Steuerung und Überwachung einer Zeitprojektionskammer mit GEM-Auslese

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl. Phys. David Kaiser

aus Emmerich am Rhein

Bonn 2013

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter: Prof. Dr. Reinhard Beck
 Gutachter: Prof. Dr. Klaus Desch

Tag der Promotion:03. Februar 2014Erscheinungsjahr:2014

Zusammenfassung

Für ein tieferes Verständnis der starken Wechselwirkung und des Aufbaus der Nukleonen untersucht das CBELSA/TAPS-Experiment im Rahmen des Sonderforschungsbereichs SFB/TRR 16 "Elektromagnetische Anregung subnuklearer Systeme" das Anregungsspektrum der Baryonen mit Hilfe von Meson-Photoproduktion.

Um das physikalische Programm zu unterstützen und zu erweitern, soll der bestehende Innendetektor in den kommenden Jahren durch eine Zeitprojektionskammer (Time Projection Chamber - TPC) ersetzt werden. Die Möglichkeit, Spuren geladener Teilchen in der TPC mit hoher Präzision in allen drei Raumrichtungen zu rekonstruieren, erlaubt unter anderem den Nachweis von geladenen Reaktionskanälen, die mit dem Crystal-Barrel-Detektor bisher nicht untersucht werden konnten, oder die Bestimmung der Teilchenart aus dem spezifischem Energieverlust.

Ein erster TPC-Prototyp mit GEM-Folien zur Ladungsverstärkung vor der Ausleseebene und den passenden Abmessungen für das CBELSA/TAPS-Experiment wurde in Kollaboration mit der TU München, dem Detektorlabor der GSI in Darmstadt und dem Stefan-Meyer-Institut der Universität Wien gebaut und im Rahmen des FOPI-Experiments an der GSI erfolgreich bei mehreren Strahlzeiten getestet. Zudem wurden systematische Studien an einer kleineren Test-TPC mit Hilfe einer TestBench mit exzellenter externer Spurdefinition durchgeführt.

Da die genaue Kenntnis der Elektronendriftgeschwindigkeit in der TPC für die präzise Rekonstruktion der Teilchenspuren von großer Bedeutung ist, wurden detaillierte Simulationen zur Driftgeschwindigkeit und deren Abhängigkeit von äußeren Parametern, wie Driftspannung, Druck, Gaszusammensetzung oder Temperatur, durchgeführt. Die Ergebnisse dieser Simulationen zeigen, dass eine konstante Überwachung der untersuchten Parameter für eine sinnvolle Verwendung der simulierten Driftgeschwindigkeit notwendig ist.

Im Rahmen dieser Arbeit wurde zu diesem Zweck, sowie für einen sicheren und zuverlässigen Betrieb der beiden TPCs und der Detektoren auf der TestBench, die dafür notwendige Hardware, eine datenbankbasierte Steuerungssoftware sowie eine graphische Benutzeroberfläche aufgebaut und entwickelt. Mit dieser sogenannten SlowControl konnten bei den durchgeführten Strahlzeiten und Testmessungen zahlreiche Parameter - zum Beispiel Spannungen, Ströme, Gasfluss oder Temperaturen - mit der erforderlichen Genauigkeit gesteuert, überwacht und gespeichert werden. Die SlowControl-GUI zeichnete sich dabei durch eine Darstellung der Messwerte in Echtzeit und eine einfache Bedienbarkeit aus.

Aus den Zeitspektren der mit der GEM-TPC aufgezeichneten Daten konnte zudem die tatsächliche Driftgeschwindigkeit der Elektronen im Driftvolumen extrahiert und mit den theoretischen Vorhersagen der Simulation verglichen werden. Hierdurch konnte der Fehler bei der Rekonstruktion der z-Komponente minimiert und die weitere Analyse der Daten verbessert werden.

Abstract

Control and supervision of a Time Projection Chamber with GEM readout

To get a deeper understanding of the structure of nucleons and the strong interaction binding the constituents inside, the CBELSA/TAPS experiment investigates the resonance spectrum of baryons by meson photoproduction within the scope of the SFB/TRR 16 "Subnuclear Structure of Matter".

In order to support and expand the physical program, the existing Inner Detector will be replaced by a Time Projection Chamber (TPC) within the next few years. This allows for the detection of charged reaction channels, which can't be measured with the CBELSA/TAPS experiment up to now, as well as for particle identification from the specific energy loss.

A first prototype with GEM foils for charge amplification in front of the readout plane and suitable size for the CBELSA/TAPS experiment was built in collaboration with the TU Munich, the detector laboratory of the GSI in Darmstadt and the Stefan-Meyer-Institute of the University Vienna. The TPC has been commissioned successfully within the FOPI experiment at the GSI during several test beam campaigns. Additionally, systematic studies have been carried out with a smaller Test-TPC using a TestBench providing an accurate external track definition.

As the electron drift velocity in the TPC volume is a crucial parameter for the exact track reconstruction, detailed simulations of the drift velocity and its dependency on external parameters, such as drift voltage, pressure, gas flow or temperature, have been carried out. The results of these simulations recommend a constant monitoring of all examined parameters to allow a reasonable use of the simulated drift velocities.

For this purpose, and to ensure a safe and stable operation of the TPCs and the other detectors on the TestBench, the required hardware, the control software based on a data base and a graphical user interface were designed and constructed as the main part of this work. With this so-called SlowControl, it was possible to measure, control and store several parameters - e.g. voltages, currents, temperatures or gas flows - with high precision during the beam times and test measurements carried out. The SlowControl-GUI features a good handling and a display of the measured values in real-time.

From the data recorded with the GEM-TPC, the actual drift velocities of the electrons within the detector volume have been extracted and compared with the theoretical predictions of the simulation. Hence, the error in the reconstruction of the z component was minimized thus, improving further analysis of the data.

Inhaltsverzeichnis

1	Einl	eitung	1
	1.1	Physikalische Motivation	1
	1.2	Das CBELSA/TAPS-Experiment	6
		1.2.1 ELSA	6
		1.2.2 CBELSA/TAPS-Aufbau	7
		1.2.3 Erweiterung des bestehenden Aufbaus	16
2	Eine	Zeitprojektionskammer für das CBELSA/TAPS-Experiment	21
-	2.1	Anforderungen	${22}$
	2.2	Funktionsweise einer Zeitprojektionskammer	${22}$
	2.3	Grundlegende Physik zum Betrieb einer Zeitprojektionskammer	26
	2.0	2.3.1 Energieverlust geladener Teilchen	26
		2.3.1 Energievenust genadener renenen	20
		2.3.2 Ladungsvarstärkung	30
	24	Tost TPC und TostBonch	31
	2.4	CEM TPC Prototyp für das FOPL und das CBELSA/TAPS Experiment	36
	2.0 2.6	Inhetrichnshme der CEM TPC im EOPI Experiment	37
	2.0 2.7	Kalibration	41
	2.1	Dar Drototyp im CBELSA /TADS Experiment	41
	2.0	Der Magnet für des CPELSA /TAPS Experiment	41
	2.9	Der Magnet für das ODELSA/TATS-Experiment	42
3	Sim	ulationen zur Driftgeschwindigkeit	47
	3.1	Simulationssoftware	47
	3.2	Simulierte Gasgemische	48
	3.3	Longitudinale Diffusion	50
	3.4	Transversale Diffusion	51
	3.5	Driftgeschwindigkeit	52
		3.5.1 Temperaturabhängigkeit	55
		3.5.2 Druckabhängigkeit	55
		3.5.3 Abhängigkeit von der Gaszusammensetzung	56
		3.5.4 Verwendbarkeit der Simulationsergebnisse	57
4	Slow	vControl-Hardware	63
•	4 1	Hardware-Komponenten für die GEM-TPC	63
	1.1	4.1.1 Hochspannung	63
		4.1.9 Temperaturüberwachung und -regelung	65
		4.1.2 Consistent aber wachung und Hegelung	60
		4.1.9 Gabbystelli	00

8	7.3 7.4 Zusa	Diskussion der Ergebnisse 7.3.1 Stabilität der Driftgeschwindigkeit 7.3.2 Temperaturabhängigkeit 7.3.3 Positionsabhängigkeit 7.3.4 Abhängigkeit von Druck und Gaszusammensetzung Weitere Analysen der Daten	· · ·	· · ·	• • • • •	• • • • •	•	 103 108 109 110 111 112 113 117
	7.3 7.4	Diskussion der Ergebnisse7.3.1Stabilität der Driftgeschwindigkeit7.3.2Temperaturabhängigkeit7.3.3Positionsabhängigkeit7.3.4Abhängigkeit von Druck und GaszusammensetzungWeitere Analysen der Daten	· · ·	· · ·	• • • • •		•	$\begin{array}{cccc} & 103 \\ & 108 \\ & 109 \\ & 110 \\ & 111 \\ & 112 \\ & 113 \end{array}$
	7.3	Diskussion der Ergebnisse 7.3.1 Stabilität der Driftgeschwindigkeit 7.3.2 Temperaturabhängigkeit 7.3.3 Positionsabhängigkeit 7.3.4 Abhängigkeit von Druck und Gaszusammensetzung	· ·					. 100 . 108 . 109 . 110 . 111 . 112
	7.3	Diskussion der Ergebnisse 7.3.1 Stabilität der Driftgeschwindigkeit 7.3.2 Temperaturabhängigkeit 7.3.3 Positionsabhängigkeit	 	•				. 109 . 108 . 109 . 110 . 111
	7.3	Diskussion der Ergebnisse7.3.1Stabilität der Driftgeschwindigkeit7.3.2Temperaturabhängigkeit	 	•				. 109 . 108 . 109 . 110
	7.3	Diskussion der Ergebnisse 7.3.1 Stabilität der Driftgeschwindigkeit	 	•	•			. 108 . 108 . 109
	7.3	Diskussion der Ergebnisse		•	:	•	•	. 108
								· TOO
		7.2.3 Alternative Bestimmung über die Targetposition					-	105
		7.2.2 Bestimmung über die gesamte Länge der GEM-TPC		÷	÷	Ċ		. 102
	1.2	7.2.1 Selektion der Einträge					•	. 101
	7.1	Bestimmung der Driftgeschwindigkeit aus den Daten	• •	•	•	•	•	. 33
'	7 1	Bekonstruktion der Daten						99
7	Rest	immung der Driftgeschwindigkeit						qq
	6.5	Einfluss auf die Verwendbarkeit der Simulationsergebnisse .		·	·	·	•	. 96
	6.4	Konzentration der Driftgase		•	•	•	•	. 96
	6.3	Druck						. 95
	6.2	Temperatur						. 94
	6.1	Hochspannung						. 93
6	Leis	tungsfähigkeit der SlowControl						93
		5.5.2 Graphische Benutzeroberfläche	• •	•	·	·	•	. 92
		5.5.1 Datenbank		•	•	•	•	. 90
	5.5	Run-Datenbank		•	•	•	•	. 90
	5.4	Graphische Benutzeroberfläche (SlowControl-GUI) \ldots					•	. 88
	5.3	Web-Oberfläche						. 87
		5.2.4 Schnittstellenklassen						. 83
		5.2.3 Kommunikation mit der Datenbank						. 83
		5.2.2 Hauptroutine						. 81
	0.2	5.2.1 Initialisierung		÷	÷			. 80
	5.2	Daemon	• •	•	•	•	•	. 15
		5.1.4 Femertabene	• •	•	•	•	•	. 79 70
		5.1.3 Befenis-Queue-Tabelle	• •	•	•	•	·	. 79
		5.1.2 Datentabellen	• •	·	•	·	•	. 78
		5.1.1 Konfigurationstabellen	• •	·	·	·	•	. 78
	5.1	Datenbank		•	•	•	•	. 77
5	Slov	vControl-Software						77
	4.5	SlowControl-Server und Netzwerkhnrastruktur	• •	•	•	•	•	. 79
	4 9	4.2.4 Gassystem	• •	•	•	•	·	. (2 75
		4.2.3 Speicherprogrammierbare Steuerung (SPS)	• •	·	·	·	·	. 71
		4.2.2 Niederspannung		•	•	•	•	. 70
		4.2.1 Hochspannung						. 70
	4.2	Hardware-Komponenten für die TestBench		•	•			. 70

В	Kalibrationstabellen	122					
С	Benutzerhandbücher C.1 Web-Oberfläche C.2 Graphische Benutzeroberfläche für die GEM-TPC C.3 Graphische Benutzeroberfläche für die TestBench C.4 Graphische Benutzeroberfläche der Run-Datenbank	123 123 130 140 145					
D	Quellkode D.1 Hauptprogramme der beiden Daemon D.2 Schnittstellenklassen der Hardwarekomponenten D.3 SPS-Anweisungsliste	149 149 162 170					
Е	E Driftgeschwindigkeiten						
Ab	bildungsverzeichnis	201					
Та	bellenverzeichnis	204					
Lit	-iteraturverzeichnis 20						

Nur scheinbar hat ein Ding eine Farbe, nur scheinbar ist es süß oder bitter; in Wirklichkeit gibt es nur Atome im leeren Raum.

