.27±0.03 1.40±0.03 1.15±0.02
pη 1.30±0.05 1.39±0.04 1.17±0.03
nπ+ 1.28±0.05 1.40±0.04 1.17±0.03

correction factors are, within their statistical uncertainties, independent of the analyzed channel11

which emphasizes again the incorrect determination of the target polarization degree.

8.3 Beam Asymmetry ΣB and Double Polarization Observable G

To extract the contribution of the beam asymmetry ΣB and the double polarization observable G from
the selected data, a detailed inspection of Eq. (8.4) and Eq. (8.5) is mandatory. As mentioned in the
introduction of the chapter, the helicity dependent cross section cause a change in the sign in the
contribution of the double polarization observable E. Thus, the summation over both helicity states
for both target settings should cancel the contribution of E, as can be seen in Eq. (8.23).

dσ

dΩ

∣∣∣∣H↑

T↑
+
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dσ
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· (2− . . .+d p↑C p↓ZE −d p↓C p↓ZE) !

=
dσ

dΩ
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0
· (2− . . .) (8.23)

For a better overview within the equations, the contribution terms of the linear polarization degree of
the photons are marked with dots.
The inspection of Eq. (8.23) shows that the circular polarization degrees of the photons need to be
similar in both helicity states. In that case, the contribution of the double polarization observable
E vanishes. The agreement of the electron polarization degree in both helicity states can be used
as a simple cross-check since the circular polarization degree of the photons is determined with the
incoming electron polarization degree. The MAMI accelerator group provides this information, and
the electron polarization degree in both helicity states agrees within 3%. Consequently, p↑C = p↓C is a
very good approximation. In addition, it needs to be shown that the helicity of the electron spin was
switched with a frequency of 1 Hz within a run. Otherwise, an artificial count rate asymmetry would
be produced. Each individual run was tested if the spin-flip between the helicity states H ↑ and H ↓
took place. As illustrated in Fig. 8.17, the helicity flip was not working for recent runs, and thus they
need to be rejected from the complete analysis. Therefore, after summation over both helicity states,

11Since the target correction factor is a global correction, it is also expected to see no dependency on the analyzed reaction
channel.
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the differential cross section is given by:

dσ

dΩ

∣∣∣∣L(∥/⊥)

T (↑/↓)
=

dσ

dΩ

∣∣∣∣
B0
·
(

1− p∥/⊥L ΣB cos2(φ +ϕ0)+d p∥/⊥L p↑/↓Z Gsin2(φ +ϕ0)
)
. (8.24)

Based on Eq. (8.24), different methods for the extraction of ΣB and G will be presented in the following
sections.
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Fig. 8.17: Ratio of the helicity states. The ratios of the helicity states are shown as a function of the run
number of each run. It is clearly visible that the ratio is close to 1 with a fluctuation of only 0.01. In addition,
runs with no helicity flip can be identified as their ratio is zero.

8.3.1 Determination using a Binned Event Yield Asymmetries

One method for the extraction of the polarization observables is to make use of the orthogonality of
the parallel and perpendicular setting of the beam polarization plane in combination with the target
polarization direction in and against the beam direction. With that, changes in the sign are produced
in the sin2φ and cos2φ modulations of the cross section, which makes it possible to combine the
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settings in such a way that only one modulation is left. The following four settings are defined as:
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with ϕ∥ = φ +ϕ0, ϕ⊥ = ϕ∥−90°, and p↓Z = |p↓Z|.
As already mentioned in the introduction of this chapter, the different cross sections can be replaced
by a normalized event yield. Thereby, each cross section needs to have a similar acceptance of the
analyzed reaction and detector efficiency. Within one target setting, data taking has been switched
with a constant frequency between the parallel and perpendicular beam polarization plane. Thus, if the
detector or reaction efficiency has changed, both settings would be affected in the same way. Between
both target settings, a change in the acceptance or efficiency would cause bigger problems in building
the asymmetry. However, a detailed study of the detector performance within a beamtime showed no
evidence for a change. Thus, within a beamtime, the product of the detector and the reconstruction
efficiency is assumed to be similar for all settings.
The product of both efficiencies, defined as the acceptance of the reaction, is unknown but can be
modeled by a Fourier decomposition via:

ε(φ) =
1

εdet(φ) ·A(φ)
= 1+

∞

∑
i=1

si sin(iφ)+ ci cos(iφ). (8.29)

The normalization factor N0 of each setting is then given by the inverse of the integral of each
setting. As an example, the calculation for the setting, following Eq. (8.25), is presented. Using the
orthogonality of the sin and cos functions, only the coefficients s2 and c2 from Eq. (8.29) contribute
to the normalization. Thus, the integral of Eq. (8.25) is given by:
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= 2π ·a · (1+ fcorr) (8.30)
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where a includes the φ -independent contributions, namely the target area density nB, the photon flux
nγ , and the event count rates N (cf. Eq. (8.9)). Rewriting Eq. (8.30) finally gives the normalization:

N0 =
1

2π ·a
=

(1+ fcorr)
π∫

−π

dσ

dΩ

∣∣↑
∥ dφ

. (8.31)

As will be shown later, the mean value of the coefficients s2 is −0.012×10−2 and c2 has a value of
−0.046×10−2 (cf. Fig. 8.32). To give an upper limit for the correction factors, the highest possible
values for the contributing parameters is assumed, leading to:

fcorr ≤+0.75 ·(±1) ·(−0.012×10−2)+1 ·0.75 ·0.85 ·(±1) ·(−0.046×10−2)≈∓3.810−3. (8.32)

Thus the correction factor fcorr in Eq. (8.31) can be neglected as it is in the order of 10−3. Therefore,
the normalization of each setting is finally determined by the inverse of the integral over φ of each
setting by what the target area density nB, the photon flux nγ , and the event count rates N are taken
into account (cf. Eq. (8.9)).
A further problem to investigate is the polarization degree of the individual settings. As the beam
polarization plane was constantly switched, the target polarization degree can be assumed to be
independent of the beam polarization plane. Under perfect conditions, the absolute values of the target
polarization in and against the beam direction should be similar as well. However, as has been shown
in Sec. 8.2.2, the butanol target was not polarized back to similar polarization degrees. Moreover,
the data taking after the repolarization was not always started with the same coherent edge position.
Combining both these facts, a relative deviation of up to 10% in the polarization degree between both
target settings is present.
Concerning the beam polarization settings, Sec. 8.2.1.1 has proven that the coherent edge positions of
both settings were not always sitting perfectly at the same position. Already a shift of only 2 MeV,
cause a relative difference of about 2-3%. Therefore, the difference between both these polarizations
needs to be respected as well.
To compensate for all these effects, a polarized weighted asymmetry is needed which is achieved by
normalizing the individual settings by their polarization degrees and integrals. In the following, a
detailed calculation of the polarized weighted asymmetries will be presented.

8.3.1.1 Artificial Asymmetries

As the polarization observables are extracted through the analysis of the different φ -distributions, it is
crucial that the distributions are not affected by artificial asymmetries. These artificial asymmetries are
caused by inefficiencies in the detector system and reaction inefficiencies of the desired reaction and
can be studied by the unpolarized cross section dσ

dΩ

∣∣
0 which includes the acceptance ε (cf. Eq. (8.29)).

Inspecting Eqs. 8.25-8.28, the sum of all settings should cancel all contributions of the polarization
observables and only the acceptance ε should remain. However, this is only the case if all polarization
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degree values are the same. To ensure that the normalized event yields are independent of their
polarization degree values, the settings are divided by the product of their beam and target polarization
value.
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(8.33)
Therefore, the acceptance ε is given by:

ε =

 N↑
∥

p∥L p↑Z
+

N↓
∥

p∥L p↓Z
+

N↑
⊥
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1
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+

1

p∥L p↓Z
+

1

p⊥L p↑Z
+

1

p⊥L p↓Z

)−1

. (8.34)

8.3.1.2 Beam Asymmetry ΣB

Inspecting Eqs. 8.25-8.28, it can be directly seen that the summation over both target settings cancels
the contribution of the double polarization observable G. To take into account the effect of the different
target polarization degrees, the settings are divided by their individual target polarization degrees,
resulting in the following conditions for both diamond orientations:

N∥ :=
N↑
∥

p↑Z
+

N↓
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p↓Z
= ε ·

[
1
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1

p↓Z
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)
, (8.35)
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p↓Z
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]
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(
1

p↑Z
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1
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1+ p⊥L ΣB cos2ϕ∥

)
. (8.36)

As a next step, Eq. (8.36) will be subtracted from Eq. (8.35) and divided by the normalized and polar-
ized weighted acceptance ε , given by Eq. (8.34), and the target polarization degrees. Therefore, the
beam asymmetry can be extracted by the amplitude of a cos2φ dependent φ -asymmetry distribution
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which is created via:

A∗
ΣB
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N⊥−N∥

ε ·
(

1
p↑Z
+ 1

p↓Z

) =
(

p⊥L + p∥L
)

ΣB cos2ϕ∥

→ AΣB :=
A∗

ΣB

p⊥L + p∥L
= ΣB cos2ϕ∥. (8.37)

8.3.1.3 Double Polarization Observable G

For the extraction of the double polarization observable G, the following asymmetries need to be built: N↑
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(8.38)

Rewriting Eq. (8.38) and including Eq. (8.37), the final asymmetry for the extraction of G is given by:
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→ AG :=
A∗

G
d

= Gsin2ϕ∥. (8.39)

Thus, the double polarization observable G can be extracted by the amplitude of a sin2ϕ∥ dependent
φ -asymmetry distribution which is created via Eq. (8.39).

8.3.1.4 Determination of the Beam Polarization Offset Angle ϕ0

Within this thesis, two possible ways for the determination of the offset angle ϕ0 were studied. It
should be noted that the parallel and perpendicular orientation of the diamond crystal is perfectly
orthogonal to each other because the lattice of a diamond has a four-fold symmetry. Thereby, the
parallel setting uses the orthogonal set of planes from the perpendicular setting. Consequently, it is
sufficient to measure the beam polarization offset angle ϕ0 for only one setting and also independent
from the coherent edge position [132]. The first determination makes use of the carbon measurements
performed in November 2013 and September 2015. As mentioned in the introduction of this chapter,
the carbon angular distribution shows no contribution of the double polarization observables G and E.
Therefore, the cross section is only given by Eq. (8.6). By building an asymmetry, based on Eq. (8.37),
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the ϕ0 offset angle can be treated as a free parameter in the fit. The second method is to determine the
offset angle directly from the butanol data using the beam asymmetry which is given by Eq. (8.37).
The resulting asymmetries are illustrated in Fig. 8.18.
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Fig. 8.18: Asymmetries for the determination of the beam polarization offset angle ϕ0. Two asymmetries
are shown which are determined via Eq. (8.37) and integrated over all kinematic variables. On the left side, the
asymmetry for the September 2015 butanol data of the 450 MeV edge is shown whereas on the right side the
one for the September 2015 carbon with helium data. Both methods result in a fitted offset angle ϕ0 of about
44.24°.

Both methods result in a similar offset angle of about 44.24°. A value of 44.3° was also reported for
the same data set in [104] and for a different data set a value was estimated to be 44.15° [115]. As all
these values perfectly agree with each other, a strong conclusion is that the offset angle is determined
accurately. The importance of the correct determination of the offset angle becomes clear in the
analysis of data sets with only one target polarization orientation. In that case, the determination of
the double polarization G without the contribution of the beam asymmetry ΣB becomes impossible.
Whereas the amplitude of the cos2ϕ∥ distribution gives access to the contribution of the beam
asymmetry ΣB, the shift of this cos2ϕ∥ modulation from the beam polarization plane, which is given
by the offset angle, indicates the contribution of the double polarization observable G. In case the
beam polarization plane is not known accurately, it is not clear if the shift is caused by the contribution
of the double polarization observable G or not. Especially for the May 2014 beamtime an accurate
determination of the offset angle was not possible. In addition, the interaction point of the beam
spot and the diamond crystal was sitting at the corner of the crystal and thus caused high instabilities
in the correct adjustment of the coherent edge position. To test the influence of the offset angle
on the extracted polarization observable G, the determined offset angle was varied by ±1° and the
observable were determined. Fig. 8.19 shows in the top row the G results for the May 2015 beamtime
for the coherent edge at 750 MeV and a beam photon energy Eγ = (706−740) MeV while the second
row presents the results for the May 2014 beamtime for the coherent edge at 850 MeV and a beam
photon energy Eγ = (774−808) MeV. For the May 2015 beamtime where both target polarization
orientations are available, the results have a relative change in the order of 2%. Only the χ2/ndf
got worse due to a not perfect sin2ϕ∥ modulation anymore. The situation was different for the May
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2014 beamtime. As G can not be determined by the amplitude of the sin2ϕ∥ modulation, the relative
changes between the three offset angle setting were huge. Thus, it has been decided to reject the May
2014 beamtime for the extraction of the double polarization observable G.
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Fig. 8.19: Systematic uncertainty test due to a shift of beam polarization offset angle. The black points
indicate the results for the double polarization observable G which have been determined with the extracted
beam offset angle. The green and red points correspond to the results where the offset angle was shifted by
± 1°, respectively. The first row corresponds to the results of the May 2015 beamtime for the coherent edge at
750 MeV and a beam photon energy Eγ = (706−740) MeV while the second row to the May 2014 beamtime
for the coherent edge at 750 MeV and a beam photon energy Eγ = (774−808) MeV.

8.3.2 Determination using an Unbinned Maximum Likelihood Fit

For the determination of the statistical error, the binned event yield method assumes a Gaussian error
distribution. However, the underlying distribution of the data follows a Poisson distribution, which
segues, according to the central limit theorem, into a Gaussian distribution for only high data samples
(n → ∞). Especially for higher beam photon energies Eγ , the data sample in a given (Eγ ,cosθ ,ϕ) bin
does not fulfill this condition and thus the binned event yield method does not determine the correct
statistical errors. In addition, the binned event yield method uses weighted averaged polarization
degrees for the beam and target. In combination with the differences in the polarization degrees of
each setting, one additional uncertainty is included in the extraction. Finally, due to the binning of the
azimuthal angle φ , additional information gets lost. To avoid these problems, an unbinned maximum
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likelihood fit was performed in addition to the binned method. Therefore, in the following section, the
basic idea and the implementation of the unbinned maximum likelihood fit will be presented.

8.3.2.1 Definition of the Likelihood Function

The probability of observing an event i at a given value x is given by a probability density function
(PDF) F(x; p) with p⃗ being the model/theory parameters. The likelihood L (p⃗) is the product of the
values of F(x; p⃗) evaluated at the measured values xi of the observables p⃗ :

L (p⃗) =
N

∏
i=1

F(xi; p⃗). (8.40)

As the values of L (p⃗) are very small, the best values for the observables p⃗ for a data set consisting of
N events with given values xi are determined by minimizing the function

− ln(L (p⃗)) =−
N

∑
i=1

ln(F(xi; p⃗)). (8.41)

In case of high statistics, the likelihood L is a Gaussian function of the parameters p⃗ and therefore
the − ln(L ) can be approximated by a parabolic function. A good estimate of the errors for a 1σ

confidence interval are those values for which the ln(L ) changes by 0.5 from its minimum value:

ln(L )<− ln(L )min +0.5. (8.42)

The interval can be calculated with the second derivative at the minimum. Thus, the main advantage
of this method is the possibility to have also asymmetric errors which are of special interest at low
statistics. For this work, the theory/model parameters p⃗ are the beam asymmetry ΣB and the double
polarization observable G. They are extracted through studying the azimuthal angular distribution of
the reconstructed pion as a function of the beam photon energy Eγ and cosθCMS. Thus, the measured
variable x is in the following the azimuthal angle φ . As shown previously, the distribution of a given
event is given by the cross sections defined in Eq. (8.25)-(8.28). The normalized PDF for a given
event is therefore:

FL(∥/⊥)
T (↑/↓) (φ ;ΣB,G) =

1
2π

(
1− p∥/⊥L ΣB cos2(φ +ϕ0)+d p∥/⊥L p↑/↓Z Gsin2(φ +ϕ0)

)
. (8.43)

Thereby, the factor 1
2π

is the result of the normalization of the function in the brackets. Moreover, in
this PDF, it has been assumed that the unpolarized cross section component has no φ -dependence
which corresponds to a flat detector and reconstruction efficiency. As already shown in the Sec. 8.1.2.3,
this is not the case and the overall acceptance can be modeled by the Fourier series which is given
by Eq. 8.29. Although the Fourier series is truncated at four, the truncated series was able to model
any simulated acceptances as will be shown later in this section and as well in the references [14]
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and [60]. Since the overall acceptance is now φ -dependent, the normalization of the PDF is more
complicated and is given for the four different settings by:

F̃↑
∥ (φ ; p⃗) := F1 =

F↑
∥ (φ ; p⃗) · ε(φ)

2π +0.5 ·π ·
(

p∥LΣBs2 +d p∥L p↑ZGc2

)
F̃↑
⊥(φ ; p⃗) := F2 =

F↑
⊥(φ ; p⃗) · ε(φ)

2π +0.5 ·π ·
(
−p⊥L ΣBs2 −d p⊥L p↑ZGc2

)
F̃↓
∥ (φ ; p⃗) := F3 =

F↓
∥ (φ ; p⃗) · ε(φ)

2π +0.5 ·π ·
(

p∥LΣBs2 −d p∥L p↓ZGc2

)
F̃↓
⊥(φ ; p⃗) := F4 =

F↓
⊥(φ ; p⃗) · ε(φ)

2π +0.5 ·π ·
(
−p⊥L ΣBs2 +d p⊥L p↓ZGc2

) (8.44)

with p⃗ = (ΣB,G,s1, · · · ,s4,c1, · · · ,c4).
Note that due to the different settings, the normalization introduces sign changes in the denominator.
As a consequence, the correlation between the polarization observables ΣB and G and their corre-
sponding Fourier coefficients s2 and c2 is removed and thus they can be determined independently
from each other. The final function to be minimized is then given by:

L (p⃗) =
4

∏
k=1

(
Nk

∏
i=1

Fk(φi; p⃗)

)
(8.45)

with k being the 4 settings defined above and Nk the number of events in each setting. Lastly, the
time background subtraction needs to be accounted for in the likelihood function which is defined in
Eq. (8.45). Within this thesis, two different approaches have been implemented. The first one will be
referred to as the background-subtracted method, the latter one as the background fitted method.

8.3.2.2 Implementation of Different Methods

Background-subtracted Method

The background-subtracted method aims to construct a likelihood which only fits the signal events in
the prompt peak. The prompt likelihood consists of the prompt signal events, described by the PDF
Fk

signal(φ ; p⃗signal), and the random time background events beneath the peak, described by the PDF
Fk

back(φ ; p⃗back). Therefore, the overall likelihood is given by:

Lprompt(p⃗signal, p⃗back) =
4

∏
k=1

(
Nk,prompt,signal

∏
i=1

Fk
signal(φi; p⃗signal) ·

Nk,prompt,back

∏
j=1

Fk
back(φ j; p⃗back)

)

=
4

∏
k=1

(
L k

signal(p⃗signal) ·L k
back(p⃗back)

)
. (8.46)
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Similar to the binned χ2-fit method, the scaled sideband events can be used to subtract the random
time background beneath the prompt peak. Thus, by taking the factor st , which is defined in Eq. (7.2),
the contribution of the random time background beneath the prompt peak can be described with the
sideband events leading to:

L k
back(p⃗back) =

Nk,prompt,back

∏
i=1

Fk
back(φi; p⃗back) =

(
Nk,sideband

∏
i=1

Fk
back(φi; p⃗back)

)st

. (8.47)

Finally, the likelihood of the signal events in the prompt peak is given by:

Lsignal(p⃗signal) =
Lprompt(p⃗signal, p⃗back)

Lback(p⃗back)
(8.48)

and the function to be minimized is:

− ln
(
Lsignal(p⃗signal)

)
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4
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−
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ln
(

Fk
back(φi; p⃗back)

)
+ st ·

N j,sideband

∑
j=1

ln
(

Fk
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)
︸ ︷︷ ︸

=0

)

=−
4

∑
k=1

(
Nk,prompt,signal

∑
i=1

ln
(

Fk
signal(φi; p⃗signal)

))
.