(Demokrit)

1 Einleitung

1.1 Physikalische Motivation

Seit ihren Anfängen in der Antike versucht die Physik alle Vorgänge in der Natur mit Hilfe von einfachen Gesetzmäßigkeiten zu beschreiben und zu erklären. Die Untersuchung der kleinsten Bausteine der uns umgebenden Materie sowie deren Wechselwirkungen untereinander ist das zentrale Ziel der Kern- und Teilchenphysik.

Die von den griechischen Naturphilosophen Leukipp und Demokrit überlieferte Vorstellung, die gesamte Natur setze sich aus kleinsten, unteilbaren Einheiten, den Atomen¹, zusammen, hatte bis in das späte 19. Jahrhundert Bestand. Mit der Entdeckung der Elektronen durch Joseph John Thomson (1897, [1]), der Protonen durch Ernest Rutherford (1919, [2]) sowie der Neutronen durch James Chadwick (1932, [3]) musste die Annahme der Unteilbarkeit der Atome jedoch aufgegeben werden.

Die massereichen Nukleonen (Protonen und Neutronen) bilden nach heutiger Auffassung den Atomkern, der mit einer Größe von 10^{-15} m deutlich kleiner ist als das Atom (10^{-10} m) , aber dennoch fast die gesamte Masse des Atoms in sich trägt. Der Kern ist von einer Hülle aus leichten Elektronen umgeben, deren Bewegungen um den Kern erstmals 1913 durch das Bohrsche Atommodell [4] beschrieben wurden.

Abbildung 1.1: Zwischen 1917 und 1965 wurde eine Vielzahl von Teilchen in verschiedenen Experimenten entdeckt.

Mit der Konstruktion immer komplexerer Experimente konnten im Laufe der Zeit aber noch zunehmend kleinere Teilchen entdeckt werden. Während es bei den Elektronen bisher keine Hinweise auf eine weitere innere Struktur gibt, sind unter anderem die Ergebnisse von Messungen der magnetischen Momente von Proton und Neutron (erstmals durch Otto Stern, 1933, [5, 6]) nicht mit einer Punktförmigkeit der Nukleonen vereinbar. Eine Gruppe um Enrico Fermi entdeckte 1951 bei der Streuung von geladenen Pionen an Protonen die sogenannte Δ (1232)-Resonanz [7]. Diese Resonanz lässt sich nur mit der Anregung innerer Freiheitsgrade erklären. Weitere Hinweise auf eine innere Struktur ergaben sich zum Beispiel aus der Bestimmung der elektrischen und magnetischen

¹átomos (gr.) - unteilbar, (unteilbare) Person

Formfaktoren der Nukleonen aus dem Streuquerschnitt durch R.W. McAllister und R. Hofstädter [8] oder L.N. Hand, D.G. Miller und R. Wilson [9].

Um diese Ergebnisse und die Vielzahl an neu entdeckten Teilchen (siehe Abbildung 1.1) erklären zu können, führten Murray Gell-Mann [10] und George Zweig [11, 12] Anfang der 1960er Jahre unabhängig voneinander die Quarks als neue elementare Bausteine ein. Alle stark wechselwirkenden Teilchen, die sogenannten Hadronen, sollten aus diesen Spin- $\frac{1}{2}$ -Teilchen mit drittelzahliger Ladung zusammengesetzt sein, wobei die Baryonen aus drei Quarks (z. B. Protonen p = uud, Neutronen n = udd, Δ^{++} (1232) = uuu) und die Mesonen aus einem Quark-Antiquark-Paar (z. B. $\pi^+ = u\bar{d}$, $K^0 = \bar{s}d$) bestehen. Waren damals nur drei Quarks bekannt (up-, down- und strange-Quark), so wird heute von insgesamt sechs verschiedenen Quarks (siehe Abbildung 1.2) und ebenso vielen Antiquarks ausgegangen. Der Spin von $\frac{1}{2}$ sowie eine Punktförmigkeit der Quarks konnten durch die Bestimmung der Strukturfunktionen in tiefinelastsichen Leptonen-Streuexperimenten, beispielsweise durch S. Stein 1975 [13], experimentell bestätigt werden. Auf eine weitere Unterstruktur in den Quarks gibt es bis heute keine Hinweise.

Abbildung 1.2: Übersicht über alle Elementarteilchen mit ihren Massen und ihren Ladungen, die als Vielfaches der Elementarladung eines Elektrons ($e = 1,602 \cdot 10^{-19}$ C) angegeben sind. Werte nach [14].

Da Quarks als Fermionen dem Pauli-Prinzip unterliegen, welches eine symmetrische Gesamtwellenfunktion für Spin- $\frac{1}{2}$ -Teilchen verbietet und somit ein Δ^{++} mit symmetrischer Spin- und Quark-Wellenfunktion beispielsweise nicht existieren dürfte, schlug Oscar W. Greenberg in [15] die Einführung eines zusätzlichen Freiheitsgrades vor, die Farbladung. Diese kann bei Quarks die Werte rot, blau und grün, bei Antiquarks entsprechend antirot, anti-blau und anti-grün annehmen. Auch die Eichbosonen der starken Wechselwirkung, die Gluonen, welche die Wechselwirkung zwischen den Quarks vermitteln, tragen eine eigene Farbladung. Im Gegensatz zu den Austauschteilchen der elektromagnetischen Wechselwirkung, den Photonen, können diese Gluonen somit auch untereinander wechselwirken. In der Natur konnten bisher ausschließlich farbneutrale Hadronen beobachtet werden. Insbesondere wurden noch keine freien Quarks nachgewiesen. Der Versuch, ein einzelnes Quark aus einem farbneutralen System zu entfernen, benötigt so viel Energie, dass spontan ein neues Quark-Antiquark-Paar entsteht. Dieses Phänomen wird als *Confinement*² bezeichnet. Je kleiner die Abstände zwischen den Quarks jedoch werden, desto freier können sich diese bewegen, so dass sich von einer "asymptotischen Freiheit" sprechen lässt [16].

Abbildung 1.3: Aktuelle Messungen der "laufende" Kopplungskonstanten α_s der starken Wechselwirkung aufgetragen gegen den Impulsübertrag Q [14].

Die starke Wechselwirkung wird in der Quantenchromodynamik (QCD) durch die energieabhängige Kopplungskonstante α_s beschrieben. Für hohe Energieüberträge wird α_s klein (siehe Abbildung 1.3), so dass die QCD über störungstheoretische Ansätze lösbar ist und Resultate liefert, die gut mit experimentellen Ergebnissen übereinstimmen. Für kleine Energien, also dem Energiebereich des Nukleons, wird α_s jedoch zu groß für eine störungstheoretische Berechnung. Eine Lösung der QCD lässt sich hier nur durch andere Ansätze, wie Gitter-QCD oder chirale Störungstheorien, und mit einem hohen Rechenaufwand erreichen.

Auch Modelle können noch nicht alle Eigenschaften hinreichend gut vorhersagen, sondern beschreiben lediglich Teilaspekte. Das statische Konstituentenquarkmodell von Gell-Mann und Zweig sagt beispielsweise den Aufbau der Hadronen aus Quarks genau voraus, liefert jedoch keine vollständige Erklärung für die tatsächliche Masse der Teilchen, für die Wechselwirkung zwischen den Quarks oder für ihre Dynamik.

Um ein tieferes Verständnis dieses Energiebereiches zu erhalten sowie die bestehenden Modelle zu erweitern und zu verbessern, ist die Vermessung des Spektrums und der Eigenschaften von angeregten Baryonen ein wichtiger experimenteller Ansatz. Das Konzept, Baryonen mit hochenergetischen Projektilen anzuregen und die Endzustände dieser Reaktionen zu bestimmen, wurde aus der atomaren Spektroskopie übernommen, bei der ab Mitte des 20. Jahrhunderts die elektromagnetische Wechselwirkung zwischen Kern und Elektronenhülle mit Hilfe von Emissions- und Absorptionsspektren untersucht

²confinement (engl.) - Gefangenschaft

wurde. Bei der atomaren Spektroskopie lassen sich scharfe, eindeutige Absorptionsoder Emissionslinien beobachten (Abbildung 1.4), die einen direkten Aufschluss über die Energiedifferenzen der Anregungszustände der Elektronen erlauben und hierdurch zum Verständnis der elektromagnetischen Wechselwirkung beitragen. Im Anregungsspektrum der Baryonen ist dies nicht so einfach, da sich die einzelnen Resonanzen aufgrund ihrer großen Breite überlagern und interferieren. Nur die dominantesten Resonanzen lassen sich als Überhöhungen im totalen Wirkungsquerschnitt erkennen (Abbildung 1.5).

Abbildung 1.5: Totaler Wirkungsquerschnitt für die Photoproduktion am Proton (schwarz, [18]), verglichen mit den Wirkungsquerschnitten für die Photoproduktion von π^0 - (rot, [19]) und η -Mesonen (blau, [20]).

Um die Vielzahl an Resonanzen, die von den verschiedenen Modellen, wie zum Beispiel [21], vorausgesagt werden, in einem Spektrum wie in Abbildung 1.5 identifizieren zu können, sind neben dem totalen Wirkungsquerschnitt weitere Informationen notwendig. Einzelne Resonanzen tragen beispielsweise unterschiedlich stark zu bestimmten Zerfallskanälen bei, wie in Abbildung 1.6 verdeutlicht wird.

Diese Beiträge werden im CBELSA/TAPS-Experiment mit Hilfe von Photoproduktionsreaktionen untersucht, wobei neutrale Endzustände wie N η , N η ', N π oder N $\pi^0\pi^0$ von besonderem Interesse sind. Sowohl η als auch π^0 zerfallen mit hoher Wahrscheinlichkeit in mehrere Photonen, auf die der eingesetzte Crystal-Barrel-Detektor besonders sensitiv ist. Mittels einer Partialwellenanalyse (PWA), zum Beispiel der Bonn-Gatchina-

Abbildung 1.6: Resonanzbeiträge (Breit-Wigner-Verteilungen) für die Reaktionskanäle $\gamma N \rightarrow N \pi$, $\gamma N \rightarrow N \eta$ und $\gamma N \rightarrow K^+ \Lambda$ [22].

Partialwellenanalyse [23], lassen sich aus den betrachteten Reaktionen die beitragenden Resonanzen und deren Quantenzahlen bestimmen.

In den Lösungen der PWA können jedoch Mehrdeutigkeiten auftreten, die sich erst durch die Messung von Polarisationsobservablen reduzieren lassen. Mit diesen ist es möglich, den Wirkungsquerschnitt $\left(\frac{d\sigma}{d\Omega}\right)$ für die Photoproduktion einzelner pseudoskalarer Mesonen durch Strahl-, Target- und Rückstoßpolarisation zu parametrisieren. Da beim CB-ELSA/TAPS-Experiment Messungen mit Strahl- und Targetpolarisation durchgeführt werden können, ergibt sich die folgende Parametrisierung des Wirkungsquerschnitts [24]:

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}|_{unpol} \cdot (1 - P_{\gamma}^{lin} \Sigma \cos 2\phi) - P_{\gamma}^{lin} P_x H \sin 2\phi + P_{\gamma}^{circ} P_x F - P_{\gamma}^{lin} P_y P \cos 2\phi + P_y T + P_{\gamma}^{lin} P_z G \sin 2\phi - P_{\gamma}^{circ} P_z E) .$$

Dabei ist P_{γ}^{lin} der Grad der Linearpolarisation und P_{γ}^{circ} der Polarisationsgrad bei zirkular polarisierten Photonen. P_x , P_y und P_z geben die Targetpolarisation in die drei Raumrichtungen an.

 $\label{eq:summer} Zusammen\ mit\ der\ R\"{u}cksto\ polarisation\ ergeben\ sich\ f\"{u}r\ die\ Photoproduktion\ einzelner$

	Target			Rückstoß			Target+Rückstoß				
		x	у	\mathbf{Z}	-	-	-	x	\mathbf{Z}	х	\mathbf{Z}
Strahl		-	-	-	x'	y'	\mathbf{z}'	x'	x'	\mathbf{z}'	\mathbf{z}'
unpolarisiert	σ	-	Т	-	-	Р	-	$T_{x'}$	$-L_{x'}$	$\mathbf{T}_{z'}$	$\mathcal{L}_{z'}$
linear polarisiert	Σ	H	-P	-G	$O_{x'}$	-T	$O_{z'}$	$-L_{z'}$	$T_{z'}$	$-L_{x'}$	$-T_{x'}$
zirkular polarisiert	-	F	-	-E	$-C_{x'}$	-	$-C_{z'}$	-	-	-	-

Tabelle 1.1: Mögliche Polarisationsobservablen für die Photoproduktion einzelner pseudoskalarer Mesonen durch Kombination aus Strahl-, Target- und Rückstoßpolarisation [24].

pseudoskalarer Mesonen insgesamt 16 mögliche Polarisationsobservablen. Diese sind in Tabelle 1.1 aufgelistet und in [24] näher erläutert. Für ein sogenanntes "vollständiges Experiment", welches eine eindeutige Zerlegung in Partialwellen ermöglicht, sind bei geschickter Wahl acht Polarisationsobservablen notwendig (beispielsweise σ , Σ , T, P, E, G, $O_{x'}$, $C_{x'}$ [25]). Mit dem CBELSA/TAPS-Experiment wurden bereits die Observablen σ , Σ , T, P, E, G und H gemessen [26, 27, 28, 29, 30].

1.2 Das CBELSA/TAPS-Experiment

Das CBELSA/TAPS-Experiment ist ein Fixed-Target-Experiment³, mit dem die Eigenschaften von Baryonresonanzen mit Hilfe von Meson-Photoproduktion untersucht werden. Der Photonenstrahl wird aus einem primären Elektronenstrahl an einem Bremsstrahlungstarget erzeugt. Der Primärstrahl wird von der Elektronen-Stretcher-Anlage ELSA des Physikalischen Instituts der Universität Bonn bereitgestellt.

1.2.1 ELSA

ELSA ist in der Lage, einen nahezu kontinuierlichen Strahl sowohl unpolarisierter als auch longitudinal polarisierter Elektronen bis zu einer Energie von 3,5 GeV zu liefern [31]. Abbildung 1.7 zeigt einen Grundriss der gesamten Anlage.

Abbildung 1.7: Übersicht über die Elektronen-Stretcher-Anlage ELSA des Physikalischen Instituts der Universität Bonn [32].

³Fixed-Target-Experiment - Experiment mit fest installiertem Target, das mit einem hochenergetischen Teilchenstrahl angeregt wird

Die Elektronen können in zwei verschiedenen Quellen erzeugt und mit Hilfe nachgeschalteter Linearbeschleuniger auf 22 MeV (LINAC⁴ 1) beziehungsweise 26 MeV (LINAC 2) beschleunigt werden. Die Quelle am LINAC 2 erzeugt wahlweise longitudinal polarisierte Elektronen mit einem Polarisationsgrad von ca. 80 % oder unpolarisierte Elektronen. Aus den Linearbeschleunigern werden die Elektronen in das Booster-Synchrotron injiziert, in dem sie auf Energien von 500 MeV bis 1,6 GeV beschleunigt und in den Stretcherring gefüllt werden. Dort werden die Elektronen mehrerer Boosterfüllungen akkumuliert, auf Energien von bis zu 3,5 GeV weiter beschleunigt und nach und nach zum Experiment extrahiert. So steht für eine Zeit von bis zu 60 s ein kontinuierlicher Elektronenstrahl mit wohldefinierter Energie und Strömen von 400- 800 pA zur Verfügung, welcher an einen der beiden Experimentierplätze des BGO-OD-Experiments [33] oder des CBELSA/TAPS-Experiments übergeben werden kann. Zusätzlich gibt es einen weiteren Strahlplatz zur Durchführung von Detektortests direkt mit dem Elektronenstrahl.

1.2.2 CBELSA/TAPS-Aufbau

Abbildung 1.8: Der vollständige CBELSA/TAPS-Aufbau [34].

Abbildung 1.8 zeigt einen Überblick über das CBELSA/TAPS-Experiment, wie es 2004 im Rahmen des Sonderforschungsbereichs Transregio 16 "Elektromagnetische Anregung subnuklearer Systeme" an seinem jetzigen Experimentierplatz aufgebaut wurde.

a) Bremsstrahlungstargets und Møllerpolarimeter

Zur Erzeugung hochenergetischer Photonen trifft der aus dem Stretcherring extrahierte Elektronenstrahl im Experimentierbereich zunächst auf ein Bremsstrahlungstarget. Ein

 $^{^{4}\}mathrm{LINAC}$ - $\mathbf{LIN}\mathrm{ear}\ \mathbf{AC}\mathrm{celerator}\ (\mathrm{engl.})$ - Linear beschleuniger

Teil der Elektronen wird im Coulombfeld der Atomkerne abgebremst. Der Energieverlust der Elektronen wird dabei in Richtung des ursprünglichen Stahls als hochenergetische Photonen abgestrahlt, welche im Experiment genutzt werden. Um sowohl unpolarisierte als auch zirkular und linear polarisierte Photonen erzeugen zu können, stehen in einem Goniometer verschiedene Bremsstrahlungstargets zur Verfügung (siehe Abbildung 1.9). Neben einem Chromox-Schirm und einem horizontalen beziehungsweise vertikalen Draht zur Strahldiagnose lassen sich amorphe Kupferfolien verschiedener Dicke (12 µm, 50 µm, 150 µm und 300 µm) und ein um drei Achsen drehbarer Diamant in den Strahlengang fahren [35]. Durch die Gitterstruktur des Diamanten wird bei Bestrahlung mit unpolarisierten Elektronen ein linear polarisierter Photonenstrahl, bei den Kupferfolien ein unpolarisierter Photonenstrahl erzeugt.

Abbildung 1.9: Zeichnung des Møllertarget (a) und des Goniometer mit den verschiedenen Bremsstrahlungstargets (b) [34].

Für die Produktion zirkular polarisierter Photonen wird ein longitudinal polarisierter Elektronenstrahl benötigt, welcher auf ein amorphes Target trifft. Um gleichzeitig den Polarisationsgrad des Elektronenstrahls messen zu können, wird hierfür das Møllertarget verwendet, welches sich neben den Bremsstrahlungstargets im Goniometertank befindet und aus einer Vacoflux⁵-Folie mit einer Dicke von 20 µm besteht. Die umgebende Feldspule magnetisiert die Folie und richtet die Spins der Elektronen in der Folie aus. Wird ein polarisiertes Strahlelektron an einem Elektron aus der Folie gestreut, verlassen beide Elektronen das Target in Vorwärtsrichtung und werden anschließend von Bleiglasdetektoren in Koinzidenz nachgewiesen. Der Wirkungsquerschnitt dieser Møllerstreuung hängt von der Orientierung der Polarisation der Spins der Elektronen ab, so dass bei einer wechselnden Polarisationsrichtung der Strahlelektronen eine Asymmetrie in den Zählraten messbar ist. Aus dieser Asymmetrie lässt sich der Polarisationsgrad des Elektronenstrahls bis auf eine Genauigkeit von 2 % bestimmen. Eine ausführliche Beschreibung dieser Methode zur Polarisationsbestimmung ist in [35] zu finden.

⁵Vacoflux - Eisen-Cobalt-Vanadium-Legierung

Abbildung 1.10: Die Photonenmarkierungsanlage mit dem Taggermagnet (1), den 96 szintillierenden Latten (2) und der Halterung für die 480 szintillierenden Fasern (3).

b) Photonenmarkierungsanlage

Für eine vollständige Beschreibung der hadronischen Reaktionen im Target ist die genaue Kenntnis der Energie der Photonen E_{Photon} notwendig. Diese kann jedoch nicht direkt gemessen, sondern muss aus den Elektronenergien vor (E_{Strahl}) und nach $(E_{gebremst})$ dem Bremsstrahlungsprozess berechnet werden:

$$E_{Photon} = E_{Strahl} - E_{gebremst}$$

Die Energie E_{Strahl} ist durch die Elektronenergie in ELSA auf 1 MeV genau bekannt [36]. $E_{gebremst}$ lässt sich über die Ablenkung der Elektronen in einem homogenen Magnetfeld bestimmen:

$$E_{gebremst} = e \cdot B \cdot r \cdot c$$
 für $pc \gg m_e c^2$.

B bezeichnet in diesem Fall die Magnetfeldstärke des Taggingmagneten⁶, c die Lichtgeschwindigkeit im Vakuum und r den Radius der Bahn der abgelenkten Elektronen. Elektronen verschiedener Energien werden bei konstantem Magnetfeld unterschiedlich stark abgelenkt: Je größer die Energie, desto geringer ist der Krümmungsradius. Wie Abbildung 1.10 zeigt, ist hinter dem Taggingmagneten die Photonenmarkierungsanlage mit ihren 96 szintillierenden Latten (1 cm dick und 1-4 cm breit) aufgebaut. Details hierzu sind in [37] zu finden. Die Latten sind in zwei Lagen so angeordnet, dass ein senkrecht einfallendes Elektron auf genau zwei Latten trifft. Der abgedeckte Bereich entspricht ca. 2,1 % bis 82,5 % der Elektronenstrahlenergie E_{Strahl} , bei einer Energieauflösung von 0,1 %· E_{Photon} bis 6 %· E_{Photon} sowie einer maximalen Taggingrate von ca. 10 MHz. Das Bremsstrahlungsspektrum folgt einer 1/ E_{Photon} -Verteilung, weshalb mehr Photonen bei niedrigen Energien, also hohen Elektronenergien, erzeugt werden. Um die Energieauflösung in diesem Bereich zu verbessern, befinden sich hier zusätzlich 480 szintillierende Fasern mit einem Durchmesser von 2 mm, die einen Energiebereich von

⁶to tag (engl.) - markieren

16,6 % $\cdot E_{Strahl}$ bis 87,1 % $\cdot E_{Strahl}$ abdecken und eine Energieauflösung von 0,1 % $\cdot E_{Strahl}$ bis 0,4 % $\cdot E_{Strahl}$ erreichen. Die Fasern werden ebenso wie die Latten mit Photomultipliern ausgelesen, die Photonenmarkierungsanlage kann daher ein schnelles Triggersignal⁷ für das Gesamtexperiment liefern.

c) Elektronenstrahlvernichter

Aufgrund der geringen effektiven Dicke der Bremsstrahlungstargets von $0.84 \cdot 10^{-4}$ bis maximal $4.2 \cdot 10^{-3}$ Strahlungslängen X_0 , emittiert nur ein geringer Teil der Elektronen Bremsstrahlungsphotonen [35]. Der größte Teil der Elektronen im Strahl erfährt somit keine Energieänderung, wird durch den Taggingmagneten und einen zweiten Ablenkmagneten um insgesamt 15.2° von der ursprünglichen Richtung abgelenkt und trifft auf einen massiven Eisenblock ($50 \text{ cm} \times 50 \text{ cm} \times 30 \text{ cm}, 470 \text{ kg}$). Die Elektronen verlieren dort durch Vielfachstreuung ihre Energie, bis sie absorbiert werden. Durch Kernreaktionen können die hochenergetischen Elektronen im Strahlvernichter schnelle Neutronen erzeugen. Damit weder Neutronen noch α -, β - oder γ -Strahlung oberhalb der vom Strahlenschutz erlaubten Grenzwerte nach außen dringen, ist der Strahlvernichter mit einem Mantel aus 70 t Stahl umgeben. Der einlaufende Strahlstrom wird mit einem Faraday-Becher in einem Bereich von 1 pA bis 500 nA gemessen.

d) Polarisiertes Target

Um Doppelpolarisationsexperimente durchführen zu können, ist neben einem polarisierten Photonenstrahl auch ein polarisiertes Target notwendig. Für die Untersuchung von Nukleonresonanzen wäre ein Target aus reinem Wasserstoff ideal. Dieser lässt sich jedoch nicht polarisieren, so dass aufgrund der guten Polarisierbarkeit verbunden mit einer langen Relaxationszeit Butanol (C₄H₉OH) als Targetmaterial verwendet wird. Das Targetmaterial befindet sich in einem Teflonzylinder mit einer Länge und einem Durchmesser von 2 cm. Dieser ist in der Spitze eines Kryostaten⁸ untergebracht.

Abbildung 1.11: Kryostat und Halterung des polarisierten Targets.

Die Ausrichtung der Spins der Nukleonen erfolgt durch die Dynamische Nukleonpolarisation (DNP). Die Elektronen des Wasserstoffs werden mit Hilfe eines 2,5 T starken

⁷trigger (engl.) - Abzug, Auslöser; startet die Datenaufnahme

⁸Kryostat - Kühlanlage für Temperaturen bis zu einigen mK

Magnetfeldes in Strahlrichtung ausgerichtet. Der Transfer der Spinausrichtung der Elektronen auf die Protonen erfolgt im Anschluss daran durch Einstrahlen von Mikrowellen geeigneter Frequenz. Auf diese Weise kann ein Polarisationsgrad der Protonen von bis zu 90 % erreicht werden. Nach der Polarisation, welche bei einer Temperatur von 150 mK stattfindet, wird das Targetmaterial auf 30-50 mK heruntergekühlt und die Spins in ihrer Ausrichtung "eingefroren". Eine Spule im Kryostaten erzeugt ein magnetisches Haltefeld von 0,4 T, um den Polarisationsgrad für eine maximale Zeitdauer mit hohem Grad zu gewährleisten [38]. Dieser "Frozen Spin Mode" ist notwendig, da der Polarisationsmagnet während der Datennahme nicht zum Einsatz kommen kann, ohne den Messbereich der Detektoren stark einzuschränken.