(8.49)

Background-fitted Method

Instead of subtracting the time background beneath the prompt peak, it is also possible to fit the signal
and background events simultaneously [60]. To do so, the exact amount of signal events beneath the
prompt peak in each setting k needs to be known and can be calculated via:

ζ
k =

Nk,prompt − st ·Nk,sideband

Nk,prompt
(8.50)

where Nk,prompt and Nk,sideband are the total number of events for the given setting k in their individual
time windows (cf. Sec. 7.4.2). Therefore, the likelihood in Eq. (8.45) can be rewritten to:

Lprompt(p⃗signal, p⃗back) =
4

∏
k=1

(
Nk,prompt

∏
i=1

ζ
k ·Fk

signal(φi; p⃗signal)+(1−ζ
k) ·Fk

back(φi; p⃗back)

)
. (8.51)

As the time background events beneath the prompt peak can not be distinguished from the signal events,
the sideband events can be used to describe the time background, leading to the time background
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likelihood

Lback(p⃗back) =
4

∏
k=1

(
Nk,sideband

∏
i=1

Fk
back(φi; p⃗back)

)
. (8.52)

Thus, the total likelihood is the product of both leading to:

Ltotal(p⃗signal, p⃗back) = Lprompt(p⃗signal, p⃗back) ·Lback(p⃗back) (8.53)

and the function to be minimized is given by:

− ln
(
Ltotal(p⃗signal, p⃗back)

)
=

4

∑
k=1

(
−

Nk,prompt

∑
i=1

ln
(

ζ
k ·Fk

signal(φi; p⃗signal)+(1−ζ
k) ·Fk

back(φi; p⃗back)
)

−
Nk,sideband

∑
j=1

ln
(

Fk
back(φ j; p⃗back)

))
.

(8.54)
Comparing Eq. (8.49) with Eq. (8.54), the main disadvantage of this method is the number of
additional fit parameters. Whereas the background-subtracted method fits the signal events with only
ten fit parameters p⃗signal, the background-fitted method needs ten fit parameters p⃗back in addition,
resulting in a total of 20 parameters.

8.3.3 Application of Methods to Toy Monte Carlo simulations

It is mandatory to make sure that both introduced unbinned likelihood fit methods above and the
binned χ2 fit method are working properly before they are applied to real data. A common tool to test
the quality of the methods is to generate so-called Toy Monte Carlo simulations. Thereby, events are
generated according to the cross sections given by Eqs. 8.25-8.28. Different samples of toy MC are
produced to study the effect of artificial asymmetries in the real data (cf. Sec. 8.3.1.1), the effect of
different polarization degrees and differences in the statistics of the individual setting12. The setting
1 and 2 represent the ideal case where all settings have roughly the same statistic, the polarization
degree values are similar, and no detector inefficiency is included. Hereby, setting 1 is simulated for
a region of low statistic whereas setting 2 for high statistic. Setting 3 and 4 include strong artificial
asymmetries, different polarization degrees, and differences in the statistics of the individual setting.
An overview of the different setting is given in Tab. 8.4. For all settings, the data sample consists of
prompt peak events and random time background events. The number of events is hereby selected in
such a way that the amount of prompt to random time background events matches the number of the
real data. Moreover, the polarization observables are created with different values for both kinds of
events as can be seen in Tab. 8.4 as well.
For the illustration of the parabolic shape of the likelihood function, which has been defined in

12Although only four MC sample are presented here, many other configuration were tested and all gave the same result.
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Table 8.4: Overview of the parameters for the toy MC studies. Four MC samples were generated with
different configurations for the target polarization pZ with their polarization vector orientation in (↑) and
against the beam direction (↓) and the linear polarization degrees pL with their two beam polarization planes
perpendicular (⊥) and parallel (∥). In addition, inefficiencies were included in sample 3 and 4. The number of
events for each setting (in total 4) is generated under the assumption of Poisson distributions for a low statistic
region in both analyzed channels in data with about 500 events per setting and a high statistic region with about
5000 events. Note that all number of events are smeared with a Gaussian function with a width of 50(500)
to allow differences in statistics-. For each MC sample, 2500 independent experiments were generated with
95% prompt events with the beam asymmetry ΣB,sig = 0.7 and double polarization observable Gsig = -0.4. The
remaining 5% random time background events have the exact opposite sign ΣB,bg = -0.7 and Gsig = 0.4.

MC sample
pZ [%] pL [%]

Inefficiency #Events
↑ ↓ ⊥ ∥

1 84 84 60 60 no 500
2 84 84 60 60 no 5000
3 84 73 70 60 yes 500
4 84 73 70 60 yes 5000

Eq. (8.49), Fig. 8.20 illustrates the resulting likelihood function for a Toy Monte Carlo simulation
of data sample four for the background-subtracted method. The theory parameters p⃗ are the polar-
ization observables ΣB and G which have been generated with a value of 0.7 and -0.4, respectively.
Fig. 8.20 clearly shows that only one minimum exists and that the extracted values for the polarization
observables are well in agreement with the generated once. In addition, the parabolic behavior of the
likelihood function is nicely seen in both dimensions. Since these results are presented for a MC toy
experiment of sample four, a direct conclusion would be to assume that this extraction method can
handle strong artificial asymmetries. To prove this theory, the sum of all four cross section settings,
given by Eqs. 8.25-8.28, is plotted in a binned histogram as a function of the azimuthal angular
distribution of the reconstructed meson. Since the unbinned extraction methods can model the artifi-
cial asymmetries via Eq. (8.29), the comparison of the binned histogram with the obtained artificial
asymmetry function from the unbinned extraction methods can ensure that artificial asymmetries do
not affect the polarization observable values. Fig. 8.21 depicts an example of the binned sum of all
cross section settings together with the obtained artificial asymmetry fit function of the unbinned
extraction method for a MC experiment with strong artificial asymmetries on the left and without on
the right. From the inspection of this comparison, a striking conclusion is that the unbinned method
can handle huge detection inefficiencies and thus can even extract the polarization observables under
these kind of conditions. The results of all obtained Fourier coefficients is depicted in Fig. 8.22.
Whereas the Fourier coefficient are close to zero for the case without any artificial asymmetries
(red distributions), the coefficients for the case with artificial asymmetries are not negligible (blue
distributions).
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Fig. 8.20: The two dimensional − ln
(
Lsignal(p⃗signal)

)
function of the background subtracted method.

The 2-dimensional likelihood function, defined in Eq. (8.49), for a Toy MC simulation experiment of MC
sample four with the beam asymmetry ΣB generated at 0.7 and the double polarization observable G at -0.4
is presented. The parabolic shape is clearly seen and the obtained minimum of the function is located at the
generated values. To show the parabolic behavior of the likelihood function, the projection of the individual
theory parameters is performed. To do so, one theory parameter was kept at its minimum whereas the other one
was changed. The red arrow hereby indicates the position of the generated values.

Especially the parameter s2 and c2 need to be respected as they are contributing to the normalization
of the individual settings for the binned extraction method. Nevertheless, the artificial asymmetries
can be controlled by allowing an additional offset parameter p0 in the asymmetry functions defined in
Eq. (8.37) and Eq. (8.39) [14, 55]. The obtained offset parameter p0 for the two MC samples with
and without artificial asymmetries can be seen in Fig. 8.23.
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Fig. 8.21: Sum off all settings with their corresponding artificial asymmetry fit function. Shown is the
sum of all settings, based on Eq. (8.34), together with the obtained artificial asymmetry fit function (red line)
from the unbinned maximum likelihood fit. On the left side, an example of MC sample four is shown which
includes strong artificial asymmetries whereas on the right side an example of MC sample one without any
artificial asymmetries.
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Fig. 8.22: All Fourier coefficients obtained by the artificial asymmetry fit for MC. All fitted Fourier
coefficients which are based on Eq. (8.34) are shown. The blue distributions correspond to the coefficients of
MC sample four which includes strong artificial asymmetries whereas the red distribution of MC sample one
without any artificial asymmetries.

For the case without artificial asymmetries, the offset is distributed around zero whereas for the case
of strong artificial asymmetries a small offset towards negative values is seen which is nevertheless
negligible compared to the amplitudes from the polarization observables. Under the assumption of
no offset parameter in the fit functions, tests have shown that the polarization observable changed
from -0.4 to -0.392 for the case with strong artificial asymmetries, These discrepancy however was
corrected with the inclusion of the additional offset parameter. A final test of the quality for the fit
parameter is to investigate the normalized residual rp which can be calculated via:

rp =
poutput − pinput

σpoutput

with p ∈ {ΣB,G}. (8.55)
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Fig. 8.23: Offset parameter p0 for the correction of artificial asymmetries in MC. The additional offset
parameter p0 which can be included in the asymmetry functions defined in Eq. (8.37) and Eq. (8.39) is shown.
Two defined peaks are visible which corresponds to the case with artificial asymmetries (left peak) and without
artificial asymmetries (right peak).

Thereby, pinput is the value of the polarization observable which was implemented in the Toy MC
samples and poutput and σpoutput are the obtained polarization observable value from the applied methods
and the statistical errors, respectively. In case the method is unbiased, the mean value of the normalized
residuals should be compatible with 0. In addition, if the statistical errors are correctly determined,
the width of the residuals should be 1. An overestimated statistical error thereby would lead to
a width smaller than 1, whereas an underestimated one a value bigger than one. For all settings
mentioned above, Fig. 8.24 shows the resulting residuals of the double polarization observable G
for all extraction methods whereas Fig. 8.25 illustrates the output value for the double polarization
G13. Hereby, the row number indicates the individual MC samples introduced in Tab. 8.4. The
inspection of Fig. 8.24 clearly shows that all residuals are compatible with a mean value of 0 and
a width of 1. Consequently, all extraction methods are unbiased and are determining the correct
statistical uncertainties. It is also noteworthy that both unbinned maximum likelihood functions for
the treatment of the background events beneath the prompt peak are working properly and that the
background events are fitted correctly as can be seen in Fig. 8.25 in the middle columns in red. In
addition, the residuals of the data samples 2 and 4 clearly show that the extraction methods can handle
the differences in the polarization degrees and also huge detection inefficiencies.

13The corresponding figures for the beam asymmetry ΣB can be found in App. A.7.
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Fig. 8.24: Normalized residuals for the results of the double polarization observable G for the different
Toy MC samples. The residuals for the different MC samples, defined in Tab. 8.4, and the different extraction
methods are shown. Hereby, the row number indicates the MC sample number and the column the three
extraction methods. All distributions are in agreement with a normal distribution.
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Fig. 8.25: Results of the double polarization observable G for the different Toy MC samples. The ex-
tracted polarization observable for the different MC samples, defined in Tab. 8.4, and the different extraction
methods are shown. Hereby, the row number indicates the MC sample number and the column the three
extraction methods. The extracted polarization observables for the signal events (blue) are distributed around
their input value of -0.4 and the extracted once for the background events (red) around their input value of 0.4.
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8.3.4 Application of Methods to Data

Since the Toy MC studies have proven that the different extraction methods are able to determine the
polarization observable values, the final step is to apply and test the methods on real data. Therefore,
similar to the Toy MC studies, the resulting polarization observables of both methods are compared.
For the binned event yield method, Fig. 8.26 and Fig. 8.27 show typical asymmetries, following
Eq. (8.39), for the reaction γ⃗ p⃗ → pπ0 and γ⃗ p⃗ → nπ+ . They belong to a beam photon energy range
from 400 MeV to 434 MeV and are presented as a function of the kinematic variable cosθM,CMS with
M = π0/π+.

150− 100− 50− 0 50 100 150

1−

0

1
 -0.89≤ ,CMS+πθ-1.00< cos 

/ndf = 23.76/142χ
 0.08 ± = 0.37 G

150− 100− 50− 0 50 100 150

1−

0

1
 -0.56≤ ,CMS+πθ-0.67< cos 

/ndf = 14.27/142χ
 0.05 ± = 0.53 G

150− 100− 50− 0 50 100 150

1−

0

1
 -0.22≤ ,CMS+πθ-0.33< cos 

/ndf = 18.89/142χ
 0.04 ± = 0.48 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.11≤ ,CMS+πθ0.00< cos 

/ndf = 38.84/142χ
 0.05 ± = 0.36 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.44≤ ,CMS+πθ0.33< cos 

/ndf = 10.72/142χ
 0.06 ± = 0.11 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.78≤ ,CMS+πθ0.67< cos 

/ndf = 10.99/142χ
 0.16 ± = -0.01 G

150− 100− 50− 0 50 100 150

1−

0

1
 -0.78≤ ,CMS+πθ-0.89< cos 

/ndf = 19.62/142χ
 0.04 ± = 0.49 G

150− 100− 50− 0 50 100 150

1−

0

1
 -0.44≤ ,CMS+πθ-0.56< cos 

/ndf = 19.03/142χ
 0.05 ± = 0.62 G

150− 100− 50− 0 50 100 150

1−

0

1
 -0.11≤ ,CMS+πθ-0.22< cos 

/ndf = 14.29/142χ
 0.05 ± = 0.52 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.22≤ ,CMS+πθ0.11< cos 

/ndf = 23.82/142χ
 0.05 ± = 0.16 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.56≤ ,CMS+πθ0.44< cos 

/ndf = 10.42/142χ
 0.07 ± = 0.06 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.89≤ ,CMS+πθ0.78< cos 

/ndf = 35.69/142χ
 0.68 ± = -0.62 G

150− 100− 50− 0 50 100 150

1−

0

1
 -0.67≤ ,CMS+πθ-0.78< cos 

/ndf = 10.67/142χ
 0.11 ± = 0.68 G

150− 100− 50− 0 50 100 150

1−

0

1
 -0.33≤ ,CMS+πθ-0.44< cos 

/ndf = 9.55/142χ
 0.05 ± = 0.51 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.00≤ ,CMS+πθ-0.11< cos 

/ndf = 21.81/142χ
 0.05 ± = 0.34 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.33≤ ,CMS+πθ0.22< cos 

/ndf = 18.81/142χ
 0.05 ± = 0.23 G

150− 100− 50− 0 50 100 150

1−

0

1
 0.67≤ ,CMS+πθ0.56< cos 

/ndf = 33.66/142χ
 0.07 ± = -0.04 G

150− 100− 50− 0 50 100 150

1−

0

1
 1.00≤ ,CMS+πθ0.89< cos 

/ndf = 3.47/142χ
 0.03 ± = 0.01 G

150− 100− 50− 0 50 100 150 150− 100− 50− 0 50 100 150
]° [

+π
φ

150− 100− 50− 0 50 100 150

1−

0

1

1−

0

1

1−

0

1

1−

0

1

1−

0

1

G
A

1−

0

1

Fig. 8.26: Asymmetry AG for the extraction of the double polarization observable G. The resulting asym-
metries for a beam photon energy range from 400 MeV to 434 MeV are shown as a function of the kinematic
variable cosθπ+,CMS for the reaction γ⃗ p⃗ → nπ+ . The distributions are fitted with a function (red line) which
follows Eq. (8.39). The obtained polarization observable are extracted through the amplitude of the fit.

Similar to the MC studies, a possible offset parameter p0 is included in the fit function to respect the
artificial asymmetries. The resulting offset parameters are depicted in Fig. 8.28 on the left for the
pπ0 channel whereas on the right for nπ+ . From the inspection of the Fig. 8.28, a first hint of small
artificial asymmetries is given as the offset parameter p0 is close to zero.
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Fig. 8.27: Asymmetry AG for the extraction of the double polarization observable G. The resulting asym-
metries for a beam photon energy range from 400 MeV to 434 MeV are shown as a function of the kinematic
variable cosθπ0,CMS for the reaction γ⃗ p⃗ → pπ0 . The distributions are fitted with a function (red line) which
follows Eq. (8.39). The obtained polarization observable are extracted through the amplitude of the fit.
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Fig. 8.28: Offset parameter p0 for the correction of artificial asymmetries in data. Shown is the additional
offset parameter p0 which can be included in the asymmetry functions defined in Eq. (8.37) and Eq. (8.39). On
the left side, the result is shown for the pπ0 whereas on the right for nπ+ channel. Both values are compatible
with zero and thus indicate small detector inefficiencies.

For the unbinned maximum likelihood method, Fig. 8.29 presents the resulting likelihood function for
the cosθπ0,CMS bin 0.11 ≤ cosθπ0,CMS < 0.22 in the same beam photon energy region as the binned
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method. The red arrows in the projections indicate the results of the binned extraction methods. The
minimum, obtained with the unbinned maximum likelihood method, is perfectly in agreement with it.
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Fig. 8.29: The − ln
(
Lsignal(p⃗signal)

)
function of the background-subtracted method for data. In the upper

row, the resulting 2-dimensional likelihood function, defined in Eq. (8.49), for a beam photon energy Eγ from
400 MeV to 434 MeV and the kinematic range 0.11 ≤ cosθπ0,CMS < 0.22. The parabolic shape is clearly seen.
To show the parabolic behavior of the likelihood function, the projection of the individual theory parameters
is shown in the lower row. To do so, one theory parameter was kept at its minimum whereas the other one
was changed. The red arrow hereby indicates the position of the values obtained with the binned event yield
asymmetries.

As a further cross-check and comparison of both methods, Fig. 8.30 shows the resulting statistical
uncertainty of both methods for all extracted polarization observables values within the analyzed
kinematic regions. These will be presented in Sec. 8.3.6. In addition, Fig. 8.30 shows the extracted
polarization observable values for both methods. As expected, the unbinned extraction method always
shows at least similar or even better statistical uncertainties as the binned method. In addition, both
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methods obtain the same results for the polarization observable values and thus in the following only
the results of the unbinned extraction method will be presented.
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Fig. 8.30: Comparison of the statistical uncertainty and the extracted polarization observable value G
for both extraction methods. The resulting statistical uncertainty of both methods for all extracted polarization
values is shown on the left. On the right side, all extracted polarization observable values for both methods is
depicted. The red line in the plots indicates the line where values are the same.

A final step is to test if the overall acceptance can be modeled with the artificial asymmetry function
of the unbinned extraction method. Therefore, the artificial asymmetry function is again compared to
the sum of all settings. The results are shown for one selected region in both analyzed channels in
Fig. 8.31. From the inspection of the Fig. 8.31 it becomes clear that the unbinned extraction method
can also handle the artificial asymmetries in data.

]°[
π

φ 
150− 100− 50− 0 50 100 150

∈

0

0.2

0.4

0.6

0.8

1

1.2

1.4

]°[
π

φ 
150− 100− 50− 0 50 100 150

∈

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 8.31: Sum off all settings with their corresponding artificial asymmetry fit function. Shown is the
sum of all settings, based on Eq. (8.34), together with the obtained artificial asymmetry fit function (red
line) from the unbinned maximum likelihood fit. On the left side, an example bin (Eγ = (400-434) MeV and
−0.11 ≤ cosθM,CMS < 0) for the pπ0 analysis is shown whereas on the right side the same kinematic bin for
the nπ+ analysis.

The resulting coefficients of all fitted artificial asymmetry functions for both analyzed channels
are depicted in Fig. 8.32. Note that the important parameters s2 and c2, which contribute in the
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normalization of the settings (cf. Sec. 8.3.1), are in the order of 10−2 and thus their contribution to
the normalization, defined in Eq. (8.30), can be neglected.
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Fig. 8.32: All Fourier coefficients obtained by the artificial asymmetry fit. All fitted Fourier coefficients
which are based on Eq. (8.34) are shown. The black distribution indicate the obtained values from the pπ0

analysis, the red for the 2 PED events of the nπ+ analysis, and the blue for the 1 PED events of the nπ+

analysis.