Neben dem "Frozen-Spin Target" stehen noch weitere Targets zur Verfügung. Mit einem 1,5 cm langen Kohlenstofftarget mit 2 cm Durchmesser lassen sich Untergrundmessungen für das Butanol-Target und Messungen an gebundenen Protonen und Neutronen durchführen. Das Flüssig-Wasserstoff- beziehungsweise Deuterium-Target in einer 5,1 cm langen Kapton-Zelle (siehe Abbildung 1.12) eignet sich für Messungen an unpolarisierten Protonen und Neutronen [39].

Abbildung 1.12: Zeichnung der Kapton-Zelle des Flüssig-Wasserstoff-Targets [34].

e) Crystal-Barrel-Detektor

Abbildung 1.13: Der Crystal-Barrel-Detektor mit Innen- und Vorwärtsdetektor [34].

Um das polarisierte Target herum bildet der Crystal-Barrel-Detektor die zentrale Komponente des CBELSA/TAPS-Experiments. Als totalabsorbierendes, elektromagnetisches Kalorimeter dient der Detektor dazu, die Energie der im Target erzeugten neutralen Reaktionsprodukte zu bestimmen, wobei er auf den Nachweis von Photonen mit einer Energie von bis zu 2 GeV optimiert ist. Die 1230 fassförmig in 21 Ringen angeordneten CsI(Tl)-Kristalle⁹ des Detektors decken einen Polarwinkelbereich θ von 30°-156° und einen Azimutwinkel ϕ von 360° in 6°-Schritten ab.

Die verwendeten Kristalle haben eine Länge von 30 cm. Bei einer Strahlungslänge von 1,86 cm in CsI(Tl) deponieren 2-GeV-Photonen nahezu ihre gesamte Energie in den Kristallen. Trifft ein Photon einen der Kristalle, erzeugt er durch Paarbildung und Bremsstrahlung einen elektromagnetischen Schauer, der sich kegelförmig auf die benachbarten Kristalle ausweitet und nicht nur in einem einzigen Kristall ein Signal generiert. Solche als Cluster¹⁰ bezeichneten Anhäufungen werden mit Hilfe des Fast-

Abbildung 1.14: Foto eines Kristalls (3) des Crystal-Barrel-Kalorimeters mit Photodiodenauslese (1), Wellenlängenschieber (2) und Ummantelung (4).

Cluster-Encoders (FACE) identifiziert und einem einzelnen, detektierten Photon zugewiesen [40]. Mit dem Crystal-Barrel-Detektor lässt sich somit eine Winkelauflösung von unter 1,5° sowie eine energieabhängige, relative Energieauflösung von 5,5 % für niederenergetische Teilchen beziehungsweise 2,5 % für Teilchenenergien über 1 GeV erreichen [41].

Die Auslese der Kristalle erfolgt über Photodioden. Diese sind mit einem Wellenlängenschieber an die Rückseite der Kristalle gekoppelt (siehe Abbildung 1.14). So ist sichergestellt, dass sich die Wellenlänge des Lichts im optimalen Bereich für die Diode befindet und kein Licht in den Kristall zurück gestreut wird.

Zur Überwachung der Langzeitstabilität und zur relativen Energieeichung ist jeder Kristall über einen Lichtwellenleiter mit einem Lichtpulsersystem verbunden. Verschiedene Filter ermöglichen es, die Intensität der dort generierten Lichtpulse zu variieren, so dass sich die Deposition verschiedener Energien simulieren lässt [42].

f) Vorwärtsdetektor

Da es sich bei dem CBELSA/TAPS-Experiment um ein Fixed-Target-Experiment handelt, ist die Teilchenrate in Vorwärtsrichtung aufgrund des Lorentzboosts deutlich erhöht. Die vorderen drei Ringe des Crystal-Barrel-Kalorimeters wurden daher auf eine Auslese mit Photomulipliern umgerüstet [43, 44]. Die 90 umgebauten CsI(Tl)-Kristalle erlauben eine hohe Ereignisrate und decken einen Polarwinkelbereich von 11,2°-27,5° und einen Azimutwinkel von 360° ab. Vor den Kristallen sind in zwei Lagen 180 Szintillationsplättchen angebracht. Diese werden von Vielfachphotomultipliern ausgelesen und dienen zur Identifizierung geladener Teilchen. Der Vorwärtsdetektor ist somit in der Lage, geladene und ungeladene Reaktionsprodukte mit hoher Effizienz und einer für die erste Triggerstufe geeigneten Geschwindigkeit zu detektieren.

⁹CsI(Tl) - mit Thalium dotiertes Cäsium-Jodid

¹⁰cluster (engl.) - Anhäufung

g) MiniTAPS-Detektor

Abbildung 1.15: Der MiniTAPS-Detektor mit seinen 216 BaF₂-Kristallen.

Der Winkelbereich von 1°-12° wird vom Vorwärtsdetektor nicht abgedeckt. Diese Lücke wird vom MiniTAPS-Detektor geschlossen. Dieser besteht aus 216 hexagonalen, mit Photomultipliern ausgelesenen BaF₂-Kristallen¹¹. Durch die kleine Signaldauer im Kristall von 0,9 ns ist der Detektor in der Lage, die hohen Teilchenraten in Vorwärtsrichtung zu verarbeiten.

Ähnlich wie beim Vorwärtsdetektor befindet sich vor jedem der Kristalle ein 5 mm dickes Szintillationsplättchen, welche über wellenlängenschiebende Fasern und Photomultiplier ausgelesen werden. Dies ermöglicht auch hier eine Unterscheidung zwischen geladenen und ungeladenen Teilchen.

h) Innendetektor

Der Innendetektor umgibt das Target (siehe Abbildung 1.8) und erlaubt die Identifizierung geladener Reaktionsprodukte [45, 46]. Er setzt sich aus 513 szintillierenden Fasern mit einem Durchmesser von 2 mm und einer aktiven Länge von 40 cm zusammen, die mit Vielfachphotomultipliern ausgelesen werden. Die Fasern sind in Vorwärtsrichtung mit aluminisierter Mylarfolie¹² verspiegelt und in Rückwärtsrichtung mit optischem Zement an Lichtleiter gekoppelt, welche die Lichtpulse zu den Photomultipliern leiten. Die Fasern sind zylinderförmig in drei Lagen angeordnet, wobei die innere Lage schraubenförmig um $-24,5^{\circ}$ und die mittlere um $+25,7^{\circ}$ gegenüber der äußeren, parallel zur Strahlachse verlaufenden Lage verdreht sind (siehe Abbildung 1.16). Durch diese Geometrie ist es möglich, den Durchstoßpunkt eines geladenen Teilchens durch die Zylinderoberfläche des Innendetektors auf 0,5 mm senkrecht zur Strahlachse und

 $^{^{11}\}mathrm{BaF}_2$ - Bariumfluorid

 $^{^{12}\}mathrm{Mylar}$ - Markenname für eine Folie aus Polyethylenterephthalat (PET)

Abbildung 1.16: Der Innendetektor (links) sowie die drei gegeneinander verdrehten Szintillatorlagen (rechts) [34].

1,6 mm in Richtung der Strahlachse zu rekonstruieren. Jede der drei Lagen ist auf einen Kohlefaserzylinder geklebt, so dass die Abstände der Fasermittelpunkte der einzelnen Lagen zur Strahlachse 5,8 cm, 6,1 cm und 6,5 cm betragen.

Während neutrale Teilchen den Detektor nahezu ohne Wechselwirkung passieren können, deponieren ionisierende Teilchen typischerweise mehr als 400 keV pro Lage und werden mit einer Wahrscheinlichkeit von 99,86 % in mindestens einer Lage nachgewiesen. Für eine Rekonstruktion des Durchstoßpunktes muss das Teilchen in mindestens zwei Lagen ein Signal erzeugt haben. Die Nachweiswahrscheinlichkeit beträgt hierfür 98,25 %. Die Zeitauflösung des Detektors liegt bei etwa 2 ns [47].

i) Gas-Čerenkov-Detektor

Aufgrund der kleineren Reichweite der starken Wechselwirkung ist der Wirkungsquerschnitt für hadronische Reaktionen im Target im Vergleich zu dem elektromagnetischer Reaktionen um einen Faktor 1000 geringer. Durch Compton-Streuung und Paarproduktion wird insbesondere beim Einsatz des Butanoltargets eine große Anzahl Elektronen und Positronen erzeugt, die zwar Signale in den Detektoren generieren, mit den zu untersuchenden Reaktionen jedoch nicht in Verbindung stehen.

Um diesen elektromagnetischen Untergrund bereits während der Datennahme zu identifizieren, zu unterdrücken und somit den Anteil hadronischer Ereignisse in den aufgenommenen Daten zu erhöhen, ist zwischen dem Vorwärts- und dem MiniTAPS-Detektor ein Gas-Čerenkov-Detektor installiert [48]. In dem als Medium verwendeten Kohlenstoffdioxid (CO₂) erzeugen Elektronen und Positronen ab einer Schwellenenergie E_s von 17,43 MeV Čerenkov-Licht und können somit nachgewiesen werden. Geladene Pionen, die leichtesten erwünschten Reaktionsprodukte, würden erst ab einer Energie von $E_s = 4.7$ GeV, und damit oberhalb der maximal erreichbaren Energie des Beschleunigers, ein Signal erzeugen.

Das Gas ist in dem in Abbildung 1.17 gezeigten Aluminiumkubus mit den Maßen $1 \text{ m} \times 1,2 \text{ m} \times 1,2 \text{ m}$ eingeschlossen und deckt einen Winkelbereich von 0°-12,8° ab. Im Inneren fokussiert ein elliptisch geformter Spiegel das Čerenkov-Licht auf einen Photomultiplier, so dass Elektronen und Positronen mit einer Wahrscheinlichkeit von $(99,72 \pm 0,45)$ % detektiert werden. Die Zeitauflösung liegt bei 1,2 ns [47].

Abbildung 1.17: Gas-Čerenkov-Detektor.

j) Detektoren zur Photonenflussbestimmung

Den Abschluss der Photonenstrahlachse bilden zwei Detektoren zur Bestimmung des Photonenflusses, welcher für die absolute Bestimmung der Wirkungsquerschnitte und zur Normierung verschiedener Strahlzeiten notwendig ist.

Der Gamma-Intensitäts-Monitor (GIM) besteht aus 16 PbF₂-Kristallen¹³, die sich in einer 4×4 -Anordnung vor dem Photonenstrahlvernichter befinden und mit Photomultipliern ausgelesen werden [49]. Da die Photomultiplier bei hohen Teilchenraten in Sättigung gehen und somit nicht mehr alle Photonen individuell detektieren, wird der GIM durch den Flussmonitor (FluMo) ergänzt [50]. Der FluMo besteht aus einem Szintillationsdetektor als Vetozähler, einem Kupferkonverter und zwei weiteren, in Koinzidenz geschalteten Szintillationsdetektoren (siehe Abbildung 1.18). Am Konverter erzeugen Photonen mit einer bekannten Wahrscheinlichkeit Elektron-Positron-Paare, welche in den Szintillationsdetektoren registriert werden. Nach vorheriger Eichung mit dem GIM ist es somit möglich, den Fluss auch bei hohen Raten präzise zu bestimmen.

k) Trigger

Um die Menge der aufzuzeichnenden Daten zu reduzieren und die spätere Datenanalyse zu vereinfachen, wird die Auslese der Detektoren über einen FPGA¹⁴-basierten Trigger gesteuert [51]. Mit den Signalen der Photonenmarkierungsanlage, des Innendetektors, der Vorwärts-Kristalle und -Vetoplättchen, des Gas-Čerenkov-Detektors sowie

 $^{{}^{13}\}mathrm{PbF}_2$ - Bleifluorid

 $^{^{14}{\}rm FPGA}$ - Field Programmable Gate Array (engl.) - frei programmierbarer Logikschaltkreis

Abbildung 1.18: Zeichnung des Gamma-Intensitätsmonitors (1) und des Flussmonitors (2) [34].

der MiniTAPS-Kristalle wird in einer ersten Triggerstufe innerhalb von 280 ns entschieden, ob ein Ereignis Signaturen für erwünschte Ereignisse enthält. Wenn dies der Fall ist, wird in der zweiten Triggerstufe innerhalb von 10 µs geprüft, ob die geforderte Anzahl an Clustern im Crystal-Barrel-Detektor detektiert wurde. In diesem Fall werden alle Detektoren ausgelesen und die Daten gespeichert. Andernfalls werden alle Detektoren zurückgesetzt, damit ein neues Ereignis aufgenommen werden kann.

Die Aufteilung auf zwei Triggerstufen ist notwendig, da die Signale der CsI(Tl)-Kristalle im Crystal-Barrel-Kalorimeter eine große Anstiegszeit haben und die Weiterverarbeitung und Auswertung dieser Signale durch die Elektronik bis zu 6 µs dauern kann.

1.2.3 Erweiterung des bestehenden Aufbaus

In den nächsten Jahren sind für das CBELSA/TAPS-Experiment zwei wesentliche Umbauten geplant:

a) Um Reaktionen mit komplett neutralen Endzuständen, wie zum Beispiel

$$\gamma n \rightarrow n \pi^0 \text{ oder } \gamma n \rightarrow n \eta$$
,

mit größerer Effizienz detektieren zu können, wird der Crystal-Barrel-Detektor in die erste Triggerstufe integriert.

b) Der Austausch des Innendetektors durch einen Spurdetektor ermöglicht unter anderem den Nachweis von Reaktionen, die mit einem elektromagnetischen Kalorimeter wie dem Crystal-Barrel-Detektor bisher nicht gemessen werden konnten, beispielsweise

$$\gamma N \rightarrow K^+ \Lambda^0 \rightarrow K^+ p \pi^-$$
.

a) Triggerfähigkeit des Crystal-Barrel-Kalorimeters

Die Auslese der Kristalle mit Photodioden ist mit 6 µs langsam und verhindert bisher die Berücksichtigung des Crystal-Barrel-Detektors in der ersten Triggerstufe. Durch Umrüstung der Kristalle auf eine Auslese mit Avalanche-Photodioden (APDs) und eine Verbesserung der zugehörigen Ausleseelektronik wird es ermöglicht, ausreichend schnelle Signale für diese erste Triggerstufe zu generieren [52, 53]. Neben der Verringerung der Totzeit des Experiments durch den Wegfall der zweiten Triggerstufe, wird hierdurch die Triggerakzeptanz für komplett neutrale Kanäle nahezu auf den gesamten Winkelbereich erweitert (siehe Abbildung 1.19).

Abbildung 1.19: Simulation der Triggereffzienz für die Reaktion $\gamma n \rightarrow n \pi^0$ für Photonenergien von 700 MeV (links) beziehungsweise 2 GeV (rechts). Die gestrichelte Linie gibt die derzeit mögliche, die durchgezogene Line die nach dem Umbau erwartete Effizienz an [54].

In Tests unter realistischen Experimentbedingungen mit einem Block aus 3×3 umgebauten CsI(Tl)-Kristallen wurde eine Zeitauflösung von weniger als 3ns für Photonenergien über 100 MeV erreicht, bei einer Energieauflösung im Bereich der alten Photodiodenauslese [55]. Auf die Endfläche der Kristalle wurden jeweils zwei APDs des Typs HAMAMATSU S11048(X3) geklebt und die restliche Endfläche mit hochreflektierender Folie zur Steigerung der Lichtausbeute bedeckt. Die neu entwickelte Elektronik umfasst neben einem ladungsempfindlichen Vorverstärker, einer temperatursensitiven Steuerung der Hochspannungsversorgung für die APDs und einem Linedriver¹⁵ für die Signalübertragung, die sich noch im Gehäuse der Kristalle befinden (siehe Abbildung 1.20), auch neue zeit- beziehungsweise energieoptimierte Signalfilter, Diskriminatoren, sADC¹⁶-Auslese und ein neues, LED betriebenes Lichtpulsersystem.

Der Umbau des gesamten Crystal-Barrel-Detektors wird Anfang 2014 beginnen, nachdem alle Bauteile geliefert, zusammengebaut und getestet wurden.

¹⁵linedriver (engl.) - Leitungsverstärker

¹⁶sADC - sampling Analog to Digital Converter (engl.) - abtastender Analog-zu-Digital-Wandler

Abbildung 1.20: Neue entwickelte und im Gehäuse der Kristalle untergebrachte Elektronik (1-3) und Avalanche-Photodioden (4).

b) Spurdetektor

Der Einsatz einer Zeitprojektionskammer (TPC¹⁷) als Spurdetektor im Inneren des Crystal-Barrel-Detektors bringt für das CBELSA/TAPS-Experiment mit einer verbesserten Winkelauflösung, der Möglichkeit neue Reaktionskanäle durch Messung geladener Endzustände zu untersuchen oder der Bestimmung der Teilchenart aus dem Impuls und dem spezifischen Energieverlust des Teilchens einige Vorteile gegenüber dem bisher verwendeten Innendetektor (siehe Kapitel 2 und [56, 57]) oder alternativen Spurdetektoren, wie Draht- oder Spiraldriftkammern (siehe [56]).

In Kollaboration mit der TU München, dem Detektorlabor der GSI in Darmstadt und dem Stefan-Meyer-Institut der Universität Wien wurde daher ein TPC-Prototyp gebaut (siehe Abbildung 1.21), der mit GEMs¹⁸ zur Ladungsverstärkung in der Gasphase arbeitet und von seinen Abmessungen genau den Anforderungen des CBELSA/-TAPS-Experiments und des FOPI-Experiments an der GSI entspricht (Kapitel 2.5). Im FOPI-Experiment wurde der Prototyp bereits erfolgreich bei mehreren Strahlzeiten als zentraler Spurdetektor verwendet.

Für systematische Studien an einer kleinen Test-TPC wurde eine TestBench¹⁹ aufgebaut, die mit vier paarweise angeordneten Szintillationsdetektoren, zwei planaren GEM-Detektoren und zwei Siliziumstreifendetektoren eine exzellente externe Spurdefinition bietet (siehe Kapitel 2.4 und [56]).

¹⁷TPC - **T**ime **P**rojection Chamber (engl.)

¹⁸GEM - Gas Electron Multiplier (engl.) - Gaselektronenvervielfacher

 $^{^{19}\}mathrm{b\,ench}$ (engl.) - Arbeitstisch

Abbildung 1.21: Zeichnung der GEM-TPC.

Da eine genaue Kenntnis der Driftgeschwindigkeit für eine präzise Spurrekonstruktion unabdingbar ist, wurden hierzu detaillierte Simulationen durchgeführt (Kapitel 3). Aus den Ergebnissen der Simulation sowie für einen sicheren und zuverlässigen Betrieb der Zeitprojektionskammern ergibt sich die Notwendigkeit einer präzisen Steuerung und Überwachung der Detektorparameter. Im Rahmen dieser Arbeit wurde daher sowohl für den TPC-Prototypen als auch für die Detektoren auf der TestBench eine datenbankbasierte Steuerungssoftware ("SlowControl", Kapitel 4 und 5) mit graphischer Benutzeroberfläche (GUI²⁰, Kapitel 5.4) entwickelt, die erfolgreich bei mehreren Strahlzeiten und Testmessungen eingesetzt werden konnte.

Während die Messungen mit der Test-TPC vor allem zum Testen einzelner Komponenten und Einstellungen durchgeführt wurden, wird mit den Daten der GEM-TPC das physikalische Programm des FOPI-Experiments unterstützt und erweitert [58]. Um die Fehler bei der Rekonstruktion dieser Daten zu minimieren, wurde für eine noch genauere Bestimmung der z-Koordinaten der Teilchenspuren die Driftgeschwindigkeit aus den aufgezeichneten Daten bestimmt und mit den theoretischen Vorhersagen der Simulation verglichen (Kapitel 7).

 $^{^{20}\}mathrm{GUI}$ - Graphical User Interface (engl.) - graphische Benutzerschnittstelle

Ich weiss nicht, ob es besser wird, wenn es anders wird. Aber es muss anders werden, wenn es besser werden soll.

(Georg Christoph Lichtenberg)

2 Eine Zeitprojektionskammer für das CBELSA/TAPS-Experiment

Mit dem derzeit verwendeten Innendetektor des CBELSA/TAPS-Experiments lassen sich die Koordinaten des Durchstoßpunkts eines geladenen Teilchens und der Zeitpunkt des Ereignisses bestimmen. Für den Fall, dass ein räumlich passender Treffer im Crystal-Barrel-Detektor vorliegt, und mit der Annahme, dass der Ursprung des Teilchens in der Mitte des Targets liegt, kann eine Teilchenspur als Gerade mit einer Winkelauflösung von $\sigma_{\theta} \approx 1,5^{\circ}$ und $\sigma_{\phi} \approx 0,5^{\circ}$ rekonstruiert werden. Mit Hilfe des Innendetektors kann somit für ein detektiertes Teilchen im Crystal-Barrel-Detektor zwischen einem Photon und einem geladenen Teilchen unterschieden werden. Das Kalorimetersignal alleine genügt nicht für diese Unterscheidung. Der Nachweis von primären und sekundären Zerfallsvertices der Reaktionsprodukte ist wegen der kurzen Lebensdauer der Zerfallsprodukte allerdings nicht möglich, ebenso wenig wie eine direkte Impulsbestimmung, die Messung des Energieverlustes dE/dx, die Detektion geladener Endzustände oder eine Teilchenidentifikation.

Mit einem Spurdetektor im Inneren des Crystal-Barrel-Detektors lassen sich entlang der Flugbahn eines Teilchens deutlich mehr Spurpunkte rekonstruieren, so dass die Winkelauflösung in diesem Bereich bedeutend verbessert wird. Dadurch, dass Reaktionen mit geladenen Endzuständen gemessen werden können, ist es zudem möglich, neue Zerfallskanäle zu untersuchen und die Statistik bereits untersuchter Kanäle signifikant zu erhöhen. Vor allem Hyperonen-Zerfälle, also Zerfälle von Baryonen mit mindestens einem Strange-Quark, sind von besonderem Interesse, beispielsweise:

Die Hyperonen lassen sich aufgrund ihrer mittleren freien Weglänge von nur wenigen Zentimetern durch die Vermessung von Primär- und Sekundärvertices identifizieren und ermöglichen unter anderem durch ihren selbstanalysierenden Zerfall die Bestimmung von Rückstoßpolarisationsobservablen, zum Beispiel P, $O_{x'}$, $O_{z'}$, $C_{x'}$ oder $C_{z'}$. Zusammen mit den bereits messbaren Zerfällen und Observablen wird somit erstmals ein vollständiges Experiment realisierbar.

Zerfälle leichter Mesonen, wie η , η' , ϕ , ω , konnten bisher nur aus neutralen Endzuständen, insbesondere 2-, 3- oder 4-Photon-Endzuständen, rekonstruiert werden. Beim ω -Meson ist die Wahrscheinlichkeit für einen geladenen Zerfall in $\pi^+\pi^-\pi^0(BR^{21}=89,2\%)$

²¹BR - Branching Ratio (engl.) - Verzweigungsverhältnis, Werte nach PDG [14]

allerdings deutlich höher als die Wahrscheinlichkeit für einen neutralen Zerfall, beispielsweise in $\pi^0 \gamma$ (BR = 8,28 %). Die Anzahl rekonstruierter ω -Mesonen kann somit um einen Faktor 11 gesteigert werden und auch für andere Reaktionen ist eine Verbesserung der Statistik zu erwarten, wenn neutrale und geladene Kanäle detektiert werden können:

Weitere Vorteile bringt ein Spurdetektor in Kombination mit einem homogenen Magnetfeld. Neben einer Verringerung niederenergetischen Untergrunds ist es durch die Ablenkung geladener Teilchen im Magnetfeld B durch die Lorentzkraft möglich, den Transversalimpuls p_t des Teilchens aus dem Krümmungsradius r seiner Bahn zu bestimmen:

$$p_t [\text{GeV}] = 0, 3 \cdot B \cdot r [\text{T} \cdot \text{m}]$$
.

Aus dem spezifischen Energieverlust dE/dx und dem Impuls lässt sich zudem die Art des Teilchens identifizieren.

2.1 Anforderungen

Ein Spurdetektor für das CBELSA/TAPS-Experiment muss eine sehr gute Nachweiswahrscheinlichkeit für geladene Teilchen bei möglichst optimaler Spurrekonstruktion ermöglichen. Um Vielfachstreuung und Absorption der zu messenden Teilchen zu vermeiden, sollte die Materialbelegung des Detektors unter 1 % X_0 liegen. Die Ausdehnung des Spurdetektors ist durch die Innenmaße des Crystal-Barrel-Detektors und die Größe des Targetkryostaten auf einen Außenradius von $r_{au\beta en} \leq 310 \text{ mm}$ und einen Innenradius von $r_{innen} \geq 100 \text{ mm}$ beschränkt (siehe Abbildung 2.1).