8.3.5 Error Analysis

8.3.5.1 Statistical Uncertainty

The statistical error of the polarization observables for the event yield method is determined via
Gaussian error propagation and is mainly dominated by the statistical uncertainties of the four event
yield settings of the butanol data with a small contribution of the dilution factor d. Note that a
correlation between the dilution factor and the butanol data does not need to be respected as has
been shown in Sec. 8.1. In addition, the statistical error of the linear and target polarization degree
is negligible small and thus can be ignored. Therefore, the overall statistical uncertainty of the
observable p with p ∈ {ΣB,G} is given by14:

∆pstat =

√√√√√ ∂Ap

∂N↑
∥

∆N↑
∥

2

+

 ∂Ap

∂N↓
∥

∆N↓
∥

2

+

(
∂Ap

∂N↑
⊥

∆N↑
⊥

)2

+

(
∂Ap

∂N↓
⊥

∆N↓
⊥

)2

+

(
∂Ap

∂d
∆dstat

)2

.

(8.56)
The statistical uncertainty from the unbinned maximum likelihood extraction method was already
discussed in detail in Sec. 8.3.2.1. As different coherent edges and data sets were merged after their
were checked for consistency, a final error weighted statistical error can be determined for the merged

14Note that for the observable ΣB the contribution of the dilution factor d is not included.
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results via:

pmerged =

N
∑

i=1
pi/∆p2

i,stat

N
∑

i=1
1/∆p2

i,stat

and ∆pmerged =

√√√√√ 1
N
∑

i=1
1/∆p2

i,stat

(8.57)

where N is the number of individual results to merge.

8.3.5.2 Systematic Uncertainty

Background Reactions

The background contribution from other reactions have been already intrdocued and explained in
Sec. 7.9. As has been shown in [14] and [60], the absolute contribution to the overall systematic
uncertainty of the observable p is given by the relative background contamination δbg and thus:

∆psyst,bg . δbg. (8.58)

Linear Polarization Degree

As already been discussed in Sec. 8.2.1.1, the overall uncertainty of the linear polarization degree is
in the order of 2.5% for the 450 MeV MeV edge and increases to a maximum of about 5% for the
850 MeV. Therefore, the relative uncertainty is given by:

2.5% ≤ ∆pL

pL
≤ 5%. (8.59)

Target Polarization Degree

The overall systematic uncertainties of the target polarization degree is in the order of 2%. The
main contribution comes from the NMR signal evaluation at thermal equilibrium and is assigned
with 1%. The remaining sources are temperature stability, electronics and non-linearities. As the
target polarization degree values needed to be corrected with correction factors (see Sec. 8.2.2) which
have as well their own systematic uncertainty, an additional 2% relative error needs to be taken into
account. Thereby, the value is estimated from the averaged correction factors as has been shown in
[14]. Finally, the overall systematic uncertainty from the target polarization degree is given by:

∆pZ

pZ
=
√

2%2 +2%2 = 2.8%. (8.60)

Dilution Factor

As has been already mentioned in Sec. 8.15, the uncertainty of the dilution factor is determined by the
uncertainty of the scaling factor. One source of systematic uncertainty is given by the determination
method of the scaling factor. In reference [14], it has been shown that a systematic deviation of about



192 Extraction of the Polarization Observables

3% was found between the determination via the photon flux and the event yields method. Additional
uncertainties come from the filling factor of the butanol target and whether the amount of helium is
similar in the butanol and carbon measurements. This uncertainty is stated with an additional 1.5%
[14].
For the nπ+ channel, a beam photon energy-dependent uncertainty is produced by the small discrep-
ancy between the reconstructed hydrogen distribution and the signal MC which can either be explained
by background contamination of the pπ0 channel or a not perfect description of the interactions of
the π+ at rest within the detector crystals. It contributes with a maximum of additional 5% to the
systematic uncertainty of the scaling. This uncertainty mainly contributes to the 1 PED events of the
nπ+ final state and especially in the backward direction in the CB (cf. Sec 7.7.2). For all events in the
TAPS, an additional uncertainty of 5% is assumed. The reason lies in the LED1 threshold adjustments
between all beamtimes and the MC, the very low hydrogen distribution and the fact that nearly all
events are punch-through particles. Therefore, especially the energy correction of the π+ in the TAPS
was more complex and a matching of data and MC simulation was difficult. As a result, only an upper
limit on the background contamination was possible. The additional 5% to the systematic uncertainty
respects these problems. The 2 PED events of the nπ+ and the 3 PED events of the pπ0 channel
do not need these additional uncertainties. The reason lies in the available angular selection criteria
which were able to reject a lot of background reactions. Furthermore, the scaling is performed with
the coplanarity distribution which is completely independent of the π+ energy correction. Finally,
for the nπ+ channel, the trigger adjustment contributes with a maximum of 5% to the systematic
uncertainties (cf. Fig. 8.7). Combining all these information, the overall systematic uncertainty of the
scaling factor is given by:

3.4% ≈
√
(3%)2 +(1.5%)2 ≤ ∆sC

sC
≤
√

(3%)2 +(1.5%)2 +3 · (5%)2 ≈ 9.3%. (8.61)

The relative error of the dilution factor is finally given by:

∆d
d

=
∆sC

sC
· (1−d)

d
. (8.62)

As already mentioned several times, the contribution of the dilution factor to the overall systematic
error has its maximum contribution for low dilution factor values. This is especially given for the
1 PED events in the nπ+ channel and the 2 PED events in the pπ0 channel.
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Overall

The overall systematic uncertainty is built of all mentioned uncertainties above and is given by15:

∆psyst,all =

√√√√[(∆pL

pL

)2

+

(
∆pZ

pZ

)2

+

(
∆d
d

)2
]
· p2 +∆p2

syst,bg. (8.63)

Note that all individual uncertainties are uncorrelated and thus can be added up in quadrature. To take
into account the different systematic uncertainties of the 1 and 2 PED events of the nπ+ channel, the
systematic uncertainty of the merged result of the observable p is calculated similar to the statistical
error and is therefore:

∆psyst,all,merged =

N
∑

i=1
∆pi,syst,all/∆p2

i,stat

N
∑

i=1
1/∆p2

i,stat

. (8.64)

In the following, the overall systematic uncertainty of the extracted polarization observable is indicated
by gray boxes.

8.3.6 Results

The final obtained results of the new A2 data for the double polarization observable G in the reaction
γ⃗ p⃗ → pπ0 are given by the black points together with their statistical uncertainty in Fig. 8.33 and
Fig. 8.34 whereas in Fig. 8.35 and Fig. 8.36 for the reaction γ⃗ p⃗ → nπ+ . They have been determined
in a beam photon energy range from 230 MeV to 842 MeV (W = 1145 MeV− 1569 MeV) with
a 34 MeV broad energy bin window and 18 angular bins. The gray box presents the systematic
uncertainties. The corresponding results for the beam asymmetry ΣB can be found in App. A.8.

15For the observable ΣB the systematic uncertainties of the target polarization pZ and the dilution factor d do not
contribute.
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Fig. 8.33: Double polarization observable G for the reaction γ⃗⃗p→pπ0. The results of the double polarization
observable G are shown as a function of cosθπ0,CMS for the beam photon energy from 230 MeV to 570 MeV.
They are plotted as black dots together with their statistical uncertainties whereas the gray boxes represent the
systematic uncertainties. The blue dashed line indicates the position where the 2 PED events are added to the 3
PED events.
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Fig. 8.34: Double polarization observable G for the reaction γ⃗⃗p→pπ0. The results of the double polarization
observable G are shown as a function of cosθπ0,CMS for the beam photon energy from 570 MeV to 842 MeV.
They are plotted as black dots together with their statistical uncertainties while the gray boxes represent the
systematic uncertainties. The blue dashed line indicates the position where the 2 PED events are added to the 3
PED events.
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Fig. 8.35: Double polarization observable G for the reaction γ⃗⃗p→nπ+. The results of the double polar-
ization observable G are shown as a function of cosθπ+,CMS for the beam photon energy from 230 MeV to
570 MeV. They are plotted as black dots together with their statistical uncertainties while the gray boxes
represent the systematic uncertainties.
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Fig. 8.36: Double polarization observable G for the reaction γ⃗⃗p→nπ+. The results of the double polar-
ization observable G are shown as a function of cosθπ+,CMS for the beam photon energy from 570 MeV to
842 MeV. They are plotted as black dots together with their statistical uncertainties while the gray boxes
represent the systematic uncertainties.
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8.4 Double Polarization Observable E

As already mentioned in the introduction of this chapter, the measurement of elliptically polarized
photons in combination with a longitudinally polarized target lead to a total of eight possible configu-
rations for the polarized cross section (cf. Eq. (8.4) and Eq. (8.5)). To only get access to the double
polarization observable E, the dependence of the cross sections on the observables ΣB and G need to
be canceled. This is achieved by integrating all settings over the entire azimuthal angle φ because it
holds:

2π∫
0

cos2φ dφ =

2π∫
0

sin2φ dφ = 0. (8.65)

Unfortunately, as has been shown already in the extraction of the polarization observables ΣB and G,
the acceptance ε(φ) shows a small φ dependence and thus its dependence needs to be respected as
well in the integration of the individual cross section configurations. As an example, the calculation of
the setting in the helicity down state (H(↓)), target polarization orientation in beam direction (T (↑))
and beam polarization plane parallel to the reaction plane (L(∥)) is depicted:

2π∫
0

dσ

dΩ

∣∣∣∣L(∥),H(↓)

T (↑)
dφ =

dσ

dΩ

∣∣∣∣
0
· ε(φ) ·

(
1+d p↓C p↑ZE + p∥LΣB sin2φ +d p∥L p↑ZGcos2φ

)
dφ

=
dσ

dΩ

∣∣∣∣
0
·2π ·

(
1+d p↓C p↑ZE +0.5p∥LΣBs2 +0.5d p∥L p↑ZGc2

)
.

(8.66)

Thereby, s2 and c2 are the Fourier coefficients which are defined in Eq. (8.29). The helicity dependent
cross section can be split into an anti-parallel (1/2) and parallel spin configuration (3/2) of the photon
and proton target spin. Summing over both beam polarization orientations, both configuration are
defined by:

dσ

dΩ

∣∣∣∣1/2

=

2π∫
0

(
dσ

dΩ

∣∣∣∣L(∥),H(↓)

T (↑)
+

dσ

dΩ

∣∣∣∣L(⊥),H(↓)

T (↑)
+

dσ

dΩ

∣∣∣∣L(∥),H(↑)

T (↓)
+

dσ

dΩ

∣∣∣∣L(⊥),H(↑)

T (↓)

)
dφ , (8.67)

dσ

dΩ

∣∣∣∣3/2

=

2π∫
0

(
dσ

dΩ

∣∣∣∣L(∥),H(↑)

T (↑)
+

dσ

dΩ

∣∣∣∣L(⊥),H(↑)

T (↑)
+

dσ

dΩ

∣∣∣∣L(∥),H(↓)

T (↓)
+

dσ

dΩ

∣∣∣∣L(⊥),H(↓)

T (↓)

)
dφ . (8.68)

Solving the individual integrals, similar to Eq. (8.66), the final two configurations are given by16:

dσ

dΩ

∣∣∣∣1/2

=
dσ

dΩ

∣∣∣∣
0
·8π ·

(
1+0.5 ·d · (p↑C · p↓Z + p↓C · p↑Z) ·E

+0.25 · (p∥L − p⊥L ) ·ΣB · s2

+0.125 ·d · (p∥L − p⊥L ) · (p↑Z − p↓Z) ·G · c2

)
,

(8.69)

16The individual integrals including the acceptance ε(φ) have been already calculated in Eq. (8.44).



8.4 Double Polarization Observable E 199

dσ

dΩ

∣∣∣∣3/2

=
dσ

dΩ

∣∣∣∣
0
·8π ·

(
1−0.5 ·d · (p↑C · p↑Z + p↓C · p↓Z) ·E

+0.25 · (p∥L − p⊥L ) ·ΣB · s2

+0.125 ·d · (p∥L − p⊥L ) · (p↑Z − p↓Z) ·G · c2

)
.

(8.70)

Inspecting the Eq. (8.69) and Eq. (8.70), it can be seen that the only difference is given by the
sign change in front of the double polarization observable E part. Therefore, the difference of the
anti-parallel (1/2) and parallel (3/2) settings eliminates the contribution of ΣB and G which results in:

dσ

dΩ

∣∣∣∣1/2

− dσ

dΩ

∣∣∣∣3/2

=
dσ

dΩ

∣∣∣∣
0
·4π ·d · (p↑C + p↓C) · (p↑Z + p↓Z) ·E. (8.71)

For the sum of both settings, the terms coming from ΣB and G remain which leads to:

dσ

dΩ

∣∣∣∣1/2

+
dσ

dΩ

∣∣∣∣3/2

=
dσ

dΩ

∣∣∣∣
0
·16π ·

(
1−0.5 ·d · (p↑C − p↓C) · (p↑Z − p↓Z) ·E

+0.25 · (p∥L − p⊥L ) ·ΣB · s2

+0.125 ·d · (p∥L − p⊥L ) · (p↑Z − p↓Z) ·G · c2

)
.

(8.72)

As already the normalization correction in Eq. (8.32) is in the order of 10−3, the contribution of the
beam asymmetry ΣB and G can be neglected here. Even a difference of 5% in the linear polarization
degrees and a maximum of 10% in the target polarization degrees result in a minimal correction in the
order of 10−5. Thus, their contribution can be neglected. As has been shown in [14], the difference
in the circular polarization degree of both helicity states is less than 3%. Combining this with a
maximum target polarization difference of about 10% the maximum contribution of the E term is in
the order of 10−3. Consequently, the contribution of E in the sum of both helicity configurations can
be neglected as well so that the sum is given by:

dσ

dΩ

∣∣∣∣1/2

+
dσ

dΩ

∣∣∣∣3/2

=
dσ

dΩ

∣∣∣∣
0
·16π. (8.73)

The double polarization observable E is defined as:

E :=
dσ

dΩ

∣∣1/2 − dσ

dΩ

∣∣3/2

dσ

dΩ

∣∣1/2
+ dσ

dΩ

∣∣3/2 . (8.74)

Using Eq. (8.9) with the assumption of a similar acceptance and photon flux of both helicity configu-
rations17, E can be described by the two event yields N1/2 and N3/2. In addition, the definition of the

17Although the photon flux of each individual configuration is not the same, the combined flux in the helicity states are.
This can be explained by the fact that in both helicity configurations a sum of positive and negative target orientation is
included (cf. Eq. (8.67) and Eq. (8.68)). The only requirement is that the photon flux of the helicity states is fulfilled which
has been proven in Sec. 8.3.
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observable E in Eq. (8.74) assumes polarization degrees of the photons and the target of 100%. The
measured observable E corrects the polarization degrees and is finally given by:

E :=

(
N1/2 −N3/2

N1/2 +N3/2

)(
4

d · (p↑C + p↓C) · (p↑Z + p↓Z)

)
. (8.75)

8.4.1 Error analysis

The statistical and systematic uncertainties are calculated in the same way as for the double polarization
observable G. Only the systematic uncertainties of the linear polarization degree need to be exchanged
with the uncertainty of the circular polarization degree. The background contamination and the
uncertainty on the dilution factor are the same since E is extracted from the same selected events as the
polarization observables ΣB and G. The extraction on the same selected events was chosen on purpose,
especially for the nπ+ channel. As will be shown in Chap. 9, the data base for the observable G is
oversee-able whereas for E data are already published by the CLAS collaboration [68]. Therefore, the
correctness of the target polarization degree, the dilution factor, and the background contamination
can be cross-checked with the comparison of the obtained E results with the CLAS data. If any of
these uncertainties cause a deviation between both results, the effect should as well be seen in the G
results.

8.4.2 Comparison between Diamond and Møller Data

One goal of the G/E measurements is to investigate if a simultaneous measurement of the double
polarization observables G and E is possible. These measurements make use of a longitudinally
polarized electron beam which interacts with a diamond radiator. Thereby, elliptically polarized
photons are produced, having a linear and circular polarization component at the same time. It is
important to check if the linearly polarized component affects the circularly polarized component.
In the case of coherent bremsstrahlung and thus linear polarization contributions, a full calculation
of the circular polarization degree is possible. It can be compared to an approximated calculation
which uses only the assumption of incoherent bremsstrahlung based on Eq. (3.15). Fig. 8.37 shows
the comparison of these calculations for two different configurations of the incoming electron energy
E0 and coherent edge position. The inspection of the figure presents some dip structures in the
full calculation of the circular polarization degree. The maximum dip is located at the coherent
edge position, whereas additional dips towards higher electron energies correspond to the higher
lattice contributions. According to the model calculations presented in [133], the relative change
for a coherent edge sitting at Eγ ≈ E0/2 with a maximum linear polarization degree of about 40%
is in the order of 2% [14]. These relative changes in the circular polarization degree are studied by
the comparison of two measurements. The first one used a diamond radiator, which produced the
elliptically polarized photons. The second one exchanged the diamond radiator with a Møller radiator.
In doing so, only circularly polarized photons are created. Furthermore, high sensitivity to the relative
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Fig. 8.37: Calculation of the circular polarization degrees. The ratio of the circular polarization to the
electron polarization degree is plotted as a function of the beam photon energy Eγ for two different incoming
electron energies E0 and position of the coherent edges of the SCLAC E159 experiment. The parameter
y0 = Eγ/E0 defines the position of the coherent edges. The full calculation of the circular polarization degree
of the coherent bremsstrahlung, which includes the linearly polarized component, is depicted in blue. The
calculation of incoherent bremsstrahlung, based on Eq. (3.15), is presented in green (figure taken from [133]).

changes is only achievable if differences in the systematic uncertainties are negligible. They are
minimized by comparing data sets of one beamtime with a similar trigger. This is only given for the
450 MeV coherent edge setting of September 2015 as these were taken together with a high statistic
data set for the Møller radiator. The relative changes between the circular polarization degrees is
obtained in the region of maximum linear polarization degree. For the September 2015 beam time,
the linear polarization component of the elliptically polarized photons has a maximum polarization
of about 70% at the coherent edge position. Hence, both data sets are compared in the region from
230 MeV to 434 MeV. The results for the double polarization observable E in the nπ+ channel, using
a diamond and Møller radiator, are shown in Fig. 8.38. They are presented for the two closest energy
bins to the coherent edge.
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Fig. 8.38: Comparison of diamond and Møller results for the double polarization observable E for the
reaction γ⃗⃗p→nπ+. The results of the double polarization observable E for the diamond radiator (black) and
Møller radiator (red) is presented for two beam photon energy. They have been determined for the 450 MeV
coherent edge setting of September 2015. The gray box presents the systematic uncertainties of the diamond
radiator. The systematic uncertainties of the Møller radiator are almost similar, since only the value of E in
Eq. (8.63) is different.
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Fig. 8.39 depicts the ratio of both of these results along with the remaining energy bins in the beam
photon energy range from 230 MeV to 434 MeV.
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Fig. 8.39: Ratio of diamond to Møller results for the double polarization observable E for the reaction
γ⃗⃗p→nπ+. The diamond data of the 450 MeV edge setting of September 2015 and the corresponding Møller
data were used to extract the double polarization observable E. The ratio of the diamond to Møller results are
shown for the beam photon energies from 230 MeV to 434 MeV. The distribution was fit a Gaussian function
to obtain the mean value of (1.01±0.07).

A very good agreement (1.01±0.07) is obtained by fitting a Gaussian function to the distribution.
Within the PhD work of F. Afzal, the results of the double polarization observable E in the pπ0

channel revealed a ratio of 1.02±0.03 between the diamond and Møller radiator [14]. Both results
clearly show the first experimental indication that the linear polarization component of the elliptically
polarized photons does not affect the circular polarization component. Consequently, the results of
both radiators will be combined in the following.