Wie in [56] gezeigt, kann eine Zeitprojektionskammer diese Anforderungen erfüllen. Da die Entwicklung und Implementierung einer solchen TPC einen großen Aufwand erfordert, wurde sie in Kollaboration mit der Technischen Universität München, dem Detektorlabor der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt und dem Stefan-Meyer-Institut der Universität Wien vorangetrieben. Diese GEM-TPC-Kollaboration hat es sich zum Ziel gesetzt, eine TPC mit GEM-basierter Auslese als zentralen Spurdetektor für das PANDA-Experiment an der neuen Beschleunigeranlage FAIR²² an der GSI zu bauen [59, 60]. Ein erster Prototyp dient dabei sowohl als Machbarkeitsstudie für dieses Detektorkonzept sowie als Spurdetektor für das FOPI-Experiment an der GSI und das CBELSA/TAPS-Experiment an ELSA.

2.2 Funktionsweise einer Zeitprojektionskammer

Als Verbesserung der damals üblichen Driftkammern entwickelte David R. Nygren 1974 das grundlegende Konzept der Zeitprojektionskammer [61, 62].

²²FAIR - Facility for Antiproton and Ion Research, http://www.fair-center.de

Abbildung 2.1: Schematische Zeichnung des Crystal-Barrel-Detektors mit Abständen und Innenmaßen in Millimetern [34]. Das Targetrohr mit einem Durchmesser von 90,5 mm und die Aussparung in der Halterung der Crystal-Barrel-Kristalle mit einer Öffnung von 320 mm legen die absoluten geometrischen Grenzen für einen Spurdetektor im Inneren des Crystal-Barrel-Detektors fest.

Wie im nachfolgenden Abschnitt diskutiert, ionisieren geladene Teilchen bei der Durchquerung eines gasgefüllten Driftvolumens die Atome entlang ihrer Flugbahn (Abbildung 2.2). Durch ein parallel zur Längsachse angelegtes elektrisches Feld driften die erzeugten Ionen in Richtung Kathode, die Elektronen in Richtung Anode. Dort werden sie zunächst vervielfacht, bevor sie auf eine Ausleseebene treffen. Durch die Segmentierung dieser (x,y)-Ebene kann die zweidimensionale Projektion der Teilchenspur detektiert werden. Aus der Zeitdifferenz zwischen dem Teilchendurchgang und dem Zeitpunkt der Signalerkennung (Δt) sowie der Driftgeschwindigkeit der Elektronen v_{drift} lässt sich die für eine dreidimensionale Rekonstruktion der Teilchenspur fehlende z-Koordinate berechnen:

$$z = v_{\text{drift}} \cdot \Delta t$$
.

Um das elektrische Feld über das gesamte Detektorvolumen möglichst homogen zu halten, sind feldführende Kupfer- oder Aluminiumstreifen an der Detektorhülle angebracht. Eine Widerstandskette zwischen Anode und Kathode definiert das Potential dieser Feldstreifen. Somit wird ein gleichmäßiger Potentialgradient erzeugt. Ein parallel zur Längsachse und dem Driftfeld angelegtes Magnetfeld reduziert die Diffusion in transversaler Richtung und erhöht auf diese Weise die mögliche Auflösung. Zudem ermöglicht die Krümmung der Teilchenspuren im Magnetfeld die Bestimmung des Transversalimpulses p_t der Teilchen, welcher für eine Identifizierung der Teilchenart notwendig ist. Pro Spur werden einige 100 Elektronen produziert. Dieses Primärsignal muss vor der Auslese verstärkt werden. In Zeitprojektionskammern, wie sie in mehreren großen Ex-

Abbildung 2.2: Aufbau und Funktionsprinzip einer TPC.

perimenten, beispielsweise NA49 [63], STAR [64] oder ALICE [65, 66], im Einsatz sind, wird diese Verstärkung durch Vieldrahtproportionalkammern (MWPC) erreicht. Durch das starke Feld in der Nähe der Drähte erhalten die Elektronen genug Energie, um durch Stöße weitere Gasatome zu ionisieren und so eine Ladungslawine auszulösen. Hierdurch ist eine Verstärkung in der Größenordnung 10³ - 10⁵ möglich. Die entstehenden Ionen können jedoch in das Detektorvolumen zurückdriften und dort Feldverzerrungen verursachen, die in einer Verschlechterung der Energie- und Ortsauflösung resultieren. Dieser Ionenrückfluss muss durch eine schaltbare, elektrostatische Blende in Form eines zusätzlichen Gitters unterdrückt werden, wodurch die maximale Ausleserate des Detektors durch die hiervon hervorgerufene Totzeit begrenzt wird.

Durch die Verwendung von Gas Electron Multipliern (GEMs) zur Verstärkung wird dieses Problem umgangen, da der Ionenrückfluss hier intrinsisch unterdrückt und somit

Abbildung 2.3: Aufnahme einer GEM-Folie mit einem Elektronenmikroskop [67].

Abbildung 2.4: Verlauf des elektrischen Feldes an einer GEM-Folie [68].

Abbildung 2.5: Verstärkung an einer GEM-Folie: Elektronen werden in die Löcher geleitet, wo es durch die hohen elektrischen Felder zu einer lawinenartigen Bildung von Elektron-Ion-Paaren kommt (links). Durch die asymmetrische Feldverteilung und die geringere Beweglichkeit der Ionen werden diese auf der Vorderseite der GEM-Folie aufgefangen, während ein Großteil der Elektronen an der Rückseite der GEM-Folie austritt (rechts). [70]

eine freilaufende Datennahme ermöglicht werden kann.

Die ersten GEMs wurden 1997 von F. Sauli am CERN entwickelt [69]. Sie bestehen aus einer 50 µm dicken, isolierenden Polyimidfolie, zum Beispiel Kapton, die beidseitig mit 2-5 µm Kupfer beschichtet ist. Durch Photolithographie werden doppelt-konische Löcher mit einer Größe von 50-70 µm und einem regelmäßigen Abstand von 140 µm in die Folie geätzt (siehe Abbildung 2.3). Wird zwischen den beiden Kupferschichten eine Spannung von typischerweise 300-400 V angelegt, werden in den Löchern sehr hohe Feldstärken von einigen 10 kV/cm erreicht, wie in Abbildung 2.4 dargestellt ist. Durch die Feldkonfiguration vor der GEM-Folie werden die zu verstärkenden Elektronen in die Löcher geleitet, wo es aufgrund der hohen Feldstärke zu einer Lawinenbildung kommt. Während die Elektronen hinter der Folie austreten und zur nächsten Verstärkerstufe oder zur Auslese gelangen, werden die Ionen durch die asymmetrische Feldverteilung auf der Vorderseite der GEM-Folie gesammelt und können auf diese Weise nicht zurück ins Detektorvolumen driften. Abbildung 2.5 zeigt diesen Vorgang schematisch.

Mit der Kombination mehrerer GEM-Folien zu einem Double- oder Triple-GEM-Stack lässt sich der Ionenrückfluss weiter minimieren und eine Verstärkung in der Größenordnung 10^4 bis 10^5 erreichen, ohne die notwendigen Spannungen zwischen Ober- und Unterseite der einzelnen Folien oder die Transferfelder zwischen den Folien beziehungsweise das Extraktionsfeld hinter der letzten Folie zu hoch einstellen zu müssen.

Die ersten Gasdetektoren mit GEM-Strukturen wurden für das COMPASS-Experiment am CERN entwickelt [71, 72] und zeichnen sich durch eine gute Ortsauflösung von rund 100 µm und eine hohe Ratenfestigkeit bis zu einigen 10⁷ Hz aus. In zahlreichen anderen Experimenten, beispielsweise LHCb [73], KLOE-2 [74] oder CMS [75], kommen seither GEM-Detektoren zum Einsatz.

Für ein tieferes Verständnis der Vorgänge in einer Zeitprojektionskammer werden die zugrunde liegenden physikalischen Vorgänge im folgenden Abschnitt näher erläutert.

2.3 Grundlegende Physik zum Betrieb einer Zeitprojektionskammer

Hochenergetische Teilchen können bei ihrem Durchgang durch Materie mit den Atomen und Molekülen entlang ihrer Flugbahn wechselwirken und dadurch Energie verlieren. Der gesamte Energieverlust der Teilchen pro Wegeinheit dE/dx ist durch die Summe der Beiträge verschiedener möglicher Prozesse gegeben:

$$\left(\frac{dE}{dx}\right)_{\text{total}} = \left(\frac{dE}{dx}\right)_{\text{Ionisation}} + \left(\frac{dE}{dx}\right)_{\text{Anregung}} + \left(\frac{dE}{dx}\right)_{\text{hadronische WW}} + \left(\frac{dE}{dx}\right)_{\text{Čerenkov}} + \left(\frac{dE}{dx}\right)_{\text{Übergangsstrahlung}} + \left(\frac{dE}{dx}\right)_{\text{Bremsstrahlung}} (2.1) + \left(\frac{dE}{dx}\right)_{\text{Photoeffekt}} + \left(\frac{dE}{dx}\right)_{\text{Comptoneffekt}} + \left(\frac{dE}{dx}\right)_{\text{Paarbildung}} + \cdots .$$

Ob und wie stark die einzelnen Prozesse zum Gesamtverlust beitragen, hängt von der Art und der Energie der Teilchen ab. So treten beispielsweise Photo- und Comptoneffekt nur bei Photonen auf, Čerenkov-Strahlung nur bei geladenen Teilchen und erst ab einer material- und massenabhängigen Schwellenenergie.

2.3.1 Energieverlust geladener Teilchen

Für den Energieverlust geladener Teilchen in Materie ist fast ausschließlich deren Wechselwirkung mit den Hüllenelektronen verantwortlich. Hierzu zählen Bremsstrahlung, Übergangsstrahlung, Čerenkov-Strahlung sowie Anregung oder Ionisation der Atome im Material. Für Teilchen mit einer Masse $m \gg m_e$ dominieren Anregung und Ionisation über einen weiten Energiebereich. Der mittlere Energieverlust pro Wegstrecke lässt sich quantenmechanisch korrekt durch die Bethe-Bloch-Formel beschreiben [76]:

$$\frac{dE}{dx} = -4\pi N_A r_e^2 m_e c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \cdot \left(\frac{1}{2} \ln\left(\frac{2m_e c^2 T_{max}}{I^2} \cdot \beta^2 \cdot \gamma^2\right) - \beta^2 - \frac{\delta}{2}\right) \quad . \tag{2.2}$$

Hierbei sind N_A die Avogadro-Konstante, r_e der klassische Elektronenradius, m_e die Elektronenmasse, c die Vakuumlichtgeschwindigkeit, Z, A die Kernladungs- und Massenzahl des durchquerten Materials, z die Ladung des Teilchens, $\beta = \frac{v}{c}$ die Geschwindigkeit des Teilchens in Einheiten der Vakuumlichtgeschwindigkeit, $\gamma = \sqrt{1/(1-\beta^2)}$ der Lorentz-Faktor, ρ die Dichte des Materials, T_{max} der maximale Energieübertrag bei einer einzelnen Kollision, I das mittlere Ionisationspotential des Materials und δ ein relativistischer Korrekturterm.

Der Energieverlust von Elektronen und Positronen kann nicht über die Bethe-Bloch-Formel berechnet werden, da hauptsächlich Elektronen als mögliche Wechselwirkungspartner zur Verfügung stehen und aufgrund der gleichen Massen eine wesentlich höhere Energie pro Stoß übertragen werden kann.

26

Wie in Abbildung 2.6 dargestellt ist, fällt die dE/dx-Kurve für niedrige Impulse proportional zu $(1/\beta)^2$ ab, unabhängig von der Art der Teilchen. Bei einem Wert von $\beta \gamma \approx 4$ wird ein Minimum erreicht. Teilchen in diesem Bereich werden als minimalionisierende Teilchen (MIP²³) bezeichnet. Nach einem logarithmischen Anstieg, bei dem sich der Verlauf durch ~ $\ln \beta \gamma$ beschreiben lässt, erreicht der Energieverlust mit zunehmender Teilchenenergie einen Sättigungswert, das sogenannte Fermi-Plateau.

Aus Abbildung 2.6 ist außerdem zu entnehmen, dass die dE/dx-Kurven für Teilchen

Abbildung 2.6: Spezifischer Energieverlust dE/dx geladener Teilchen in Abhängigkeit ihres Impulses, bestimmt mit der OPAL *jet chamber* [77].

mit verschiedenen Massen m einen unterschiedlichen Verlauf haben. Wird der Energieverlust mit hinreichender Genauigkeit bestimmt, kann daher auf die Art der Teilchen geschlossen werden.

Bei der direkten Wechselwirkung mit dem einfallenden Teilchen können die Hüllenelektronen genug Energie erhalten, um weitere Elektron-Ion-Paare im Material zu erzeugen. Auf diese Weise entstehen lokalisierte Cluster aus Elektron-Ion-Paaren mit unterschiedlicher Größe. Die Gesamtzahl der Elektron-Ion-Paare, welche bei der Ionisation durch die direkte Wechselwirkung oder die sekundären Prozesse entstehen, lässt sich mit Hilfe des mittleren Energieverlustes dE/dx und einer pro erzeugtem Elektron-Ion-Paar benötigten Energie berechnen. Letztere ist eine vom Material abhängige Größe und wird als W-Wert bezeichnet. Bei Gasgemischen, wie sie für Zeitprojektionskammern häufig verwendet werden, muss neben dem W-Wert der einzelnen Komponenten der jeweilige

²³MIP - Minimal Ionising Particle (engl.) - minimalionisierendes Teilchen

Gewichtsanteil berücksichtigt werden. Für die Anzahl erzeugter Elektron-Ion-Paare ${\cal N}$ ergibt sich

$$N = \frac{dE}{dx} \cdot l \cdot \sum_{i} \frac{c_i}{W_i} \quad , \tag{2.3}$$

wobei l die Länge der Spur, c_i den Gewichtsanteil und W_i den Energieverlust pro produziertem Elektron-Ion-Paar der einzelnen Gaskomponenten bezeichnen. In häufig verwendeten Detektorgasen, wie Argon oder Neon, werden durch ein MIP ungefähr 50-100 Elektron-Ion-Paare/cm erzeugt.

2.3.2 Ladungstransport in Gasen

Ohne äußere Einflüsse bewegen sich die durch Ionisation freigewordenen Elektronen und Ionen willkürlich durch das Gas im Detektorvolumen, verlieren durch Mehrfachstöße nach und nach ihre Energie und können nach einer gewissen Zeit wieder rekombinieren, ohne nachgewiesen zu werden. Unter dem Einfluss eines äußeren elektrischen Feldes \vec{E} werden die Elektron-Ion-Paare hingegen getrennt und bewegen sich in Richtung der Driftanode beziehungsweise -kathode.

Während die Elektronen und Ionen durch die Stöße abgebremst werden, erfahren sie durch das elektrische Feld zwischen zwei Stößen eine Beschleunigung. Hierdurch stellt sich nach einigen Stößen eine konstante Durchschnittsgeschwindigkeit ein. Die Bewegung der Primärelektronen erfolgt dann parallel zum elektrischen Feld \vec{E} mit

$$\vec{v}_{\rm drift} = \mu \cdot \vec{E} \quad . \tag{2.4}$$

Die Konstante μ wird als Mobilität der Ladungsträger bezeichnet und ist von der Masse des Teilchens und der mittleren Zeit τ zwischen zwei Stößen und damit von den Eigenschaften des Driftgases abhängig. Für Elektronen gilt:

$$\mu_e = \frac{e}{m_e} \tau \quad . \tag{2.5}$$

Äquivalent kann auch die Ionenmobilität μ_{Ion} beschrieben werden, die durch die höhere Masse der Ionen im Vergleich zur Masse der Elektronen deutlich geringer ist. Damit ist auch die Driftgeschwindigkeit der Ionen um mehrere Größenordnungen kleiner.

Wie aus Gleichung 2.4 zu entnehmen ist, wird die Driftrichtung durch die elektrischen Feldlinien vorgegeben und es gilt: Je homogener das angelegte Feld ist, desto genauer ist die Projektion der Teilchenspur auf die Ausleseebene. Aufgrund der statistischen Verteilung der Stöße weichen die Spuren der einzelnen Elektronen jedoch vom Mittelwert ab, so dass sich eine ursprünglich punktförmige Ladungswolke auf ihrem Weg durch das Detektorvolumen longitudinal und transversal zur Richtung des elektrischen Feldes verbreitert. Diese Diffusion kann über eine gaussförmige Verteilung beschrieben werden [78]:

$$P(\delta x, \delta y, \delta z) = \frac{1}{2\pi\sigma_T^2} \cdot \frac{1}{\sqrt{2\pi\sigma_L^2}} \cdot \exp\left(-\frac{\delta x^2 + \delta y^2}{2\sigma_T^2}\right) \cdot \exp\left(-\frac{\delta z^2}{2\sigma_L^2}\right) \quad . \tag{2.6}$$

Hierbei sind δx , δy und δz der Versatz der driftenden Elektronen von der idealen Spur. Die transversale und longitudinale Diffusion σ_T und σ_L lassen sich aus der zurückgelegten Driftstrecke l_{drift} und den vom Gas und der Feldkonfiguration abhängigen Diffusionskoeffizienten D_T und D_L berechnen:

$$\sigma_T = D_T \sqrt{l_{\text{drift}}}$$
 ,
 $\sigma_L = D_L \sqrt{l_{\text{drift}}}$.

Die Werte für D_T und D_L können über Messungen oder mit Hilfe von Simulationen bestimmt werden.

Während die transversale Diffusion einen großen Einfluss auf das Auflösungsvermögen einer Zeitprojektionskammer in x- und y-Richtung hat, ist die Genauigkeit der z-Koordinate durch die Diffusionsverbreiterung der Ladungswolke in longitudinaler Richtung begrenzt.

Ist im Bereich des Driftvolumens neben einem elektrischen zusätzlich ein magnetisches Feld \vec{B} angelegt, so hat dieses ebenfalls einen Effekt auf die Driftgeschwindigkeit und die Diffusion, da die Teilchen aufgrund der Lorentz-Kraft zwischen zwei Stößen eine zusätzliche Beschleunigung erfahren. Nach [78] folgt für die Bewegung der Elektronen:

$$\vec{v}_{\text{drift}} = \mu_e |\vec{E}| \frac{1}{1 + \omega^2 \tau^2} \cdot \left(\frac{\vec{E}}{|\vec{E}|} + \omega \tau \left(\frac{\vec{E}}{|\vec{E}|} \times \frac{\vec{B}}{|\vec{B}|} \right) + \omega^2 \tau^2 \left(\frac{\vec{E}}{|\vec{E}|} \cdot \frac{\vec{B}}{|\vec{B}|} \right) \frac{\vec{B}}{|\vec{B}|} \right) \quad , \quad (2.7)$$

wobei $\omega = \frac{e}{m_e}B$ die Larmor-Frequenz der Elektronen im Magnetfeld bezeichnet. Sind beide Felder parallel zueinander orientiert, wie es bei einer Zeitprojektionskammer mit $E_x = E_y = B_x = B_y = 0$ der Fall sein sollte, entfällt der Term mit dem Vektorprodukt, das Skalarprodukt wird maximal und die Richtung der Driftspuren, die Driftgeschwindigkeit und die longitudinale Diffusion der Elektronen bleiben vom Magnetfeld unbeeinflusst. Die transversale Diffusion wird hingegen gemäß

$$D_T(\omega) = \sqrt{\frac{1}{1+\omega^2 \tau^2}} D_T(0)$$
 (2.8)

unterdrückt [78], wobei $D_T(0)$ der transversale Diffusionskoeffizient ohne Magnetfeld ist. Mit einem parallelen Magnetfeld lässt sich demzufolge die räumliche Auflösung auf der Ausleseebene verbessern.

Nicht zu vermeidende Inhomogenitäten im elektrischen und magnetischen Feld sorgen jedoch dafür, dass die beiden Felder nicht vollständig parallel sind. Dies führt zu systematischen Abweichungen bei der Drift der Elektronen und somit zu einer verzerrten Projektion auf die Ausleseebene, zusätzlicher Diffusion in allen Raumrichtungen und einer geringeren effektiven Driftgeschwindigkeit. Die radiale Abweichung durch eine kleine, transversale Komponente B_r des Magnetfeldes kann für eine Driftstrecke l über

$$\delta_r = l \frac{B_r}{B_z} \frac{\omega\tau}{\sqrt{1+\omega^2\tau^2}} \tag{2.9}$$

berechnet werden [78].

2.3.3 Ladungsverstärkung

Um die erzeugten Primärelektronen auf der Ausleseebene nachweisen zu können, müssen sie um einen Faktor 10^3 bis 10^4 vervielfacht werden. Hierzu wird zusätzlich zum Driftfeld vor der Ausleseebene ein weiteres elektrisches Feld in der Größenordnung $10^3 - 10^4$ V/cm angelegt. Die Elektronen erhalten somit zwischen zwei Stößen mit den Gasatomen genügend Energie, um weitere Elektronen auszulösen. Die bei dieser Gasverstärkung durch N vorhandene Elektronen erzeugte Anzahl neuer Elektron-Ion-Paare dN lässt sich mit Hilfe des ersten Townsend-Koeffizienten α in Abhängigkeit der Wegstrecke s beschreiben [78]:

$$dN = \alpha(s)N(s)ds \quad . \tag{2.10}$$

Der Townsend-Koeffizient wird durch Anregungs- und Ionisationsquerschnitte bestimmt und hängt von der Zusammensetzung, der Temperatur und dem Druck des verwendeten Driftgases sowie der lokalen elektrischen Feldstärke ab. Die Steigerung der Elektronenanzahl von N_0 auf N_1 nach einem zurückgelegten Weg *s* ergibt sich aus dem Verstärkungsfaktor *G*, auch als Gain oder Gainfaktor bezeichnet:

$$N_1 = N_0 \cdot G = N_0 \cdot \exp\left(\int_s \alpha(s)ds\right) \quad . \tag{2.11}$$

Mit einem Triple-GEM-Stack lassen sich Verstärkungen von 10^4 bis 10^5 erreichen und gleichzeitig die Ionenrückdrift deutlich reduzieren. Diese kommt zustande, da neben den Elektronen beim Verstärkungsprozess in gleichem Maße Ionen produziert werden. Die Ionen bewegen sich aufgrund ihrer Ladung in Richtung Driftvolumen und tragen dort zu einer unerwünschten Raumladung, einer Verzerrung der elektrischen Felder und somit einer Verschlechterung der Energie- und Ortsauflösung bei. Die Ionenrückdrift Fwird über das Verhältnis der Anzahl der im Detektorvolumen freigesetzten Ionen N_I zur Anzahl der bei der Verstärkung erzeugten Elektronen N_e definiert

$$F = \frac{N_I}{N_e} \tag{2.12}$$

und kann für einzelne GEM-Folien $5 \cdot 10^{-2}$ [79] und für einen Triple-GEM-Stack unter idealen Bedingungen $(2,36 \pm 0,20) \cdot 10^{-3}$ [80] erreichen.

Ein Einfluss auf die Driftgeschwindigkeit und die Auflösung der z-Koordinate ist auch hier über die resultierende Ungenauigkeit bei der Bestimmung der Driftzeit der Elektronen gegeben.

2.4 Test-TPC und TestBench

Abbildung 2.7: Foto der TestBench mit vier paarweise angeordneten Szintillationsdetektoren (1+7), zwei planaren GEM-Detektoren (2+4), zwei Siliziumstreifendetektoren (3+6) und der Test-TPC (5).

Der Einsatz von GEM-Folien in einer Zeitprojektionskammer ist ein neues Konzept, so dass vor dem Bau einer für das CBELSA/TAPS-Experiment passenden Zeitprojektionskammer systematische Studien an einem Prototypen nötig waren [81]. Um mit dieser Test-TPC nicht nur Tests mit radioaktiven Quellen und kosmischer Strahlung sondern auch Leistungs- und Ratentests an einem Strahlplatz durchführen zu können, wurde ein Strahl-Tracking-Teleskop mit mehreren Detektoren zur externen Spurdefinition aufgebaut [56].

Diese TestBench besteht aus einem Stahltisch, auf dem eine drehbare Platte für die Halterung der Test-TPC und Befestigungspunkte für weitere Detektoren angebracht sind. Abbildung 2.7 zeigt ein Foto der TestBench mit vier paarweise angeordneten Szintillationsdetektoren (1+7), zwei planaren GEM-Detektoren (2+4), zwei Siliziumstreifendetektoren (3+6) und der Test-TPC (5).

a) Szintillationsdetektoren

Die Szintillationsdetektoren an Position 1 und 7 dienen einerseits dazu, ein Triggersignal für die Auslese aller Detektoren zu generieren und andererseits zur Definition einer

Abbildung 2.8: Szintillationsdetektoren auf der TestBench. Ein Paar (vorne) lässt sich mit Hilfe des Schrittmotors in *x*-Richtung fahren.

Strahlachse. Die aktive Fläche jedes Detektors besteht aus 3 mm dickem, organischem Szintillationsmaterial (EJ-260) mit einer Querschnittsfläche von $20 \text{ mm} \times 150 \text{ mm}$, welches mit aluminisierter Mylar-Folie umwickelt und lichtdicht verklebt ist, um die Lichtausbeute zu verbessern. Die Auslese erfolgt über Photomultiplier (PHOTONIS XP2972), die ein schnelles Zeitsignal liefern. Jeweils zwei Szintillationsdetektoren sind durch eine Haltestruktur V-förmig angeordnet, so dass sie sich überlappen (siehe Abbildung 2.8). Um die Detektoren an die Strahlposition anpassen zu können und somit eine möglichst hohe Zählrate zu erreichen, sind beide Paare in der Höhe um $\pm 20 \text{ mm}$ verstellbar und das Paar am Ende der TestBench mit Hilfe eines Schrittmotors in x-Richtung fahrbar. Eine programmierbare Triggerlogik auf FPGA-Basis erlaubt die Einstellung verschiedener Koinzidenzbedingungen zwischen den vier Szintillationsdetektoren.

b) Siliziumstreifendetektoren

Abbildung 2.9: Schematischer Aufbau eines Siliziumstreifendetektors (links, [82]) und Foto eines der verwendeten Detektoren (graues Quadrat in der Mitte) mit angeschlossener Ausleseelektronik (rechts).