8.4.3 Results of the Complete Data

The final obtained results of the new A2 data for the double polarization observable E in the reaction
γ⃗ p⃗ → nπ+ are given by the black points together with their statistical uncertainty in Fig. 8.40 and
Fig. 8.40. They have been determined in a beam photon energy range from 230 MeV to 842 MeV
(W = 1145 MeV−1569 MeV) with a 34 MeV broad energy bin window. The gray box presents the
systematic uncertainties.
The observable E of the new A2 data for the reaction γ⃗ p⃗ → pπ0 was studied and investigated in more
detail within the PhD thesis of F. Afzal. More details can be found in [14].
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Fig. 8.40: Double polarization observable E for the reaction γ⃗⃗p→nπ+. The results of the double polar-
ization observable E are shown as a function of cosθπ+,CMS for the beam photon energy from 230 MeV to
570 MeV. They are plotted as black dots together with their statistical uncertainties while the gray boxes
represent the systematic uncertainties. The blue dashed line indicates the position up to which point the 1 PED
events are added to the 2 PED events.
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Fig. 8.41: Double polarization observable E for the reaction γ⃗⃗p→nπ+ . The results of the double polar-
ization observable E are shown as a function of cosθπ+,CMS for the beam photon energy from 570 MeV to
842 MeV. They are plotted as black dots together with their statistical uncertainties while the gray boxes
represent the systematic uncertainties. The blue dashed line indicates the position up to which point the 1 PED
events are added to the 2 PED events.



Chapter 9

Discussion of the Results

The following chapter discusses the results. After a comparison of the results with the most recent
data base, the dominant partial wave contributions are determined using a truncated partial wave
analysis (PWA). Finally, the results are compared to different PWA solutions.

9.1 Comparison with Recent Results

9.1.1 Double Polarization Observable G for the reaction γ⃗ p⃗ → pπ0

The final obtained results of the new A2 data for the double polarization observable G in the reac-
tion γ⃗ p⃗ → pπ0 have been determined in a beam photon energy range from 230 MeV to 842 MeV
(W = 1145MeV−1569MeV) with a 34 MeV energy bin window. The first possible data for com-
parison start at a beam photon energy of 617 MeV (W = 1428MeV)1 with a 33.33 MeV energy bin
window and have been published by the CBELSA/TAPS collaboration [45, 64]. Only the results of
the overlapping beam photon energy range are presented here.
Fig. 9.1 shows the comparison of the new A2 data in black with the published CBELSA/TAPS data
in red as a function of the kinematic variable cosθπ0,CMS . The corresponding beam photon energy
ranges of the compared data are depicted in the same color scheme. Due to different positions of
the coherent edges and the requirement to reject data with energies above the falling coherent edges,
it was not possible to use the exact same energy binning for the A2 data as for the CBELSA/TAPS
data. The CBELSA/TAPS collaboration took data with three coherent edge positions at 950 MeV,
1150 MeV, and 1350 MeV, respectively. The A2 collaboration recorded data for a coherent edge
position starting at 350 MeV and ending at 850 MeV with a step size of about 100 MeV. Thus, the
A2 data needed to respect the requirements of the falling coherent edge positions (cf. Sec. 8.2.1.1).
Although the fist energy bin has a deviation of 12 MeV, the following bin deviation decreases per
each energy bin with a minimum deviation of 8 MeV for the last energy bin.

1Additionally, three data points from the A2/GDH collaboration are available in the beam photon energy range from
326 MeV to 354 MeV [67]. However, due to their low angular coverage in combination with high statistical uncertainties, a
comparison is not useful.
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Fig. 9.1: Comparison of the results for the double polarization observable G with previous data for
γ⃗⃗p→pπ0. The results of the double polarization observable G are shown as a function of cosθπ0,CMS for the
beam photon energy from 570 MeV to 842 MeV. The black points represent the results of the new A2 data
together with their statistical uncertainties whereas the red points the CBELSA/TAPS data [45, 64]. The blue
dashed line indicates the position where the 2 PED events are added to the 3 PED events while the gray boxes
show the systematic uncertainties.

Therefore, a direct comparison should be treated with caution. Nevertheless, a good agreement
between the A2 and CBELSA/TAPS data is present within their statistical uncertainties. Only a few
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data points disagree with each other. An example is the third cosθπ0,CMS bin in the beam photon
energy range from 706 MeV to 740 MeV, where even the systematic uncertainties of about 8% of both
data set can not explain this deviation. The bin of the A2 data corresponds to the more challenging
kinematic region due to the transition region between the TAPS and the CB where the dilution factor
drops (cf. Fig. A.8) and higher sensitivities to the exact target center position and trigger adjustments
are present (cf. Sec. 8.3.5).
To avoid deviations, which are caused by a different energy binning between both data sets, the data are
compared in another representation where the individual 18 cosθπ0,CMS bins are plotted as a function
of the mean value of the beam photon energy bin Eγ . Since the cosθπ0,CMS binning is independent
of the coherent edge positions, the same number of bins was selected for the A2 data as for the
CBELSA/TAPS data. Thus, a better direct comparison is reached. Fig 9.2 and Fig. 9.3 depicts the
results of the double polarization observable G for the different cosθπ0,CMS bins as a function of the
mean value of the beam photon energy window Eγ . The inspection of both figures shows a very good
agreement between both data within their statistical uncertainties as well. Special attention should be
given to the sixth cosθπ0,CMS bin (−0.44 ≤ cosθπ0,CMS <−0.33) where a notable difference between
both data sets is present for the second (Eγ = (650-684) MeV) and third beam photon energy bin
(Eγ = (684-716) MeV) of the CBELSA/TAPS. In this kinematic region, the proton polar angle in the
CBELSA/TAPS setup lies in the transition region between the forward plug detector and the Crystal
Barrel detector [45]. As shown in the reference, the acceptance of the 3 PED events drops in this
region as the proton is not detected by the main calorimeters in this region. To compensate for this
acceptance hole, additional events are included in the analysis of the CBELSA/TAPS data, namely
the 2 PED events. As 2 PED events can not be selected as good as 3 PED events2, the results of the
2 PED events can be subjected to higher systematic uncertainties. While all these problems of this
CBELSA/TAPS data only give a hint to explain these deviations, the A2 data for this kinematic region
can be discussed in detail regarding this deviations. Possible explanations for the deviations are the
dilution factor, the polarization degrees of the photon and the target, and background contamination. A
wrong target polarization degree would affect all bins as the target correction factors are global factors.
In addition, the polarization needed to be corrected by a factor that would result in a polarization
degree above 100%. As a conclusion, the target polarization degree can be excluded. The linear
polarization degree is only depending on the beam photon energy and not the cosθπ0,CMS binning.
Therefore, if the problems arise from the beam photon polarization degree, the deviation should be
seen in all cosθπ0,CMS bins. As this is not the case, the beam polarization degree can be ruled out as
well. However, the dilution factor reveals a cosθπ0,CMS dependence as has been shown in Sec. 8.1.3,
and thus could perhaps explain this deviation. The data in this cosθπ0,CMS bin are only 3 PED events
and thus the dilution factor can be determined via the coplanarity distributions with small systematic
uncertainties. The inspection of the dilution factors in Fig. A.8 give a dilution factor value d of about
0.8 for both of these bins and a quite flat distribution of the surrounding bins.

2The angular cuts are missing (cf. Sec. 7.5.2).
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Fig. 9.2: Comparison of the results for the double polarization observable G with previous data for
γ⃗⃗p→pπ0 as a function of the beam photon energy Eγ . The results of the double polarization observable
G are shown as a function of the mean value of the beam photon energy bin Eγ for the kinematic range
−1.00 ≤ cosθπ0,CMS < 0.11. The black points represent the results of the new A2 data together with their
statistical uncertainties whereas the red points the CBELSA/TAPS data [45, 64]. The gray boxes show the
systematic uncertainties.
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Fig. 9.3: Comparison of the results for the double polarization observable G with previous data for
γ⃗⃗p→pπ0 as a function of the beam photon energy Eγ . The results of the double polarization observable
G are shown as a function of the mean value of the beam photon energy bin Eγ for the kinematic range
0.11 ≤ cosθπ0,CMS < 1.00. The black points represent the results of the new A2 data together with their
statistical uncertainties whereas the red points the CBELSA/TAPS data [45, 64]. The gray boxes show the
systematic uncertainties. Note the different y-axis range compared to Fig. 9.2.

To match the considered A2 point with the CBELSA/TAPS point, the dilution factor needs to be
decreased. Nevertheless, a smaller dilution factor d directly requires an increasing scaling factor sC.
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As the obtained scaling with the required matching dilution factor would result in an overall negative
reconstructed hydrogen distribution, the dilution factor can not be the source of the deviation. The
final possible source is the background contamination. The CBELSA/data collaboration quoted an
overall background contamination of less than 3% [64]. The A2 data also contain background of
less than 2% in this kinematic region. Even if the background contributes with the maximal possible
polarization observable value of ±1, the deviation could not explain these effects.
A final remarkable observation is seen in the 14th cosθπ0,CMS bin (0.44 ≤ cosθπ0,CMS < 0.56) for the
same energy bins as above. In that case, even a different sign of the extracted polarization observable
values is observed. Whereas the data points in this analysis are only given by the 3 PED event yields,
the points in the CBELSA/TAPS data are already dominated by the 2 PED events. As the angular cuts
for the selection are missing, 2 PED events are more sensitive to background contamination.
Nevertheless, besides these small deviations, a very good agreement between the new A2 data and the
CBELSA/TAPS data is seen and for the first time, precise measurement of the double polarization
observable G below 600 MeV are available.

9.1.2 Double Polarization Observable G for the reaction γ⃗ p⃗ → nπ+

The final obtained results of the new A2 data for the double polarization observable G in the reac-
tion γ⃗ p⃗ → nπ+ have been determined in a beam photon energy range from 264 MeV to 842 MeV
(W = 1145MeV− 1569MeV) with a 34 MeV energy bin window and are indicated by the black
points in Fig. 9.4 and Fig. 9.5. Up to now, the data base for the polarization observable G in the
reaction γ⃗ p⃗ → nπ+ is with a total of only 23 other data points within the analyzed energy region
quite oversee-able. Past data were published by the A2/GDH collaboration with six cosθπ+,CMS bins
which cover the kinematic range −0.64 ≤ cosθπ+,CMS < 0.86 in the beam photon energy range from
326 MeV to 354 MeV [67]. The remaining 17 data points were recorded during the 90s with four
data points for a beam photon energy range from 320 MeV to 380 MeV [69] and 13 data points in the
range from 700 MeV to 850 MeV [70].
The corresponding old A2/GDH data are included in Fig. 9.4 and are given by the red points, whereas
the data points from Belayey et al. [69] are indicated by the blue dots. Both data sets agree very
good with the new A2 data within their statistical uncertainties. Most importantly, the new precise
A2 data cover also the cosθπ+,CMS bins in the forward direction and backward direction. These
points are of major importance for the Lmax-fit procedure which will be presented in Sec. 9.2 [43].
Finally, the overall statistic is improved significantly by a factor of more than four. At higher en-
ergies (Eγ > 700 MeV), a comparison with data from Bussey et al. [70], indicated by the green
points in Fig. 9.5, is possible. The first remarkable observation can be seen in the beam photon
energy range from 672 MeV to 706 MeV. Whereas the old data show a positive sign, the new A2
data clearly have a parabolic behavior with negative values. The remaining energy bins behave simi-
lar as the new A2 data, and both data sets agree very good with each other within their statistical errors.
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Fig. 9.4: Comparison of the results for the double polarization observable G with previous data for
γ⃗⃗p→nπ+. The results of the double polarization observable G are shown as a function of cosθπ+,CMS for the
beam photon energy from 230 MeV to 570 MeV. The black points represent the results of the new A2 data
together with their statistical uncertainties whereas the gray boxes show the systematic uncertainties. The new
A2 data are compared to the recent data base which consists of the A2/GDH data [67] in red and Belayey et al.
[69] in blue.
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Fig. 9.5: Comparison of the results for the double polarization observable G with previous data for
γ⃗⃗p→nπ+. The results of the double polarization observable G are shown as a function of cosθπ+,CMS for the
beam photon energy from 570 MeV to 842 MeV. The black points represent the results of the new A2 data
together with their statistical uncertainties whereas the gray boxes show the systematic uncertainties. The new
A2 data are compared to the recent data base which consists of Bussey et al. [70] in green.

As a conclusion, the comparison of the new A2 data with the existing data clearly show that an
improvement of the overall data base was reached with high precision quality data which can be used
to further constrain the PWAs at beam photon energies below 842 MeV.
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9.1.3 Double Polarization Observable E for the reaction γ⃗ p⃗ → nπ+

The final results of the new A2 data for the double polarization observable E in the reaction
γ⃗ p⃗ → nπ+ have been determined in a beam photon energy range from 230 MeV to 842 MeV
(W = 1145MeV− 1569MeV) with a 34 MeV energy bin window and are indicated by the black
points in Fig. 9.6 and Fig. 9.7. In contrast to the double polarization observable G, the data base
for the E observable is much better as the CLAS collaboration published in 2015 data which cover
the beam photon energy range from 350 MeV to 2370 MeV with a minimum energy bin window of
27 MeV. The kinematic region −0.9 ≤ cosθπ+,CMS < 0.9 is covered by up to 27 points [68]. They
are indicated by the red points, and their corresponding beam photon energy range is depicted in the
same color scheme.
At first sight, both data sets agree very good with each other within their statistical and systematic
uncertainties. Nevertheless, it should be kept in mind that the energy bins are not exactly the same.
Therefore, energy ranges where the change in the polarization observables values between two energy
bins is huge should be treated with caution, e.g., Eγ = (332-364) MeV. Although the A2 data lie
systematically below the CLAS data, the discrepancies can be ascribed to the energy difference of
the inspected bin. Whereas the A2 bin already starts at Eγ = 332 MeV, the CLAS bin begins at
Eγ = 350 MeV which corresponds to an energy difference of 18 MeV. Taking the behavior of all
surrounding energy bins into account, it becomes clear that the A2 data need to lie below the CLAS
data. A final striking argument is the total cross section as the energy bin lies in the falling slope
of the ∆(1232)3/2+(P33) resonance [20]. Therefore, the cross section for the A2 energy bin is still
higher compared to the CLAS energy bin, and thus E is negatively higher for the A2 bin by definition.
Small deviation at higher energy bins can be assigned to the second resonance region. Small deviation
at higher energy bins can be assigned to the second resonance region.
To avoid energy binning effects, a better representation is again to compare the results as a function of
the mean value of the beam photon energy window Eγ . Since the CLAS data have a finer binning in
cosθπ+,CMS

3, the bin with the smallest deviation to the A2 bin is chosen. The resulting E observable
for the 18 cosθπ+,CMS bins of the A2 data as a function of the mean value of the beam photon energy
window is depicted in Fig. 9.8 and Fig.9.9. In this representation, no energy binning effects contribute.
Both data agree very well with each other within the statistical uncertainty, which indicates that both
experiments have their systematic effects under control. Overall, the statistics of the CLAS data set
is better than the new A2 data. However, the main advantage of the new A2 data are the additional
points in the backward direction and beam photon energies below 350 MeV which can be used as a
new input for the Lmax-fit procedure and new PWA fits.

3The best comparison would have been to adjust the energy binning to the CLAS data. However, it has been decided to
extract the double polarization observable E in the same binning as the double polarization observable G. The reason lies in
the comparison of the A2 result with each other as the observables are extracted from the same data and with the same
selection and analysis procedure.
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Fig. 9.6: Comparison of the results for the double polarization observable E with previous data for
γ⃗⃗p→nπ+. The results of the double polarization observable E are shown as a function of cosθπ+,CMS for the
beam photon energy from 230 MeV to 570 MeV. The black points represent the results of the new A2 data
together with their statistical uncertainties whereas the red points the CLAS data [68]. The blue dashed line
indicates the position up to which point the 1 PED events are added to the 2 PED events while the gray boxes
shows the systematic uncertainties.
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Fig. 9.7: Comparison of the results for the double polarization observable E with previous data for
γ⃗⃗p→nπ+. The results of the double polarization observable E are shown as a function of cosθπ+,CMS for the
beam photon energy from 570 MeV to 842 MeV. The black points represent the results of the new A2 data
together with their statistical uncertainties whereas the red points the CLAS data [68]. The blue dashed line
indicates the position up to which point the 1 PED events are added to the 2 PED events while the gray boxes
shows the systematic uncertainties.
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Fig. 9.8: Comparison of the results for the double polarization observable E with previous data for
γ⃗⃗p→nπ+ as a function of the beam photon energy Eγ . The results of the double polarization observable
E are shown as a function of the mean value of the beam photon energy bin Eγ for the kinematic range
−1.00 ≤ cosθπ+,CMS < 0.11. The black points represent the results of the new A2 data together with their
statistical uncertainties whereas the red points the CLAS data [68]. The gray boxes show the systematic
uncertainties. Note the different y-axis range between the different rows.
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Fig. 9.9: Comparison of the results for the double polarization observable E with previous data for
γ⃗⃗p→nπ+ as a function of the beam photon energy Eγ . The results of the double polarization observable
E are shown as a function of the mean value of the beam photon energy bin Eγ for the kinematic range
0.11 < cosθπ+,CMS ≤ 1.00. The black points represent the results of the new A2 data together with their
statistical uncertainties whereas the red points the CLAS data [68]. The gray boxes show the systematic
uncertainties. Note the different y-axis range between the different rows.
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9.2 Dominant Partial Wave contributions

As already mentioned in the introduction of this thesis, a truncated PWA decomposition can be
performed with the obtained polarization observable data to determine the dominant partial wave
contributions. As a first step, the polarization observables are multiplied by the differential cross
section to obtain the profile functions Ǧ = G · dσ

dΩ
and Ě = E · dσ

dΩ
which are given as a partial wave

expansion, which is truncated at Lmax, by [43]:

Ǧ(W,cosθ) = ρ

2Lmax

∑
k=2

(aLmax)
Ǧ
k (W )P2

k (cosθ) , (9.1)

Ě(W,cosθ) = ρ

2Lmax

∑
k=0

(aLmax)
Ě
k (W )P0

k (cosθ) . (9.2)

Thereby, ρ is the phase space factor, (aLmax)
Ω̌

k are the energy-dependent real expansion coefficients
for a defined Lmax, and Pm

k (cosθ) are the angular-dependent associated Legendre polynomials.
The information about the contributing multipoles is included in the expansion coefficients. Some
examples of the coefficients are given in the introduction of this thesis. As the terms for the expansion
coefficients are quite large, the contributing partial waves are presented only for their corresponding
lM , i.e. an interference between the partial wave S11 and the P11 is contained in the ⟨S,P⟩ term whereas
an interference between P11 and P33 in ⟨P,P⟩. The connection between photoproduction multipoles
and the partial waves is given in Tab. 1.5. The extracted expansion coefficients are compared to
continuous curves which have been determined from the multipole solutions of the latest BnGa-2016
PWA solution [46].

9.2.1 The reaction γ⃗ p⃗ → pπ0

Fig. 9.10 shows six profile functions for different center of mass energies W as a function of the
kinematic variable cosθπ0,CMS . They have been fitted with associated Legendre polynomials up to a
maximum of Lmax = 4. In the top row, the corresponding χ2/ndf distribution for the different Lmax

truncation is presented.
Under the assumption of Lmax = 1, the angular dependence of the profile functions follow a parabolic
shape. However, it is clearly visible that the profile functions already need higher orders of L at low
energies. This can be seen as well in the χ2/ndf where only the first two energy bins are compatible
with χ2/ndf = 1. Starting at W = 1200MeV, the χ2/ndf of the Lmax = 1 fit starts to increase and
only the inclusion of higher waves up to Lmax = 3 (F-waves) can describe the data from thereon.
Fig. 9.11 and Fig. 9.12 present the energy-dependent real expansion coefficients truncated at Lmax = 3.
Below W = 1400MeV, the first coefficient (a3)

Ǧ
2 is dominated by the interference term ⟨P,P⟩. This

can be explained by the dominance of the ∆(1232)3/2+(P33) resonance which does not interfere with
S-, D- or F-waves in this coefficient. Starting at about W = 1400MeV, the contribution of S- and
D-waves is seen in form of the interference terms ⟨S,D⟩ and ⟨D,D⟩. Although their inclusion helps to
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describe the behavior of the extracted expansion coefficient, deviations are still present which already
indicates in this coefficient that modification in the S- and/or D-waves might be needed. In the ⟨S,D⟩
term, a small pη cusp effect occurs at the photoproduction threshold of the pη channel which is
indicated by the dashed line. It is seen as a sudden drop or increase in the expansion coefficient. For
the first time, the cusp effect in the pπ0 channel was observed in the differential cross section[134].
However, the A2 data in this region are not precise enough to confirm the cusp. For that, a finer energy
binning is mandatory which however would result in higher statistical uncertainties. The cusp is most
pronounced in this coefficient due to the ⟨S,D⟩ interference term. First of all, the S-waves with the
N(1535)1/2−(S11) resonance dominate the pη photoproduction at threshold which explains the seen
cusp effect. The strength of the cusp in the coefficient is finally given by its interference partner. For
the first coefficient, the partner is the D-waves which have the dominant N(1520)3/2−(D13) resonance
in that region.
The importance of D-waves at low center of mass energies W can be seen in the second coefficient
(a3)

Ǧ
3 due to the interference of the D-waves with the P-waves. Here already starting at about

W = 1300MeV the interference between the P- and D-waves is not sufficient to describe the data at
all. Here already starting at about W = 1300MeV the interference between the P- and D-waves is
not sufficient to describe the data at all. Only the inclusion of F-waves can match the data with the
BnGa solution. The cusp effect is also seen in the continuous curves of this coefficient by the ⟨S,F⟩
interference term but it is again too small to give a further statement.
The necessity of F-waves at even low center of mass energies becomes clear in the next coefficient
(a3)

Ǧ
4 where interference between ⟨P,F⟩ and ⟨F,F⟩ occur. Although the amplitude is close to zero, a

clear deviation from zero is visible for the coefficient and the BnGa solution. This coefficient has also
a feature compared to the first coefficient concerning the ⟨D,D⟩ term. In the third coefficient, only
interference terms between different total angular momentum contribute whereas in the first one does
not. Therefore, the contribution of the term is higher in the first coefficient due to the interference of
two multipoles to which the dominant N(1520)3/2−(D13) resonance couples. Since the latter does
not exist in the third coefficient, some sensitivities to weakly contributing D-wave resonances might
be accessible, e.g., the N(1675)5/2−(D15). Coming to the next coefficient (a3)

Ǧ
5 , a small hint of

G-waves in the ∆(1232)3/2+(P33) region is visible via the ⟨P,G⟩ term. Whereas the BnGa solution
shows no deviation from zero in this region, the data does. A similar peak like structure has been
seen in the higher expansion coefficients of the differential cross section as well [43]. However, the
authors quote that the structure is caused by systematic uncertainties in the analyzed data4. To take
into account systematic effects in the extracted expansion coefficient in this analysis, another fit was
performed where the total error is given by:

∆Ω =
√

∆Ω2
stat +∆Ω2

syst. (9.3)

4It is noteworthy that the data were recorded with the A2 experiment. Thus, a possible explanation could be that the
peak is caused by a not understood systematic effect of the detector setup
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Even after the inclusion of the systematic uncertainties, a deviation from zero is visible. However,
the data are not precise enough to give a clear statement as only two data points deviate from zero.
Therefore, to rule out contributions of G-waves, a more precise measurement of the observable G is
needed.
A more robust statement can be made for the higher center of mass energies where the expansion
coefficients start to deviate from zero at about W = 1460MeV while the BnGa solution first at
W = 1520MeV. Together with the observation of the other coefficients, the contribution of the
D-waves in the ⟨D,F⟩ term could be wrong. Note that a similar observation is seen in the expansion
coefficient (a4)

Ě
5 which has been determined within the thesis of F. Afzal [14].

Overall, due to the sensitivity of the profile function Ǧ to only interference terms in all expansion
coefficients, the Lmax-fit procedure can extract even small contributing multipoles with high angular
momentum lM at low center of mass energies. Especially, the interference with the P-waves is well
pronounced as here the dominant ∆(1232)3/2+(P33) contributes.
To study the Roper resonance in more detail, the different contributing interference terms of the ⟨P,P⟩
block are plotted separately for the first coefficient as can be seen in Fig. 9.13. From the inspection of
the Fig, two important information can be extracted. On the one hand, the interference between the
E1+ and the M1− multipole is negligible. On the other hand, the interference between the M1+ with
the E1+ and M1− multipole has the same strength ,and they interfere destructively. Because only small
deviations to the extracted expansion coefficient are seen, the new data may help to further constrain
this interference terms. As already concluded previously, problems might be present in the D-wave
interference terms. However, since the strength of the contribution of the interference of ⟨S,D⟩ and
⟨D,D⟩ are in the same order, the deviation can not easily be traced back to the D-wave contribution.
For a final cross-check of the quality of the new A2 data, the CBELSA/TAPS data are used to
determine the expansion coefficient in a similar way. These are indicated by the red points in the Fig.
9.14 and 9.15. In total, a good agreement between both data sets is seen which supports the quality of
the new A2 data.
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Fig. 9.10: Associated Legendre polynomial fits to the profile function Ǧ for γ⃗⃗p→pπ0. The profile function
Ǧ as a function of the kinematic variable cosθπ0,CMS were fitted with associated Legendre polynomials which
are described by Eq. (9.2). The fits have been truncated at different Lmax. Hereby, the green line corresponds to
Lmax = 1, the blue line to Lmax = 2, the red line to Lmax = 3, and the black line to Lmax = 4. As an illustration of
the fits, six profile functions (black points) are presented in the second to fourth row together with the different
truncated Lmax-fits. The corresponding χ2/ndf of all fits is depicted in the top row as a function of the center of
mass energy W and the beam photon energy Eγ .
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Fig. 9.11: Fit coefficients (a3)
Ǧ
2···4 for γ⃗⃗p→pπ0 as a function of the center of mass energy W. The resulting

fit coefficients, indicated by the black points, are plotted on the left side. They are compared to continuous curves
which have been determined from the multipole solutions of the BnGa-2016 PWA solution [46]. The solution
have been truncated at different Lmax. Hereby, the green solid curve corresponds to Lmax = 1, the blue solid
curve to Lmax = 2, the red solid curve to Lmax = 3, and the black solid curve to Lmax = 4. On the right panel,
the contributing partial wave interference terms are given for the different Lmax values. Thereby, Lmax = 1 only
contains the contribution of S-and P-waves, Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves,
and Lmax = 4 additionally G-waves. The individual interference terms are included as well and are indicated by
their color and dashed or dotted curves. The dashed-dotted line marks the photoproduction threshold of the pη

channel.
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Fig. 9.12: Fit coefficients (a3)
Ǧ
5···6 for γ⃗⃗p→pπ0 as a function of the center of mass energy W. The remaining

plot which correspond to Fig. 9.11. For further information, see caption of Fig. 9.11.
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Fig. 9.13: Contributing interference terms for the ⟨P,P⟩ block in the fit coefficient (a3)
Ǧ
2 for the pπ0

channel. The different interference terms for the ⟨P,P⟩ block are plot together with the extracted expansion
coefficients which are indicated by the black points. The remaining curves are similar to the ones defined in Fig.
9.11.
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Fig. 9.14: Comparison of the fit coefficients (a3)
Ǧ
2···4 for γ⃗⃗p→pπ0 as a function of the center of mass

energy W. The resulting fit coefficients, indicated by the black points, are plotted on the left side together with
the obtained once with the CBELSA/TAPS data in red [45, 64]. They are compared to continuous curves which
have been determined from the multipole solutions of the BnGa-2016 PWA solution [46]. The solution have
been truncated at different Lmax. Hereby, the green solid curve corresponds to Lmax = 1, the blue solid curve
to Lmax = 2, the red solid curve to Lmax = 3, and the black solid curve to Lmax = 4. On the right panel, the
contributing partial wave interference terms are given for the different Lmax values. Thereby, Lmax = 1 only
contains the contribution of S-and P-waves, Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves,
and Lmax = 4 additionally G-waves. The individual interference terms are included as well and are indicated by
their color and dashed or dotted curves. The dashed-dotted line marks the photoproduction threshold of the pη

channel.



9.2 Dominant Partial Wave contributions 225

 [MeV]W
1200 1400 1600 1800

b/
sr

]
µ

  [
5G ) 3

(a

0.05−

0

0.05

 [MeV]γE
400 600 800 1000 1200

(a3)
Ǧ
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Fig. 9.15: Comparison of the fit coefficients (a3)
Ǧ
5···6 for γ⃗⃗p→pπ0 as a function of the center of mass

energy W. The remaining plot which correspond to Fig. 9.14. For further information, see caption of Fig. 9.14.

9.2.2 The reaction γ⃗ p⃗ → nπ+

Fig. 9.16 shows six profile functions for different center of mass energies W as a function of the
kinematic variable cosθπ+,CMS for the nπ+ channel. They have been fitted with associated Legendre
polynomials up to a maximum of Lmax = 4. In the top row, the corresponding χ2/ndf distribution for
the different Lmax truncation is presented.
Inspecting the χ2/ndf distribution and the profile functions, a first conclusion is again that only S-
and P-waves are not able to describe the data at all. In contrast to the pπ0 channel, the addition
of D-waves in the region between roughly W = 1260MeV and W = 1360MeV is not sufficient as
well. This can be seen not only in the χ2/ndf but also in the profile function, e.g., the second profile
function for W = 1290MeV. Finally, the expansion coefficients demonstrate that higher orders of L
contribute already at low energies. Therefore, Fig. 9.17 and Fig. 9.18 illustrate the energy-dependent
real expansion coefficients truncated at Lmax = 3.
Already the first coefficient (a3)

Ǧ
2 leads to the conclusion that at least F-waves are needed to match

the BnGa solutions to the extracted expansion coefficients. Whereas only S-, P- and D-waves alone
overestimates the expansion coefficient, the interference of the F-waves with the D-waves and itself
correct the deviation between the coefficient and the BnGa solution. This correction can mainly
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be assigned to the ⟨P,F⟩ interference term due to the dominant ∆(1232)3/2+(P33) resonance in the
P-waves.
A final remarkable observation in this coefficient is the well pronounced pη-cusp which is seen close
to the η photoproduction threshold (solid line) by a sudden and discontinuous change in the data
but also in the BnGa solution. The cusp is most pronounced in this coefficient due to the ⟨S,D⟩
interference term. The pη-cusp is stronger in the nπ+ channel compared to the pπ0 channel which is
in agreement with the findings in [134]. Another interference term with S-waves is given in the second
coefficient (a3)

Ǧ
3 by the F-waves. Although the statistics of the A2 data is quite poor to constrain

the behavior of the pη- cusp in this coefficient, a sudden jump in the coefficient is present. Overall,
the coefficient also confirms the necessity of F-waves but further indicates already sensitivities to
G-waves. Only the inclusion of G-waves, mainly due to the ⟨P,G⟩ term, can describe the data. This
claim is supported by the next two coefficient (a3)

Ǧ
4 and (a3)

Ǧ
5 which are only sensitive to interference

between F-and G-waves below W = 1400MeV. Combining these information with the extracted
expansion coefficients, a final conclusion is that small contributions of F- and G-waves are visible at
low energies. This can be assigned to the non-resonant background terms, including the pion-pole and
Kroll-Ruderman term, and the interference behavior of the multipoles of the profile function of G .
To study the sensitivity to the Roper resonance in the nπ+ channel, the different contributing in-
terference terms of the ⟨P,P⟩ block are plotted separately for the first coefficient in Fig. 9.19. It
has been shown in Fig. 9.17 that the P-waves alone are not enough to describe the data at all
which can be assigned to the strong contribution of higher waves at even lower energies. Therefore,
in contrast to the pπ0 channel, the sensitivity to the Roper resonance is already not given in the
∆(1232)3/2+(P33) region. Hereby, the difference between a truncation at Lmax = 1 and Lmax = 2
can be traced down to the dominant ⟨S,D⟩ term5 whereas the difference between the truncation at
Lmax = 2 and Lmax = 3 to the ⟨P,F⟩ term.

Fig. 9.20 shows six profile functions for different center of mass energies W as a function of
the kinematic variable cosθπ+,CMS for the double polarization observable E together with the fitted
associated Legendre polynomials up to a maximum of Lmax = 4. Fig. 9.21 and Fig. 9.22 illustrates
the energy-dependent real expansion coefficients truncated at Lmax = 3.
For the double polarization observable E in the nπ+ channel, the S- and P-waves of the BnGa solution
alone are not able to describe any coefficient at all. Already in the first coefficient (a3)

Ě
0 , the ⟨D,D⟩

term is needed to match the data with the multipole solutions. Minor corrections of F- and G-waves
are seen as well. These are, however, very small as they interfere only with themselves in this
coefficient. Even their inclusion shows a clear deviation to the expansion coefficient starting at about
W = 1400MeV. Stronger contributions of F-waves are visible in the next coefficient (a3)

Ě
1 . Here,

the D-waves interfere with the F-waves which results in a significant correction between Lmax = 2
and Lmax = 3. The inclusion of G-waves has a minor correction due to the interference with only

5S-waves are given by the E0+ multipole. Due to the t-channel pion exchange which is forbidden in the pπ0 channel,
especially the real part of the nπ+ multipole is huge compared to the one of the nπ+ channel.
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F-waves. The second extracted coefficient shows an additional peak structure in the region of the
N(1440)1/2+(P11) resonance which is not at all seen by the BnGa solution. Therefore, the coefficients
are investigated in more detail. As a first step, the CLAS data were used to extract the coefficients
similarly. At first sight, the inspection of Fig. 9.23 might suggest that both results do not match at
all, e.g., the peak structure is not seen with the CLAS data. The discrepancy between both results,
however, can be traced back to the CLAS points in the forward direction (cosθπ+,CMS > 0.7) which
have a much higher precision than the A2 data in that region. After excluding these points in the fit of
the data and therefore achieving a similar angular coverage, both results show the peak structure as can
be seen in Fig. 9.25. The high sensitivity to the forward points can be explained by the fact that the
observable E is constrained to 1 for the extreme angles cosθπ+,CMS = ±1 whereas G to 0. As a result,
the profile function Ǧ is fixed to 0 whereas the profile function Ě is not. Thus, due to the non-existing
constrains in the forward direction together with the CLAS points in the forward direction with high
statistics, the huge deviation between both data set seems plausible and the peak structure could
simply be an artifact due to the lack of information in the forward direction. Nevertheless, as can be
seen in Fig. 9.23, the extracted coefficient with the CLAS data can not be described by the BnGa
solution as well. This is especially pronounced in the region of the N(1680)3/2+(F15) resonance
due to the interference terms ⟨D,F⟩ and ⟨F,G⟩. The coefficient (a3)

Ě
2 illustrates again the need of

D-waves at low energies. Besides that, the ⟨D,D⟩ term causes a peak structure with a maximum at
about W = 1480MeV which is not in agreement with the A2 data. The CLAS data have this peak
structure, however, the BnGa solution is not able to describe the data even with the inclusion of partial
waves up to Lmax = 4. Similar statement can be made for the (a3)

Ě
3 coefficient. Although the statistics

are not sufficient enough to give any strong conclusion anymore, the expansion coefficient over the
whole analyzed energy region is smaller than the BnGa solution. Additionally, this is visible in the
expansion coefficient extracted with the CLAS data (cf. Fig. 9.24) towards higher energies, especially
again in the N(1680)3/2+(F15) region. For the higher coefficients, the statistic of the new A2 data
is not sufficient to give any statement. Overall, a conclusion is that, although the CLAS data are
included in the BnGa solutions, huge deviations between the coefficients and the BnGa solutions are
still appearing. As a final test, preliminary results of the higher beam photon energies of the new A2
data are presented in App. A.10 which strengthen the expansion coefficient of the CLAS data and
give also a final hint that the nπ+ final state is up to now not well understood by the PWAs.
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Fig. 9.16: Associated Legendre polynomial fits to the profile function Ǧ for γ⃗⃗p→nπ+. The profile function
Ǧ as a function of the kinematic variable cosθπ+,CMS were fitted with associated Legendre polynomials which
are described by Eq. (9.2). The fits have been truncated at different Lmax. Hereby, the green line corresponds to
Lmax = 1, the blue line to Lmax = 2, the red line to Lmax = 3, and the black line to Lmax = 4. As an illustration of
the fits, six profile functions (black points) are presented in the second to fourth row together with the different
truncated Lmax-fits. The corresponding χ2/ndf of all fits is depicted in the top row as a function of the center of
mass energy W and the beam photon energy Eγ .
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Fig. 9.17: Fit coefficients (a3)
Ǧ
2···4 for γ⃗⃗p→nπ+ as a function of the center of mass energy W. The resulting

fit coefficients, indicated by the black points, are plotted on the left side. They are compared to continuous curves
which have been determined from the multipole solutions of the BnGa-2016 PWA solution [46]. The solution
have been truncated at different Lmax. Hereby, the green solid curve corresponds to Lmax = 1, the blue solid
curve to Lmax = 2, the red solid curve to Lmax = 3, and the black solid curve to Lmax = 4. On the right panel,
the contributing partial wave interference terms are given for the different Lmax values. Thereby, Lmax = 1 only
contains the contribution of S-and P-waves, Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves,
and Lmax = 4 additionally G-waves. The individual interference terms are included as well and are indicated by
their color and dashed or dotted curves. The dashed-dotted line marks the photoproduction threshold of the pη

channel.



230 Discussion of the Results

 [MeV]W
1200 1300 1400 1500

b/
sr

]
µ

  [
5G ) 3

(a

0.1−

0

0.1

 [MeV]γE
300 400 500 600 700 800

(a3)
Ǧ
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Fig. 9.18: Fit coefficients (a3)
Ǧ
5···6 for γ⃗⃗p→nπ+ as a function of the center of mass energy W. The remaining

plot which correspond to Fig. 9.17. For further information, see caption of Fig. 9.17.
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Fig. 9.19: Contributing interference terms for the ⟨P,P⟩ block in the fit coefficient (a3)
Ǧ
2 for the nπ+

channel. The different interference terms for the ⟨P,P⟩ block are plot together with the extracted expansion
coefficients which are indicated by the black points. The remaining curves are similar to the once defined in
Fig. 9.17.
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Fig. 9.20: Associated Legendre polynomial fits to the profile function Ě for γ⃗⃗p→nπ+. The profile function
Ě as a function of the kinematic variable cosθπ+,CMS were fitted with associated Legendre polynomials which
are described by Eq. (9.2). The fits have been truncated at different Lmax. Hereby, the green line corresponds to
Lmax = 1, the blue line to Lmax = 2, the red line to Lmax = 3, and the black line to Lmax = 4. As an illustration of
the fits, six profile functions (black points) are presented in the second to fourth row together with the different
truncated Lmax-fits. The corresponding χ2/ndf of all fits is depicted in the top row as a function of the center of
mass energy W and the beam photon energy Eγ .
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Fig. 9.21: Fit coefficients (a3)
Ě
0···2 for γ⃗⃗p→nπ+ as a function of the center of mass energy W. The resulting

fit coefficients, indicated by the black points, are plotted on the left side. They are compared to continuous curves
which have been determined from the multipole solutions of the BnGa-2016 PWA solution [46]. The solution
have been truncated at different Lmax. Hereby, the green solid curve corresponds to Lmax = 1, the blue solid
curve to Lmax = 2, the red solid curve to Lmax = 3, and the black solid curve to Lmax = 4. On the right panel,
the contributing partial wave interference terms are given for the different Lmax values. Thereby, Lmax = 1 only
contains the contribution of S-and P-waves, Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves,
and Lmax = 4 additionally G-waves. The individual interference terms are included as well and are indicated by
their color and dashed or dotted curves. The dashed-dotted line marks the photoproduction threshold of the pη

channel.
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Fig. 9.22: Fit coefficients (a3)
Ě
3···6 for γ⃗⃗p→nπ+ as a function of the center of mass energy W. The remaining

plots which correspond to Fig. 9.21. For further information, see caption of Fig. 9.21.
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Fig. 9.23: Comparison of the fit coefficients (a3)
Ě
0···2 for γ⃗⃗p→nπ+ as a function of the center of mass

energy W. The resulting fit coefficients, indicated by the black points, are plotted on the left side together
with the obtained once using the CLAS data in red [68]. They are compared to continuous curves which
have been determined from the multipole solutions of the BnGa-2016 PWA solution [46]. The solution have
been truncated at different Lmax. Hereby, the green solid curve corresponds to Lmax = 1, the blue solid curve
to Lmax = 2, the red solid curve to Lmax = 3, and the black solid curve to Lmax = 4. On the right panel, the
contributing partial wave interference terms are given for the different Lmax values. Thereby, Lmax = 1 only
contains the contribution of S-and P-waves, Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves,
and Lmax = 4 additionally G-waves. The individual interference terms are included as well and are indicated by
their color and dashed or dotted curves. The dashed-dotted line marks the photoproduction threshold of the pη

channel.
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Fig. 9.24: Comparison of the fit coefficients (a3)
Ě
3···6 for γ⃗⃗p→nπ+ as a function of the center of mass

energy W. The remaining plots which correspond to Fig. 9.23. For further information, see caption of Fig.
9.23.
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Fig. 9.25: Comparison of the matched fit coefficients (a3)
Ě
0···2 for γ⃗⃗p→nπ+ as a function of the center

of mass energy W. The resulting fit coefficients, indicated by the black points, are plotted on the left side
together with the once with the matched CLAS data in red [68]. Hereby, matched means that all points above
cosθπ+,CMS > 0.7 are rejected from the fitting. By that, both experiment have the same acceptance in forward
direction. The results are again compared to continuous curves which have been determined from the multipole
solutions of the BnGa-2016 PWA solution [46]. The solution have been truncated at different Lmax. Hereby, the
green solid curve corresponds to Lmax = 1, the blue solid curve to Lmax = 2, the red solid curve to Lmax = 3,
and the black solid curve to Lmax = 4. On the right panel, the contributing partial wave interference terms
are given for the different Lmax values. Thereby, Lmax = 1 only contains the contribution of S-and P-waves,
Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves, and Lmax = 4 additionally G-waves. The
individual interference terms are included as well and are indicated by their color and dashed or dotted curves.
The dashed-dotted line marks the photoproduction threshold of the pη channel.
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Fig. 9.26: Comparison of the matched fit coefficients (a3)
Ě
3···6 for γ⃗⃗p→nπ+ as a function of the center of

mass energy W. The remaining plots which correspond to Fig. 9.25. For further information, see caption of
Fig. 9.25.
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9.3 Comparison with Partial Wave Analysis (PWA) models

The results of the polarization observables are compared to four different PWA models, namely the
BnGa, MAID, SAID, and JüBo models. For the comparison with PWAs, it is first important to know
that a distinction between a prediction and a solution of the PWA model needs to be respected. A
solution already fitted an existing data set in their PWA, whereas a prediction does not. Therefore,
if available, the results are compared once with a prediction and once with a solution. The BnGa-
2011-02 [72], JüBo-2013-01 [135], MAID-2007 [49] and SAID-CM12 [30] are all predictions for the
double polarization observable G and E as they do not include the published CBELSA/TAPS and
CLAS data. The latest solution of the BnGa-2016 [46] and JüBo-2017 [50] already fitted their PWAs
to the G and E data of the CBELSA/TAPS and CLAS data besides other new data. For the observable
E in the nπ+ channel, the CLAS data cover the same energy region as the new A2 data and thus
BnGa-2016 and JüBo-2017 are PWA solutions. With only 23 points in the analyzed region of the new
A2 data, the PWAs for the observable G in the nπ+ channel can be assumed to be a prediction. For
the observable G in the pπ0 channel, the PWAs BnGa-2016 and JüBo-2017 are only solutions for
Eγ ≥ 600 MeV.

9.3.1 Double Polarization Observable G for the reaction γ⃗ p⃗ → pπ0

Fig. 9.27 and Fig. 9.28 show the comparison of the results, indicated by the black points, with the
PWA predictions and solutions which have been mentioned in the introduction of this chapter.
In the first resonance region (Eγ < 500 MeV), the absolute value of the double polarization observable
G is quite small. However, the high precision of the new A2 data allows to discuss even small
differences between the PWAs, especially in the number of zero-crossings.
In backward direction (cosθπ0,CMS ≤−0.5), the MAID-2007 PWA has always a positive sign and a
zero-crossing afterwards towards negative values. Similar behavior is seen for the new BnGa-2016
PWA and the JüBo-2017 PWAs. The old JüBo-2013-01 PWA still shows a zero-crossing in backward-
direction up to an energy of about 468 MeV whereas the old BnGa-2011-02 and the SAID-CM12
solution do not see any zero-crossings at all. In the first resonance region, a comparison with the data
in this kinematic region clearly show that the solutions with a zero-crossing from positive to negative
values are favored.
In forward direction (cosθπ0,CMS ≥ 0.7), the SAID-CM12 and the old JüBo-2013-01 solution undergo
another zero-crossing from negative values to positive values, whereas the MAID-2007 and both
BnGa PWAs stay negative. The JüBo-2017 undergoes a zero-crossing in the forward direction up to
an energy of 468 MeV and stays negative over the remaining energy region. A clear statement using
the comparison with the data is not possible, as the forward direction is dominated by the 2 PED
events and thus are affected by huge systematic uncertainties. Nevertheless, the inspection over the
whole energy region below Eγ < 500 MeV can lead to a careful conclusion that the data more likely
favor the solutions which do not undergo an additional zero-crossing in the forward direction.
Finally, the zero-crossings of G confirm the results of the Lmax-fit procedure which concluded that
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P-waves alone are not able to describe the data and that interference with D-waves and even higher
waves are seen, e.g., with N(1520)3/2−(D13). The contribution of D-waves at low energies has
been found in the expansion coefficient (a3)

Ǧ
3 in the ⟨P,D⟩ interference term. This coefficient- and

interference term are responsible for the zero-crossing from positive to negative values in the backward
direction for the BnGa solution. Above 600 MeV the same coefficient is dominated with an opposite
sign by the ⟨S,F⟩ term which corresponds to a zero-crossing in forward-direction. To achieve two
zero-crossings, a relative high value for the higher expansion coefficients (a3)

Ǧ
4·6 compared to the

lower ones is mandatory. These expansion coefficients are however close to zero and the same holds
for the BnGa-2016 multipoles. Therefore, the BnGa solutions only undergo one zero-crossing.
In Fig. 9.29 and Fig. 9.30 the results are represented as a function of the mean value of the beam
photon energy window Eγ for different cosθπ0,CMS bins. As the other representation of the results
already showed, the biggest deviation between the data and the different PWAs is seen in the forward
direction. One example is the 14th bin (0.44 ≤ cosθπ0,CMS < 0.56) where the new A2 data show a
change in the sign which can not be described by either the BnGa and MAID PWA6. On the other
hand, the old JüBo-2013-01 and the SAID-CM12 PWA undergo the zero-crossing but can not describe
the data.
In the region of the pη photoproduction threshold of about 708 MeV, the different PWA solutions,
except for the MAID-2007 and the JüBo-2013-01 PWAs, show a hint of the pη-cusp. However, the
statistics of the new A2 data is not precise enough to verify the cusp effect in this representation.

6As a reminder: In Sec. 9.1.1 it was shown that the new A2 data and the previous CBELSA/TAPS data disagree.
Whereas the A2 data show a zero-crossing, the CBELSA/TAPS data do not.
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Fig. 9.27: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→pπ0.
The results of the double polarization observable G are shown as a function of cosθπ0,CMS for the beam photon
energy from 230 MeV to 570 MeV. The black points represent the results of the new A2 data together with
their statistical uncertainties. The blue dashed line indicates the position where the 2 PED events are added
to the 3 PED events. The results are compared to the following PWAs: BnGa-2011-02 (red dashed line) [72],
BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line) [135],
JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Fig. 9.28: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→pπ0.
The results of the double polarization observable G are shown as a function of cosθπ0,CMS for the beam photon
energy from 570 MeV to 842 MeV. The black points represent the results of the new A2 data together with
their statistical uncertainties. The blue dashed line indicates the position where the 2 PED events are added
to the 3 PED events. The results are compared to the following PWAs: BnGa-2011-02 (red dashed line) [72],
BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line) [135],
JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Fig. 9.29: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→pπ0 as
a function of the beam photon energy Eγ . The results of the double polarization observable G are shown as a
function of the mean value of the beam photon energy bin Eγ for the kinematic range −1.00 ≤ cosθπ0,CMS <
0.11. The black points represent the results of the new A2 data together with their statistical uncertainties while
the gray boxes shows the systematic uncertainties. The results are compared to the following PWAs: BnGa-
2011-02 (red dashed line) [72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01
(green dashed line) [135], JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Fig. 9.30: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→pπ0 as
a function of the beam photon energy Eγ . The results of the double polarization observable G are shown as a
function of the mean value of the beam photon energy bin Eγ for the kinematic range 0.11 ≤ cosθπ0,CMS < 1.00.
The black points represent the results of the new A2 data together with their statistical uncertainties while the
gray boxes shows the systematic uncertainties. The results are compared to the following PWAs: BnGa-2011-02
(red dashed line) [72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green
dashed line) [135], JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30]. Note the different
y-axis range compared to Fig. 9.30.
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To show the importance and the impact of the polarization observable overall, the multipole amplitudes
of the BnGa, JüBo and SAID solutions were extracted and compared before and after the inclusion
of new data for the single and double polarization observables E,G,H,T and P in the pπ0 channel7

[39]. A comparison of the solutions is performed by plotting the combined variance of all three PWA
multipole amplitudes up to L = 4 which is shown in Fig. 9.31. Hereby, the variance between two
models is defined as:

var(1,2) =
1
2

16

∑
i=1

(M1(i)−M2(i))(M ∗
1 (i)−M ∗

2 (i)) , (9.4)

with M1(i) and M2(i) being the multipoles for the two compared PWA models 1 and 2.

Fig. 9.31: The combined variance of the BnGa, JüBo and SAID PWA solutions. The combined variance
of the BnGa, SAID and JuBo PWA solutions is presented for the multipole amplitudes up to L=4 for the pπ0

channel. The variances are once shown for the case without the new polarization observables and once with.
The improvement is indicated by the green shaded area and by the black line as well. The contributon of the
E0+ multipole to the improvement is displayed separately by the gray dashes line. Finally, the covered energy
ranges of the polarization observables are shown at the top (figure taken from [39]).

It is clearly visible that the inclusion of the new polarization observable data (see colored bars in
the top) significantly improves the differences between the PWAs and lead to a further convergence
in the covered energy range. The author quote that especially the E0+ multipole helped to improve

7Note that the SAID-CM12 solution which has been used in this thesis, does not include the new data. Only JüBo-2017
and BnGa-2016 include these data.
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the convergence of the different solutions. Its contribution is included as well in Fig. 9.31. Overall,
large variances are still visible for the energy range below W = 1500 MeV where no new data were
included. Note that the plot is only starting at W = 1300 MeV. Thereby, the new A2 data for
the double polarization observable G and the double polarization observable E [14] might help to
further constrain the different PWAs even below W = 1300 MeV. The author of the paper quote
significant discrepancies, in particular in the low-mass region for the E0+ multipole [39]. Here, the
background contribution show a much stronger contribution than the resonant contribution. The
expansion coefficient (a3)

Ě
1 , which has been determined with the double polarization observable E

using the new A2 data, is sensitive to an interference of S- and P-waves at low energies. It has been
found that further improvements are needed in this interference [14], at least for the BnGa-2014
solution [39]. As the expansion coefficient (a3)

Ǧ
2 within this analysis showed no significant necessity

of an improvement of the P-waves at low energies, this might be a first hint that S-waves still need to
be optimized in the pπ0 channel of the BnGa solution. A statement concerning the other solutions is
up to now not possible as no Lmax-fit procedure was performed with the other solution. Finally, the
author of the paper claimed only small improvements in the imaginary part of the M1− multipole but
significant once in the real part. Here, especially the results of the new double polarization observable
G might help as they show a strong sensitivity to the imaginary part of the M1− multipole.

9.3.2 Double Polarization Observable G for the reaction γ⃗ p⃗ → nπ+

Fig. 9.32 and Fig. 9.33 show the comparison of the results, indicated by the black points, with the
PWA predictions and solutions which have been mentioned in the introduction of this chapter. In
contrast to the pπ0 channel, all PWAs show similar behavior in the first resonance region. At low
energies, the shape of G has a parabolic behavior which can be traced back to the dominance of
P-waves, namely N(1440)1/2+(P11) and ∆(1232)3/2+(P33). The zero-crossing in forward-direction
is a confirmation of higher waves, e.g., D-waves including the N(1520)3/2−(D13) resonance. Another
possible explanation can be that non-resonant contributions from the pion-pole and Kroll-Ruderman
term and thus even higher waves are needed at low energies. This has especially been seen in the
expansion coefficient (a3)

Ǧ
3 . At least, the BnGa solution needs the G-waves in terms of the ⟨P,G⟩

interference terms to describe the expansion coefficient. Asides from small differences in the forward
direction, the JüBo-2017 solution presents a sudden changing behavior in backward direction in the
beam photon energy range from 400 MeV to 502 MeV. However, only the energy bin from 400 MeV
to 434 MeV owns good statistics in combination with low systematic uncertainties to rule out this
behavior.
In the second resonance region, the zero-crossing in the forward direction moves from high forward
angles towards backward angles and is completely negative starting at 672 MeV with a more defined
structure compared to lower energies. This is as well visible in the expansion coefficient (a3)

Ǧ
2 as

the dominance of the ⟨P,P⟩ interference terms of the BnGa-2016 solution, which causes the strong
positive parabolic shape, is close to zero at about 650 MeV.
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Fig. 9.32: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→nπ+.
The results of the double polarization observable G are shown as a function of cosθπ+,CMS for the beam photon
energy from 230 MeV to 570 MeV. The black points represent the results of the new A2 data together with
their statistical uncertainties while the gray boxes shows the systematic uncertainties. The results are compared
to the following PWAs: BnGa-2011-02 (red dashed line) [72], BnGa-2016 (red line) [46], MAID-2007 (blue
dashed line) [49], JüBo-2013-01 (green dashed line) [135], JüBo-2017 (green line) [50] and SAID-CM12
(black dashed line) [30].
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Fig. 9.33: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→nπ+.
The results of the double polarization observable G are shown as a function of cosθπ+,CMS for the beam photon
energy from 570 MeV to 842 MeV.The black points represent the results of the new A2 data together with their
statistical uncertainties while the gray boxes shows the systematic uncertainties. The results are compared to
the following PWAs: BnGa-2011-02 (red dashed line) [72], BnGa-2016 (red line) [46], MAID-2007 (blue
dashed line) [49], JüBo-2013-01 (green dashed line) [135], JüBo-2017 (green line) [50] and SAID-CM12
(black dashed line) [30].
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Fig. 9.34: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→nπ+

as a function of the beam photon energy Eγ . The results of the double polarization observable G are shown as
a function of the mean value of the beam photon energy bin Eγ for the kinematic range −1.00 ≤ cosθπ+,CMS <
0.11. The black points represent the results of the new A2 data together with their statistical uncertainties while
the gray boxes shows the systematic uncertainties. The blue dashed line shows the energy range up to which
the 1 PED events are included. The results are compared to the following PWAs: BnGa-2011-02 (red dashed
line) [72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line)
[135], JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Fig. 9.35: Comparison of the results for the double polarization observable G with PWAs for γ⃗⃗p→nπ+ as
a function of the beam photon energy Eγ . The results of the double polarization observable G are shown as a
function of the mean value of the beam photon energy bin Eγ for the kinematic range 0.11≤ cosθπ+,CMS < 1.00.
The black points represent the results of the new A2 data together with their statistical uncertainties while the
gray boxes shows the systematic uncertainties. The blue dashed line shows the energy range up to which the 1
PED events are included. The results are compared to the following PWAs: BnGa-2011-02 (red dashed line)
[72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line) [135],
JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Above 650 MeV, the negative sign is dominated by the interference of the ⟨S,D⟩ and ⟨D,D⟩ terms
with additional structures caused by higher waves. Comparing the PWA in details, only the JüBo-2017
solution shows again a zero-crossing in backward direction with a strong angular dependence in the
region of the pη photoproduction threshold of about Eγ = 708 MeV. No other solution behaves like
that and the data within their statistical precision can not confirm the JüBo-2017 solution.
In Fig. 9.34 and Fig. 9.35 the results are plotted as a function of the mean value of the beam photon
energy window Eγ . In the region of the pη photoproduction threshold, the different PWA solutions
show a hint of the pη-cusp. However, the statistic of the new A2 data is not good enough to identify
a clear cusp effect in this representation. Again, only the JüBo-2017 PWA can be ruled out in the
energy region around the pη photoproduction threshold region.

9.3.3 Double Polarization Observable E for the reaction γ⃗ p⃗ → nπ+

Fig. 9.36 and Fig. 9.37 show the comparison of the results, indicated by the black points, with
the PWA predictions and solutions which have been mentioned in the introduction of this chapter.
Below roughly 434 MeV, all PWAs show a parabolic behavior with a negative amplitude which gets
smaller with increasing energy. This can be assigned to the dominance of P-waves, namely the
∆(1232)3/2+(P33) resonance. Nevertheless, small differences between the new JüBo-2017 and all
other solutions are present in the backward direction, especially in the beam photon energy range
from 366 MeV to 502 MeV. Such deviations were obtained in the same energy region for the double
polarization observable G in both channels as well. However, the systematic uncertainties for the
double polarization observable E in this kinematic region are too large to give any strong statement.
Towards higher energies, the angular dependence gets more complex as higher waves contribute
stronger. Here, the differences between the recent BnGa-2016 and the JüBo-2017 PWA, which both
include the new E data of CLAS, and the older solutions SAID-CM12 and MAID-2007 get stronger.
Whereas the MAID-2007 PWA shows deviations below Eγ of about 650 MeV, the SAID-CM12
solution presents differences starting at about 740 MeV.
Overall, all recent PWAs show a similar angular dependence which can be explained by the already
existing data base for the observable E from the CLAS collaboration8 [68] and the helicity dependent
cross sections from the GDH/A2-collaboration [75]. Only small deviations in the backward direction
and forward direction can be seen for the recent PWA solutions. Especially in these regions, the new
A2 data can be used to further constrain the different PWAs.
Fig. 9.38 and Fig. 9.39 depicts the results as a function of the mean value of the beam photon energy
window Eγ . Similar to the double polarization observable G in the pπ0 channel, a small cusp effect
in the region of the pη photoproduction threshold of about Eγ = 708MeV is visible. In the 16th bin
(0.67 ≤ cosθπ+,CMS < 0.78), the new A2 data and CLAS data both show a zero-crossing at about
350 MeV towards positive values and at about 470 MeV another zero-crossing back to negative values.
This behavior is seen by all PWAs except by both BnGa PWAs.

8only included in BnGa-2016 and JüBo-2017
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Fig. 9.36: Comparison of the results for the double polarization observable E with PWAs for γ⃗⃗p→nπ+.
The results of the double polarization observable E are shown as a function of cosθπ+,CMS for the beam photon
energy from 230 MeV to 570 MeV. The black points represent the results of the new A2 data together with
their statistical uncertainties. The blue dashed line indicates the position up to which point the 1 PED events are
added to the 2 PED events. The results are compared to the following PWAs: BnGa-2011-02 (red dashed line)
[72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line) [135],
JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Fig. 9.37: Comparison of the results for the double polarization observable E with PWAs for γ⃗⃗p→nπ+.
The results of the double polarization observable E are shown as a function of cosθπ+,CMS for the beam photon
energy from 570 MeV to 842 MeV. The black points represent the results of the new A2 data together with
their statistical uncertainties. The blue dashed line indicates the position up to which point the 1 PED events are
added to the 2 PED events. The results are compared to the following PWAs: BnGa-2011-02 (red dashed line)
[72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line) [135],
JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Fig. 9.38: Comparison of the results for the double polarization observable E with PWAs for γ⃗⃗p→nπ+

as a function of the beam photon energy Eγ . The results of the double polarization observable E are shown as
a function of the mean value of the beam photon energy bin Eγ for the kinematic range −1.00 ≤ cosθπ+,CMS <
0.11. The black points represent the results of the new A2 data together with their statistical uncertainties while
the gray boxes shows the systematic uncertainties. The blue dashed line shows the energy range up to which
the 1 PED events are included. The results are compared to the following PWAs: BnGa-2011-02 (red dashed
line) [72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line)
[135], JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].
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Fig. 9.39: Comparison of the results for the double polarization observable E with PWAs for γ⃗⃗p→nπ+ as
a function of the beam photon energy Eγ . The results of the double polarization observable E are shown as a
function of the mean value of the beam photon energy bin Eγ for the kinematic range 0.11≤ cosθπ+,CMS < 1.00.
The black points represent the results of the new A2 data together with their statistical uncertainties while the
gray boxes shows the systematic uncertainties. The blue dashed line shows the energy range up to which the 1
PED events are included. The results are compared to the following PWAs: BnGa-2011-02 (red dashed line)
[72], BnGa-2016 (red line) [46], MAID-2007 (blue dashed line) [49], JüBo-2013-01 (green dashed line) [135],
JüBo-2017 (green line) [50] and SAID-CM12 (black dashed line) [30].



9.4 The E2/M1 Ratio in the γN → ∆(1232) transition 255

In the future, a detailed study of the impact of new polarization observable data in the nπ+ final state,
similar to the variance plots in Fig. 9.31 for the pπ0 final state, is important. The inclusion of the
new CLAS data for the double polarization observable E and beam asymmetry Σ for the nπ+ final
state together with the polarization observables of the pπ0 final state show evidence for a higher
G-wave resonance state, namely the ∆(2200)7/2 −(G37), which is listed as a one-star resonance in
the PDG. Significant improvements at lower energies were not reported [136]. Nevertheless, already
the comparison of the new A2 results with the recent and older PWA solutions show the importance
of the nπ+ final state and the necessity of a better data base. Even at low energies, differences are
still present in the PWA solutions for the double polarization observable E and G. Especially, in the
region of the pη photoproduction threshold, significant differences and structures occur in the double
polarization observable G.

9.4 The E2/M1 Ratio in the γN → ∆(1232) transition

In the ∆(1232)3/2+(P33) resonance region, the precise data for the two double polarization observ-
ables in both channels can help to investigate the quadrupole deformation of the proton. Assum-
ing a spherical form of the proton with only S-wave contributions, a quadrupole excitation of the
∆(1232)3/2+(P33) is not possible. Consequently, the electric quadrupole photon multipole E2 is
absent. The measurement of the ratio of the electric quadrupole E2 to the dominant magnetic dipole
M1 photon multipole in the γN → ∆(1232) transition is sensitive to the non-spherical components
which can be assigned mostly to D-wave contributions. Thus, several experimental efforts were
performed in the past to optimize the data base of the polarization observables. These include the
measurement of the beam asymmetry [37, 57, 137] or the helicity dependence of the total cross-section
[20] coincidentally with the differential cross-section. Since the double polarization observable G
is completely sensitive to the interference of multipoles, the new A2 data are perfectly suited to
investigate the small contributing E1+ and M1− multipole in the ∆(1232)3/2+(P33) resonance region.
These multipoles contribute to the electric quadrupole E2 and magnetic dipole M1, respectively, and
thus can improve the E2/M1 ratio.





Chapter 10

Summary and Outlook

The measurement of polarization observables in meson photoproduction opens a window for a better
understanding of the dynamics and interactions inside the nucleons. Within this thesis, the double
polarization observables G and E have been determined in a beam photon energy range from 230 MeV
to 842 MeV (W = 1145MeV−1569MeV). They were recorded with the Crystal Ball experiment
within the A2 collaboration. It is located at the electron accelerator MAMI in Mainz. Elliptically
polarized photons, containing a linearly and a circularly polarized component at the same time, were
produced via the interaction of a longitudinally polarized electron beam with a diamond radiator. The
produced photons were incident on a longitudinally polarized butanol target, and the detection system
detected the final state products.

About 3×107 events for the pπ0 channel and 4×107 for the nπ+ channel were selected. Thereby,
background contamination of less than 2% for the pπ0 channel and less than 5% for the nπ+ channel
was achieved. The extracted polarization observables demonstrate that the simultaneous determina-
tion of the double polarization observable E, using the circularly polarized component, and double
polarization observable G, using the linearly polarized component, can be performed. From the
experimental point of view, these results have a major impact for future experiments because now
only the target polarization orientation needs to be switched between longitudinal and transverse to
measure all polarization observables of the beam-target category.

The new high precision A2 data for the double polarization observable G in the pπ0 channel close
the gap between the ∆(1232)3/2+(P33) region and the already existing CBELSA/TAPS data. Both
data sets are in good agreement with each other in the overlapping region. The comparison of the
results with the recent PWA solutions indicates that further improvements need to be introduced
in PWAs in the first resonance region where no high precision data were available up to now. For
a better understanding of the contributing partial waves, the angular distributions were fit with a
truncated expansion of associated Legendre polynomials, which is the called Lmax-fit procedure. The
procedure reveals some indication that the BnGa-2016 PWA solution might need some improvements
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in the D-waves.
For the double polarization observable G in the nπ+ channel, this thesis presents a high precision
measurement of this observable for the first time. Overall, in the first resonance region, a good
agreement between the different PWA solutions is seen. The most significant discrepancies are
obtained at energies in the region of the pη photoproduction threshold. Here, the JüBo-2017 model
deviates strongly from the obtained data and all other solutions. Finally, with the help of the Lmax-fit,
the pη cusp can be seen in data.
For the double polarization observable E in the nπ+ channel, the ratio of 1.01±0.07 between the
results with a diamond and an amorphous radiator confirms that the measurement of the polariza-
tion observable E with elliptically polarized photons is feasible. Besides, the results for the double
polarization observable E in the nπ+ channel were compared with the recently published data from
the CLAS collaboration [68]. Although the detection of the final state is completely different for
both experiments, the data sets agree very well with each other, resulting in a good understanding
of the systematic effects within both data sets. The additional A2 data points below 350 MeV and
overall in the backward direction might help to constrain the different PWA solutions further. With
the help of the Lmax-fit procedure, this data set together with the results of the CLAS collaboration
strengthens the assumption that the BnGa-2016 multipole solution still needs improvement in the
second resonance region, corresponding to a beam photon energy range from 500 MeV to 900 MeV
(W = 1350 MeV−1600 MeV).

The CLAS collaboration already has reported that an analysis of the G observable in the pπ0 and nπ+

channel is ongoing in the beam photon energy region from about 575 MeV to 2350 MeV [138]. In
combination with the new high precision A2 data, the results of the double polarization observable G
and E in the neutral and charged pion photoproduction off the proton might help to further constrain
the resonances in the first and second resonance region. Especially the observable G with its feature
to be only sensitive to the interference of different multipoles is perfectly suited for studying the
N(1440)1/2+(P11) resonance. Also, with the sensitivity to the E1+ multipole, new input for the
E2/M1 ratio determination, which describes the quadrupole deformation of the proton, is available.
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Appendix A

Additional information and plots

A.1 MWPC reconstruction tracks

An overview of all possibilities in the MWPC reconstruction and their percentage contribution in a
typical run is shown in Tab. A.1.

Table A.1: Overview of the possible tracks and intersection which can be constructed by the MWPC
reconstruction. I stands for the internal strip, W for the wire and E for the external strip. The track number is
important for the analysis within the AcquRoot framework and should help later analyses to get access to it.
Their percentage contribution in a typical run is shown in right column.

MWPC 1 MWPC 0 track number %
IWE IWE 63 56.5
IWE IW 59 5.66
IWE WE 62 10.11
IWE IE 61 1.65
IW IWE 31 6.99
WE IWE 55 6.51
IE IWE 47 2.68
IW IW 27 2.00
EW EW 54 2.67
IE IE 45 1.35
IW EW 30 2.16
EW IW 51 1.29
IE IW 43 0.52
IW IE 29 0.29
IE WE 46 0.61
WE IE 53 0.26
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A.2 Monte Carlo Simulation Studies

A.2.1 Internal Holding Magnetic Field

The simulated holding magnetic field of the butanol target has shown that the orientation of the
magnetic field in data was always aligned against the z-direction of the incoming beam. This was
proven by simulating protons and charged pions with a holding magnetic field in direction and against
the z-direction of the beam. As the flight path of charged particles is deflected perpendicular to the
z-axis, the generated azimuthal angle of the charged particles can be compared to the reconstructed
ones. Depending on the orientation of the magnetic field, the particles are deflected to either higher
or lower reconstructed azimuthal angles. For protons with the holding magnetic field against the
z-direction, the deflection is in the order of 0.6° as can be seen in Fig. A.1.
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Fig. A.1: Impact of the internal holding magnetic field on the charged azimuthal angle. Shown are the
differences between generated and reconstructed azimuthal angles of photons and protons in the CB and the
TAPS for MC simulations with a holding magnet field of the butanol target in the z-direction. As expected,
photons are not deflected by the magnetic field whereas protons are deflected by 0.63°.

The coplanarity of the reaction γ p → pπ0 should therefore not be centered around 180° but rather
at 179°. A magnetic field in the opposite direction would cause a coplanarity distribution centered
around 181° as the protons are deflected exactly in the opposite direction. In Sec. 7.7.3, it was clearly
shown that the data favor the magnetic field against the z-direction of the incoming beam. For the π+

a higher deflection angle is expected due to its lower mass as can be seen in Fig A.2.
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Fig. A.2: Impact of the internal holding magnetic field on the charged azimuthal angle. Shown are the
differences between generated and reconstructed azimuthal angles of neutrons and π+s in the CB and the TAPS
for MC simulations with a holding magnet field of the butanol target in the z-direction. As expected, neutrons
are not deflected by the magnetic field whereas π+s are deflected by about 1°.
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Fig. A.3: Impact of the internal holding magnetic field on the charged azimuthal angle in data. Shown
are the differences between reconstructed and calculated azimuthal angle of the charged pions for both target
orientations. As expected from simulations, π+s are deflected by about 1°.
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To test in detail which orientation of the magnetic field was selected, a comparison of the reconstructed
and measured azimuthal angle of the pion was performed for both target polarization orientation (see
Fig. A.3). As it turned out, both setting use the orientation of the magnetic field against the z-direction
of the incoming beam. This can be explained by the fact that there are two possibilities to change the
polarization direction of the butanol target, namely either the orientation of the magnetic field or the
frequency of the irradiated microwaves has to be changed. Consequently, in data, the microwaves
were changed rather than changing the orientation of the field.

A.2.2 Physics Classes

The GEANT package provides different physics classes to describe particle interactions. A list of
these classes and their explanation is summarized in [97]. Moreover, the Basel group has studied
in detail which physics class is the best to describe the reactions γ p → π0 and γ p → nπ+ [97, 77].
As a result of their study, the physics class QGSP_BERT_HP was recommended because the neutron
detection efficiency of this class matched the neutron detection efficiency in data the most.

A.3 Study of the different Target Positions

As mentioned in Sec. 8.1.2.3, the different beamtimes had different target center positions. Thus, to
test the different target positions, a detailed study of the polar angular difference ∆θp = θp,calc −θp,rec

between the calculated and reconstructed proton polar angle in the reaction γ⃗ p⃗ → pπ0 is used. The
calculated proton polar angle is determined from the four momenta of the incoming beam photon,
the target at rest and the photons in the final state. As the photons are reconstructed and calibrated
under the assumption that the target cell is located at the center of the CB, a deviation of 0° in the
polar angular difference indicate that the actual reaction is produced at a different z-position inside the
target cell. Fig. A.4 shows for the beam photon energy range from 400 MeV to 434 MeV the different
polar angular difference ∆θp for the May 2015 beamtime in red and September 2015 in black. A
similar comparison is performed for the September 2015 and May 2014 beamtime in Fig. A.5 whereas
Fig. A.6 illustrates the comparison between May 2014 and November 2013. From the inspection of
all Figs. it becomes clear that the September 2015 beamtime and the May 2015 beamtime behave
similarly. On the other hand, a good agreement between May 2014 and November 2013 is obtained. A
clear deviation between both of these groups is seen and thus the individual beamtimes were recorded
with different target positions.
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Fig. A.4: ∆θp distribution forEγ = (400-434) MeV for different beamtimes. Shown are the ∆θp distributions
as a function of cosθπ0,CMS for a given beam photon energy range. The butanol distributions are shown for the
September 2015 beamtime in black and May 2015 in red.
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Fig. A.5: ∆θp distribution forEγ = (400-434) MeV for different beamtimes. Shown are the ∆θp distributions
as a function of cosθπ0,CMS for a given beam photon energy range. The butanol distributions are shown for the
September 2015 beamtime in black and May 2014 in red.
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Fig. A.6: ∆θp distribution forEγ = (400-434) MeV for different beamtimes. Shown are the ∆θp distributions
as a function of cosθπ0,CMS for a given beam photon energy range. The butanol distributions are shown for the
November 2013 beamtime in black and May 2014 in red.
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A.4 Dilution Factor

In the following, the dilution factors d, which have been used to determine the double polarization
observable G and E, are presented for all beamtimes and their corresponding coherent edge settings
for both analyzed channels. Fig. A.7 and Fig. A.8 show the results of the pπ0 channel. Inspecting
both Fig., it can be concluded that all dilution factors agree very good with each other within their
systematic uncertainties. Differences in the dilution factor of the 2 PED events can be traced back to
the problems discussed in Sec. 8.1.2.3. Similar results for the 2 PED events of the nπ+ channel are
depicted in Fig. A.9 and A.10. Also here no huge deviation between the different dilution factors is
visible.
The dilution factor of the 1 PED events are illustrated in Fig. A.11 and A.12. Note that the dilution
factor is only shown for the 350 MeV and 450 MeV edge setting as these are the only data which were
used to extract the double polarization observable G. The results are compared to the overall dilution
factor of all beamtimes, indicated by the red points, which has been used for the extraction of the
double polarization observable E. As the dilution factor is quite small, the systematic uncertainty is
huge and thus the disagreement between the different dilution factors can be explained by that.
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Fig. A.7: Comparison of the dilution factor for all beamtimes for the reaction γ⃗⃗p→pπ0. Shown are the
results of the dilution factor d as a function of cosθπ0,CMS for the beam photon energy from 230 MeV to
570 MeV for all beamtimes. The open circle shows the dilution factor d which has been determined with the
850 MeV edge setting of September 2015. Deviations from this dilution factor indicate the contribution of
different trigger adjustments, reconstruction holes and target positions as has been discussed in Sec. 8.1.2.3.
The systematic uncertainty coming from the dilution factor d is indicated by the gray boxes.
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Fig. A.8: Comparison of the dilution factor for all beamtimes for the reaction γ⃗⃗p→pπ0. Shown are the
results of the dilution factor d as a function of cosθπ0,CMS for the beam photon energy from 570 MeV to
842 MeV for all beamtimes. The open circle shows the dilution factor d which has been determined with the
850 MeV edge setting of September 2015. Deviations from this dilution factor indicate the contribution of
different trigger adjustments, reconstruction holes and target positions as has been discussed in Sec. 8.1.2.3.
The systematic uncertainty coming from the dilution factord is indicated by the gray boxes.
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Fig. A.9: Comparison of the dilution factor of the 2 PED events for all beamtimes for the reaction
γ⃗⃗p→nπ+. Shown are the results of the dilution factor d of the 2 PED events as a function of cosθπ+,CMS for the
beam photon energy from 230 MeV to 570 MeV for all beamtimes. The open circle shows the dilution factor d
which has been determined with the 850 MeV edge setting of September 2015. Deviations from this dilution
factor indicate the contribution of different trigger adjustments, reconstruction holes and target positions as has
been discussed in Sec. 8.1.2.3. The systematic uncertainty coming from the dilution factor d is indicated by the
gray boxes.
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Fig. A.10: Comparison of the dilution factor of the 2 PED events for all beamtimes for the reaction
γ⃗⃗p→nπ+. Shown are the results of the dilution factor d of the 2 PED events as a function of cosθπ+,CMS for the
beam photon energy from 570 MeV to 842 MeV for all beamtimes. The open circle shows the dilution factor d
which has been determined with the 850 MeV edge setting of September 2015. Deviations from this dilution
factor indicate the contribution of different trigger adjustments, reconstruction holes and target positions as has
been discussed in Sec. 8.1.2.3. The systematic uncertainty coming from the dilution factor d is indicated by the
gray boxes.
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Fig. A.11: Comparison of the dilution factor of the 1 PED events for all beamtimes for the reaction
γ⃗⃗p→nπ+. Shown are the results of the dilution factor d of the 1 PED events as a function of cosθπ+,CMS for
the beam photon energy from 230 MeV to 570 MeV for all beamtimes. The systematic uncertainty coming
from the dilution factor d is indicated by the gray boxes. The blue vertical dashed line shows the position up to
which point the 1 PED events are included in the extraction of the double polarization observable E.
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Fig. A.12: Comparison of the dilution factor of the 1 PED events for all beamtimes for the reaction
γ⃗⃗p→nπ+. Shown are the results of the dilution factor d of the 1 PED events as a function of cosθπ+,CMS for
the beam photon energy from 570 MeV to 842 MeV for all beamtimes. The systematic uncertainty coming
from the dilution factor d is indicated by the gray boxes. The blue vertical dashed line shows the position up to
which point the 1 PED events are included in the extraction of the double polarization observable E.
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A.5 Systematic Uncertainties of the Linearly Polarized Photons

Fig. A.13 shows the fitted coherent edge positions of the 450 MeV edge setting for the September
2015 beamtime. It is clearly visible that the edge was not completely stable at about 450 MeV edge.
Similar behavior is seen on the right side for the 850 MeV edge of the May 2015 beamtime.
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Fig. A.13: Fitted coherent edge positions of individual edge settings. Shown are the fitted coherent edge
positions from the active coherent edge fitting for two edge settings. On the left side, the results are shown
for the 450 MeV edge setting of the September 2015 beamtime whereas the left side shows the case for the
850 MeV edge setting of the Sep 15 beamtime. The red line on the left indicates the energy position where the
data sets are split (see text).

To proof that the systematic uncertainties are well understood, the data of the 450 MeV edge setting is
split into three data sets, namely:

all A data set which consists of all coherent edge positions of the 450 MeV edge setting.

low A data set which only takes the fitted coherent edge positions below 457 MeV.

high A data set which only takes the fitted coherent edges above 457 MeV.

For each set, the beam asymmetry ΣB is determined with Eq. (8.37) for the same beam photon energy.
As the asymmetry is determined for the same beam photon energy range, the only difference in the
amplitude can be caused by a difference in the linear polarization degree. Thus, by determining the
percentage deviation of the low/high data set to the all data set, the systematic uncertainties of the
linear polarization degree can be studied. On the one hand, this test can show that different coherent
edge positions produce the same results so that different coherent edge positions can be added up
in the analysis. On the other hand, the test can prove that the active coherent edge fitting does not
introduce any significant systematic uncertainties. Fig. A.14 shows as an example the result of both
percentage deviations for the beam asymmetry ΣB for the nπ+ channel for the beam photon energy Eγ

from 400 MeV to 434 MeV 1. On the left side, the percentage deviation to the low data set is shown
whereas on the right for the high data set.

1The test was performed as well for other energy regions, other coherent edges and also for the pπ0 channel. All showed
a similar result.
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Fig. A.14: Percentage deviations between results with different coherent edges. Shown is on the left side
the percentage deviation between the results of the beam asymmetry ΣB of the low data set low to the all data
set whereas on the right side for the high to the all data set. The red line indicates a linear fit to the percentage
deviation and the yellow error band shows a 5% uncertainty band.

A linear fit was performed to the percent deviation which results in a percent deviation within its
statistical uncertainties in the order of 3%. This is in perfect agreement with the assumed systematic
uncertainties of about 5% which is indicated by the yellow narrow band. Note that the test was
introduced and performed by C. Collicott of the A2 collaboration for a different data set as well and
quoted similar results [139]. As has been discussed and shown in Sec. 8.2.1.1 the result can be again
strengthen by Fig. A.15. Here, the effect of a manual shift of the coherent edge setting by ± 2 MeV is
shown for an edge setting at 850 MeV. The resulting fractional error is here as well in the order of 3%
which nicely agrees with the findings above and in Sec. 8.2.1.1.
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Fig. A.15: Systematic uncertainty test due to a shift of the coherent edge. The black line indicates the
fitted coherent edge distribution for the edge position at 850 MeV. The red and blue line correspond to the
distribution where the edge position were shifted by ± 2 MeV. On the right side, the fraction between the
non-shifted polarization degrees and the shifted one is depicted. The yellow area depicts the energy range in
which the polarization observables are extracted.
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A.6 Studies on the Beam Polarization Offset Angle ϕ0

To test the influence of the beam polarization offset angle ϕ0 on the extracted polarization observable G
(cf. Sec. 8.3.1.4), the determined offset angle was varied by ±1° and the observable were determined.
Fig. A.16 presents the result for the three offset angles for the 850 MeV edge position of the May
2014 beamtime and for the 750 MeV of the May 2015 beamtime. For the May 2015 beamtime where
both target polarization orientations are available, the results have a relative change in the order of
about 2%. Only the χ2/ndf got worse due to a not perfect sin2ϕ∥ modulation anymore. The situation
was different for the May 2014 beamtime. As G can not be determined by the amplitude of the sin2ϕ∥

modulation, the relative changes between the three offset angle setting were significant. As expected,
the shift of the beam polarization offset angle in either positive or negative direction resulted in a
similar shift of the G results. Together with the already mentioned problems of the diamond crystal
alignment, it has been decided to reject the May 2014 beamtime for the extraction of the double
polarization observable G.
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Fig. A.16: Systematic uncertainty test due to a shift of beam polarization offset angle. In the first and third
row, the black points indicate the results for the double polarization observable G which have been determined
with the extracted beam offset angle. The red and green points correspond to the results where the offset angle
was shifted by ± 1°, respectively. In the second and fourth row, the fraction between the non-shifted offset
angle and the shifted one is depicted. The yellow area depicts an uncertainty band of 5%. The first and third
row corresponds to the results of the May 2015 beamtime for the coherent edge at 750 MeV and a beam photon
energy Eγ = (706−740) MeV while the second and fourth row to the May 2014 beamtime for the coherent
edge at 750 MeV and a beam photon energy Eγ = (774−808) MeV.
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A.7 Results for the Beam Asymmetry ΣB (Monte Carlo Simulations)

The results of the Monte Carlo studies for the beam asymmetry ΣB are presented in Fig. A.17 and Fig.
A.18. More details are presented within the Sec. 8.3.3.
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Fig. A.17: Normalized residuals for the results of the beam asymmetry ΣB for the different Toy MC
samples. Shown are the residuals for the different MC samples, defined in Tab. 8.4, and the different extraction
methods. Hereby, the row number indicates the MC sample number and the column the three extraction
methods. All distributions are in agreement with a normal distribution.
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Fig. A.18: Results of the beam asymmetry ΣB for the different Toy MC samples. Shown are the extracted
polarization observable for the different MC samples, defined in Tab. 8.4, and the different extraction methods.
Hereby, the row number indicates the MC sample number and the column the three extraction methods. The
extracted polarization observables for the signal events (blue) are distributed around their input value of 0.7 and
the extracted once for the background events (red) around their input value of -0.7.
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A.8 Results for the Beam Asymmetry ΣB

The results for the beam asymmetry ΣB, using the likelihood function defined in Eq. (8.49), is shown
in Fig. A.19 and Fig. A.20 for the reaction γ⃗ p⃗ → pπ0 where in Fig. A.23 and A.24 for the reaction
γ⃗ p⃗ → nπ+ . They are indicated by the black points together with their statistical uncertainties and
have been determined in a beam photon energy range from 230 MeV to 842 MeV with a 34 MeV
broad energy bin window and 18 angular bins. The gray box presents the systematic uncertainties.
Note again that the presented results are an effective beam asymmetry since it not only contains
reactions on unbound reactions but also unwanted reactions on bound protons:

ΣB = d ·Σunbound +(1−d) ·Σbound. (A.1)

However, as Σbound behaves similar to Σunbound except for additional smearing in energy and angle due
to the additional Fermi motion, a qualitative comparison with other high-precision data is acceptable.
Nevertheless, the comparison should be treated with caution, especially in kinematic regions where
huge variations in the results with the energy or angle are obtained. Finally, please keep in mind that
the dilution factor for the 2 PED events drops down to about 0.1 and thus the assumption ΣB ≈ Σunbound

is not valid anymore.

The results for the γ⃗ p⃗ → pπ0 are compared to recent data for the beam asymmetry off unbound
protons which are given by the A2 collaboration in red in Fig. A.19 [57], the A2 collaboration again
in blue [55, 56], and the GRAAL collaboration in green [53, 66]. The CBELSA/TAPS data in Fig.
A.20 are results on a butanol target and thus are also results for the effective beam asymmetry ΣB [64,
45]. A final problem arises in the covered beam photon energy range for the individual energy bins
and thus their deviations to each other. These vary quite significantly. Nevertheless, an overall good
agreement between the new A2 data and all recently published data is given. To compensate the effect
of the different energy binning, the results are as well compared as a function of the mean value of the
beam energy window in Fig. A.21 and Fig. A.22. Thereby, the cosθπ0,CMS bin of all published data
was selected in such a way that the minimum distance to the corresponding bin of the new A2 data
bin window is chosen. Note that a maximum deviation of 0.06 was accepted. In this representation,
all data agree very good with each other. Major differences occur only in the region where the new
data are dominated by the 2 PED events.

The results for the γ⃗ p⃗ → nπ+ are compared to data from the A2 collaboration in red [67, 57],
and the Graal collaboration in green [65, 66]. Although both data set were measured on a liquid
hydrogen target and thus obtained the correct beam asymmetry on unbound protons, an overall very
good agreement is given. A representation as a function of the mean value of the beam energy window
is in this case not feasible as the previous data do not provide a sufficient angular coverage.
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Fig. A.19: Comparison beam asymmetry ΣB results with previous data for γ⃗⃗p→pπ0. Shown are the results
of the double polarization observable G as a function of cosθπ0,CMS for the beam photon energy from 230 MeV
to 570 MeV. The black points represent the results of the new A2 data together with their statistical uncertainties
whereas the gray boxes show the systematic uncertainties. The new A2 data are compared to the recent database
which consists of the A2/GDH data [57] in violet, the A2 data in blue [55, 56], and the Graal data [53, 66] in
green.
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Fig. A.20: Comparison of the beam asymmetry ΣB results with previous data for γ⃗⃗p→pπ0. Shown are the
results of the double polarization observable G as a function of cosθπ0,CMS for the beam photon energy from
570 MeV to 842 MeV. The black points represent the results of the new A2 data together with their statistical
uncertainties whereas the gray boxes show the systematic uncertainties. The new A2 data are compared to
the recent database which consists of the A2 data in blue [55, 56], the Graal data [53, 66] in green, and the
CBELSA/TAPS data in red [64, 45].
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Fig. A.21: Comparison of the of the beam asymmetry ΣB results with previous data for γ⃗⃗p→pπ0 as a
function of the beam photon energy Eγ . Shown are the results of the of the beam asymmetry ΣB as a function
of the mean value of the beam photon energy bin Eγ for the kinematic range −1.00 ≤ cosθπ0,CMS < 0.11. The
black points represent the results of the new A2 data together with their statistical uncertainties whereas the
gray boxes show the systematic uncertainties. The new A2 data are compared to the recent database which
consists of the A2/GDH data in violet [57], the A2 data in blue [55, 56], the Graal data [53, 66] in green, and
the CBELSA/TAPS data in red [64, 45].
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Fig. A.22: Comparison of the of the beam asymmetry ΣB results with previous data for γ⃗⃗p→pπ0 as a
function of the beam photon energy Eγ . Shown are the results of the of the beam asymmetry ΣB as a function
of the mean value of the beam photon energy bin Eγ for the kinematic range 0.11 < cosθπ0,CMS ≤ 1.00. The
black points represent the results of the new A2 data together with their statistical uncertainties whereas the
gray boxes show the systematic uncertainties. The new A2 data are compared to the recent database which
consists of the A2/GDH data in violet [57], the A2 data in blue [55, 56], the Graal data [53, 66] in green, and
the CBELSA/TAPS data in red [64, 45].
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Fig. A.23: Comparison beam asymmetry ΣB results with previous data for γ⃗⃗p→nπ+. Shown are the
results of the double polarization observable G as a function of cosθπ+,CMS for the beam photon energy from
230 MeV to 570 MeV. The black points represent the results of the new A2 data together with their statistical
uncertainties whereas the gray boxes show the systematic uncertainties. The new A2 data are compared to the
recent database which consists of data of the A2 collaboration in red [67, 57], and the Graal collaboration in
green [65, 66].
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Fig. A.24: Comparison of the beam asymmetry ΣB results with previous data for γ⃗⃗p→nπ+. Shown are
the results of the double polarization observable G as a function of cosθπ+,CMS for the beam photon energy from
570 MeV to 842 MeV. The black points represent the results of the new A2 data together with their statistical
uncertainties whereas the gray boxes show the systematic uncertainties. The new A2 data are compared to the
recent database which consists of data of the A2 collaboration in red [67, 57], and the Graal collaboration in
green [65, 66].
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A.9 Comparison of the Polarization Observable Results for different
event patterns

For the nπ+ reactions, the double polarization observables G and E were extracted for the 1 PED
and 2 PED events separately. Fig. A.25 presents the results for both event patterns and the combined
results (cf. Sec. 8.3.5) for the double polarization observable G while Fig. A.26 and Fig. A.27 for the
double polarization observable E.
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Fig. A.25: Comparison of the results of the different event patterns for the double polarization observ-
able G for the reaction γ⃗⃗p→nπ+. The results of the double polarization observable G are shown as a function
of cosθπ+,CMS for the beam photon energy from 230 MeV to 434 MeV. They are plotted as dots together with
their statistical uncertainties whereas the boxes represent the systematic uncertainties. Hereby, the red dots
correspond to the 1 PED events, the blue dots to the 2 PED events, and the combination of both to the black
dots.
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Fig. A.26: Comparison of the results of the different event patterns for the double polarization observ-
able E for the reaction γ⃗⃗p→nπ+. The results of the double polarization observable E are shown as a function
of cosθπ+,CMS for the beam photon energy from 230 MeV to 570 MeV. They are plotted as dots together with
their statistical uncertainties whereas the boxes represent the systematic uncertainties. Hereby, the red dots
correspond to the 1 PED events, the blue dots to the 2 PED events, and the combination of both to the black
dots. The blue dashed line indicates the position up to which point the 1 PED events are added to the 2 PED
events
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Fig. A.27: Comparison of the results of the different event patterns for the double polarization observ-
able E for the reaction γ⃗⃗p→nπ+. The results of the double polarization observable E are shown as a function
of cosθπ+,CMS for the beam photon energy from 570 MeV to 842 MeV. They are plotted as dots together with
their statistical uncertainties whereas the boxes represent the systematic uncertainties. Hereby, the red dots
correspond to the 1 PED events, the blue dots to the 2 PED events, and the combination of both to the black
dots. The blue dashed line indicates the position up to which point the 1 PED events are added to the 2 PED
events.
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A.10 Double Polarization Observable E for higher beam photon ener-
gies

In Sec. 9.2.2 it has been found that the extracted expansion coefficients which have been extracted
with the CLAS data do not agree at all with the BnGa-2016 solution. Although the analysis of the A2
data was only optimized up to a beam photon energy of 842 MeV, the observable was nevertheless
extracted for higher energies as well which is shown in Fig. A.28. Note that these results are very
preliminary and thus will only give a rough comparison with the CLAS data at higher energies. These
are shown in the Fig. A.29 up to Fig. A.31.
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Fig. A.28: Comparison of the double polarization observable E results with previous data for γ⃗⃗p→nπ+.
Shown are the results of the double polarization observable E as a function of cosθπ+,CMS for the beam photon
energy from 842 MeV to 1182 MeV. The blue points represent the results of the new A2 data together with
their statistical uncertainties whereas the red points the CLAS data [68]. The blue dashed line indicates the
position up to which point the 1 PED events are added to the 2 PED events whereas the gray boxes shows the
systematic uncertainties.
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Fig. A.29: Associated Legendre polynomial fits to the profile function Ě for γ⃗⃗p→nπ+ with higher ener-
gies. The profile function Ě as a function of the kinematic variable cosθπ+,CMS were fitted with associated
Legendre polynomials which are described by Eq. (9.2). The fits have been truncated at different Lmax. Hereby,
the green line corresponds to Lmax = 1, the blue line to Lmax = 2, the red line to Lmax = 3, and the black line to
Lmax = 4. As an illustration of the fits, six profile functions (black points) are presented in the second to fourth
row together with the different truncated Lmax-fits. The corresponding χ2/ndf of all fits is depicted in the top
row as a function of the center of mass energy W and the beam photon energy Eγ .
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Fig. A.30: Comparison of the fit coefficients (a3)
Ě
0···2 for γ⃗⃗p→nπ+ as a function of the higher center of

mass energy W. The resulting fit coefficients, indicated by the black points, are plotted on the left side together
with the obtained once using the CLAS data in red [68]. They are compared to continuous curves which
have been determined from the multipole solutions of the BnGa2016 PWA solution [46]. The solution have
been truncated at different Lmax. Hereby, the green solid curve corresponds to Lmax = 1, the blue solid curve
to Lmax = 2, the red solid curve to Lmax = 3, and the black solid curve to Lmax = 4. On the right panel, the
contributing partial wave interference terms are given for the different Lmax values. Thereby, Lmax = 1 only
contains the contribution of S-and P-waves, Lmax = 2 additionally D-waves, Lmax = 3 additionally F-waves,
and Lmax = 4 additionally G-waves. The individual interference terms are included as well and are indicated by
their color and dashed or dotted curves. The dashed-dotted line marks the photoproduction threshold of the pη

channel.
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Ě
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Appendix B

Formulas

B.1 Novosibirsk Function

The Novosibirsk function has the form [140]:

f (x) = A · exp
(

0.5 ·
(

ln2(1+Λτ · (x−µ))/τ
2 + τ

2)) with Λ =
sinh(τ

√
ln(4)

στ
√

(ln(4)
, (B.1)

with A being the amplitude, µ the position of the peak, σ the peak widths, and τ the tail of the peak.
The tail factor τ allows for an asymmetric shaped Gaussian distribution which is important to take the
low energetic tail of the invariant and missing mass distributions of the selected data into account.

B.2 Chebyshev Polynomial used for Background Description

The Chebyshev Polynomial f (x) up to the 4th order is given by:

f (x) = a · x+b · (2x2 −1)+ c · (4x3 −3x)+d · (8x4 −8x2 +1) (B.2)

with a,b,c and d being free parameters for the fitting procedure.

B.3 γ p → nπ+

Due to the existing information of the initial state and the angular information of the π+ in the final
state, the two-body kinematic reaction γ p → nπ+ is an over-determined reaction. Therefore, reaction
kinematics can be used to build selection criteria on the data [141]. The initial state information is
used to calculate the center of mass energy W , which is given by:

W 2 = m2
n +2Eγmn (B.3)
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where mn is the mass of the neutron and Eγ is the energy of the incoming beam photon. As a next
step, quantities in the cms frame are defined.

p∗=
√

(W 2 − (mn +mπ)2)(W 2 − (mn −mπ)2)

2W
, (B.4)

E∗
π =

W 2 −m2
n +m2

π

2W
, (B.5)

E∗
n =

W 2 −m2
π +m2

n

2W
, (B.6)

β
∗
π =

p∗

E∗
π

. (B.7)

β
∗
n =

p∗

E∗
n
. (B.8)

Thereby, E∗ is the energy of the particles in the cms frame, p∗ is the momentum, and β ∗ is the velocity
as a multiple of the speed-of-light. With these quantities and β and γ in the lab frame, which are given
by:

β =
p
E

=
Eγ

Eγ +mn
(B.9)

γ =
E
M

=
Eγ +mn

W
, (B.10)

the polar angle of the π+ in the cms frame can be boosted to the lab frame:

tanΘπ =
pT

π

pZ
π

=
p∗ sinΘ∗

π

γ p∗ cosΘ∗
π +βγE∗

π

=
sinΘ∗

π

γ(cosΘ∗
π +β/β ∗

π )
. (B.11)

Rewriting the Eq. (B.11) gives:

f (Θ∗
π) =: Θπ − atan2(sinΘ

∗
π ,γ(cosΘ

∗
π +β/β

∗
π ) = 0, (B.12)

which needs to be minimized numerically to obtain the value for the polar angle of the π+ in the
cms frame. One of the problem in this minimization is that the resulting values for the polar angle
are discrete as the beam energy can only provide fixed energies with a width in the order of 2 MeV.
A possible solution is to investigate the neutron polar angle if it has been detected. The correlation
between the laboratory frame polar angle with the polar angle of the π+ in the cms frame is given by:

tanΘn =
sinΘ∗

π

γ(−cosΘ∗
π +β/β ∗

n )
. (B.13)
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Thus, the following functions need to be minimized as well:

g(Θ∗
π) =: ΘN − atan2(sinΘ

∗
π ,γ(−cosΘ

∗
π +β/β

∗
n ) = 0. (B.14)

Taking into account the angular resolutions of both particles, the final combined function to be
minimized is:

χ
2 =

(
f (Θ∗

π)

σθπ

)2

+

(
g(Θ∗

π)

σθN

)2

(B.15)

After the global minimum was found 1, the polar angle of the neutron can be calculated based on the
kinematics of the cms frame. Thus, the polar angle of the neutron in the cms frame is given by:

Θ
∗
n = π −Θ

∗
π . (B.16)

Similar to Eq. (B.11), the polar angle of the neutron in the lab frame can be determined via:

Θn = atan2(sinΘ
∗
n,γ(cosΘ

∗
n +β/β

∗
n ) (B.17)

This kinematic calculation can be used to correlate the reconstructed polar angle of the neutron with
the calculated one and thus select the events of interest.
In addition, the center of mass energies defined in Eq. (B.5) and Eq. (B.6) can be boosted back into
the lab-frame and be compared with the measured energies. Thereby, the energies of the charged pion
and neutron candidate in the lab-frame are given by:

Eπ = γ · (E∗
π +β p∗ cosΘ

∗
π)−mπ (B.18)

En = γ · (E∗
n +β p∗ cosΘ

∗
n)−mn (B.19)

where mn and mπ are the rest masses of the neutron and the charged pion, respectively.

1For the events, where the neutron was detected, both minimization methods were performed and compared. Both were
in perfect agreement.
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Ě
0···2 for γ⃗ p⃗ → nπ+ as a function of the center of mass energy W . 232

9.22 Fit coefficients (a3)
Ě
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