Für eine gute externe Ortsauflösung werden Siliziumstreifendetektoren verwendet. Diese bestehen aus in Sperrrichtung betriebenen p-n-Halbleiterdioden. Beim Durchgang durch die sich zwischen den beiden Schichten ausbildende Verarmungszone erzeugen geladene Teilchen Elektron-Loch-Paare, die als Stromfluss messbar sind. Auf ein n-dotiertes Substrat lassen sich mit Hilfe von Photolithographie p-dotierte Streifen implantieren, wobei jeder Streifen einem p-n-Übergang entspricht (siehe Abbildung 2.9 links). Bei einer hintereinander und um 90° gegeneinander verdrehten Anordnung von zwei dieser Streifendetektoren lässt sich die Position des Durchgangs geladener Teilchen anhand der getroffenen Streifen rekonstruieren.

Die für die TestBench verwendeten Siliziumstreifendetektoren besitzen 384 Streifen pro Sensor und haben eine Dicke von 300 µm. Mit einem Streifenabstand von 50 µm bilden zwei dieser Sensoren eine für die Positionsmessung aktive Fläche von 19,2 mm × 19,2 mm (siehe Abbildung 2.9 rechts). Die Auslese eines Sensors erfolgt über drei APV25-S1 ASICs²⁴ mit jeweils 128 Kanälen, welche die Signale der einzeln verbundenen Streifen verstärken, formen und an einen ADC weiterleiten. Das Aluminiumgehäuse, in dem die Sensoren und die Ausleseelektronik vor mechanischen oder elektromagnetischen Störungen geschützt sind, lässt sich um $\pm 35 \text{ mm}$ in x-Richtung und $\pm 25 \text{ mm}$ in der Höhe (y-Richtung) an die Strahlposition anpassen.

c) Planare GEM-Detektoren

Abbildung 2.10: Schematische Zeichnung (links, [83]) und Foto (rechts) eines planaren GEM-Detektors. Die aktive Fläche befindet sich auf dem Foto in der Mitte unter der Kupferfolie.

Als weitere ortsauflösende Detektoren kommen zwei planare GEM-Detektoren mit einer aktiven Fläche von $100 \text{ mm} \times 100 \text{ mm}$ und einem Triple-GEM-Stack als Verstärkerstufe zum Einsatz, wie sie in Abbildung 2.10 dargestellt sind. Die verstärkten Elektronen generieren ein Signal auf zwei, um 90° gegeneinander verdrehten Streifenlagen, welche auf

 $^{^{24} \}rm ASIC \text{-} {\bf A} pplication \text{-} {\bf S} pecific \ Integrated \ Circuit \ (engl.) \text{-} an wendungs spezifische, integrierte \ Schaltung \ Schal$

einer gemeinsamen PCB^{25} angebracht sind. Die 265 Streifen pro Lage haben einen Abstand von 400 µm und werden ebenfalls mit APV25-S1 ausgelesen. Als Driftgas wird eine Mischung aus 70 % Argon und 30 % Kohlenstoffdioxid (ArCO₂ (70:30)) verwendet.

d) Test-TPC

Abbildung 2.11: Vorder- und Rückansicht der Test-TPC.

Die Test-TPC wurde wie die GEM-Detektoren an der TU München gebaut und hat einen Durchmesser von 200 mm, eine aktive Fläche von 100 mm × 100 mm und eine Driftlänge von 76,9 mm (siehe Abbildung 2.11). Details zum Aufbau finden sich in [79, 81]. Das in einem Triple-GEM-Stack verstärkte Signal wird mit 1500 hexagonalen Pads auf der Ausleseebene detektiert. Um das Ansprechverhalten verschiedener Pad-Größen und deren Auflösungsvermögen zu testen, hat die Hälfte der Pads einen Außenradius von $r_a = 1,25$ mm, während die restlichen Pads mit $r_a = 1,5$ mm etwas größer sind (siehe Abbildung 2.12). Die Auslese der Pads erfolgt mit dem für das T2K-Experiment entwickelten AFTER²⁶-ASIC. Die 511 kapazitiven Speicherzellen pro Kanal werden als abtastender Analog-Ring-Speicher mit einer einstellbaren Abtastrate von bis zu 50 MHz eingesetzt, deren gebündelter Datenstrom von einem dafür entwickelten ADC-Modul digitalisiert wird.

Um ein homogenes elektrisches Feld im Driftvolumen zu erzeugen, befinden sich vor dem GEM-Stack eine als *Skirt* bezeichnete Kupferplatte mit einer 100 mm × 100 mm großen Aussparung sowie zylindrische, 3 mm breite Kupferstreifen auf beiden Seiten einer 125 µm dicken, isolierenden Polyimidfolie, die den Feldkäfig bildet. Die Kathode besteht aus einer 0,3 mm dicken Kupferplatte auf einer Trägerstruktur aus Glasfaser. Für die Test-TPC sind $ArCO_2$ (70:30), $ArCO_2$ (90:10) und $NeCO_2$ (90:10) als Driftgase vorgesehen, die über das in Kapitel 4.2.4 beschrieben Gassystem bereitgestellt werden.

e) Messungen mit der TestBench

Konzipiert war die TestBench ursprünglich für den Einsatz hinter dem Tagging-Magneten des CBELSA/TAPS-Experiments, wo Messungen mit Elektronen in einem Energie-

²⁵PCB - Printed Circuit Board (engl.) - gedruckte Schaltung, Platine, Leiterkarte

 $^{^{26}\}mathrm{AFTER}$ - \mathbf{ASIC} For TPC Electronic Readout

Abbildung 2.12: Ausleseebene der Test-TPC. Die kleineren Pads (oben) haben einen Außenradius von 1,25 mm, der Außenradius der größeren Pads (unten) liegt bei 1,5 mm.

bereich um 400 MeV durchgeführt werden können [84]. Da bei diesen geringen Elektronenergien die Auflösung stark von Vielfachstreuung verfälscht wird, wurde die TestBench im Mai 2010 ans COMPASS-Experiment [85, 86] am CERN gebracht. Dort konnten Auflösungsstudien mit einem hochenergetischen Myonstrahl von 160 GeV durchgeführt werden. Abbildung 2.13 zeigt beispielhaft die Projektion auf die Ausleseebene und die dreidimensionale Rekonstruktion eines solchen Myonstrahl-Ereignisses in der Test-TPC. Detailliertere Ergebnisse der Testmessungen sind unter anderem in [84] und [87] zu finden. Seit September 2012 steht die TestBench wieder in Bonn in einem Laborraum, wo unter kontrollierten und konstanten äußeren Bedingungen mit Teilchen der kosmischen Strahlung gemessen werden kann.

Abbildung 2.13: Projektion auf die Ausleseebene (links) und dreidimensionale Rekonstruktion (rechts) eines Ereignisses in der Test-TPC, hervorgerufen durch einen 160 GeV-Myonstrahl am COMPASS-Experiment.

2.5 GEM-TPC-Prototyp für das FOPI- und das CBELSA/TAPS-Experiment

Parallel zu den Untersuchungen mit der Test-TPC wurde vom Detektorlabor der GSI ein GEM-TPC-Prototyp gebaut, der mit einem inneren Durchmesser von 104 mm, einem Außendurchmesser von 308 mm und einer Driftlänge von 727,8 mm den geometrischen Anforderungen des CBELSA/TAPS-Experiments entspricht. Er ist modular konstruiert und besteht im Wesentlichen aus einem Feldkäfig, einem Media- und einem GEM/Auslese-Flansch. Eine Auflistung der Parameter der GEM-TPC findet sich in Tabelle 2.1.

a) Feldkäfig

Der Feldkäfig wird von zwei Zylindern und einer Kathodenendkappe gebildet, die aus einer selbsttragenden Sandwichstruktur aus mehreren Lagen Kaptonfolie und Rohacell bestehen. Wie auch bei der Test-TPC sorgen zylindrische Kupferringe mit einem Abstand von 1,5 mm auf beiden Seiten einer Kaptonfolie, welche sowohl am äußeren als auch am inneren Zylinder des Feldkäfigs angebracht sind, für ein homogenes elektrisches Feld innerhalb des Driftvolumens (Abbildung 2.14). Das Potential der Feldstreifen von der Kathode zum letzten dieser 792 Ringe vor den GEMs wird durch eine SMD²⁷-Widerstandskette bestimmt. Dieser sogenannte *Last Strip* wird wie bei der Test-TPC auf ein eigenes Potential gelegt, um Spannungsüberschläge zwischen dem Feldkäfig und den GEM-Folien zu vermeiden.

Abbildung 2.14: Fertiger Feldkäfig (links). Am inneren Zylinder sind die Kupferringe und auf der entrollten Folie für den Feldkäfig (rechts) zusätzlich die SMD-Widerstände zu erkennen, die das homogene elektrische Feld erzeugen.

b) GEM/Auslese-Flansch

Die drei GEM-Folien des zur Verstärkung eingesetzten Triple-GEM-Stacks sind im sogenannten GEM-Flansch montiert. Der GEM-Flansch bietet Platz für insgesamt vier

²⁷SMD - **S**urface-**M**ounted **D**evice (engl.) - oberflächenmontiertes Bauelement)

Abbildung 2.15: GEM-Flansch mit eingebauter GEM-Folie. Eine Seite jeder Folie ist irisförmig in acht Segmente unterteilt.

Abbildung 2.16: Ausleseebene des Prototypen. Die hexagonalen Pads haben einen Außenradius von 1,5 mm.

GEM-Folien, ermöglicht das Auswechseln defekter Folien und sorgt für einen wohldefinierten Abstand zwischen den einzelnen GEMs. Die verwendeten Folien haben eine Dicke von $50\,\mu\text{m}$ und einen Lochabstand von $140\,\mu\text{m}$. Sie sind auf einer Seite in acht Segmente unterteilt, wie in Abbildung 2.15 zu erkennen ist.

Hinter den GEM-Folien befindet sich die Ausleseebene mit 10254 hexagonalen Pads mit einem Außenradius von 1,5 mm (Abbildung 2.16), die mit T2K/AFTER-Chips ausgelesen werden. Jeweils vier dieser Chips sind dabei auf einer von 42 Front-End-Karten untergebracht. Zur Digitalisierung der Daten ist ein Triggersignal notwendig, dass vom TPC Trigger Control System (TCS) bereitgestellt wird. Das TCS ist ein optisches System, welches vom COMPASS-Experiment übernommen wurde und sowohl Triggerinformationen als auch ein gemeinsames Taktsignal an die Ausleseelektronik weitergibt. Um zu verhindern, dass die Abwärme der Elektronik die Ausleseebene und das Driftgas erwärmt und so einen Einfluss auf die Messungen hat, sind die Front-End-Karten an ein Kühlsystem angeschlossen. Zur Überwachung der Temperatur sind zwölf Pt100-Temperatursensoren auf der Ausleseebene sowie 210 Dallas-1Wire-Sensoren auf dem Feldkäfig angebracht.

c) Media-Flansch

Auf dem Media-Flansch sind alle für den Betrieb der TPC notwendigen Anschlüsse für Hochspannung und Gas sowie für weitere Sensoren untergebracht. Neben dem Einbeziehungsweise Auslass für das Driftgas befinden sich hier jeweils ein Druck- und ein Flusssensor, deren Signale ebenso abgegriffen werden können wie die Werte der Temperatursensoren (Abbildung 2.17).

2.6 Inbetriebnahme der GEM-TPC im FOPI-Experiment

Um den fertigen Prototypen, wie er in Abbildung 2.18 gezeigt ist, in Betrieb zu nehmen und an einem Strahl mit hohen Teilchenraten testen zu können, wurde die GEM-TPC

Abbildung 2.17: Media-Flansch mit Gasauslass (6) und -einlass (8), Druck- und Flusssensoren (5 und 9 beziehungsweise 4 und 10), Hochspannungsanschluss für den Feldkäfig (7) und die GEM-Folien (1) und Abgriffe für die Signale der Temperatursensoren am Feldkäfig (2) und der Gassensoren (3).

im Inneren der Central Drift Chamber (CDC) des FOPI-Spektrometers an der GSI installiert.

FOPI ist ein Schwerionen-Experiment mit fest installiertem Target und einer nahezu vollständigen 4π -Winkelakzeptanz, welches seit seiner Inbetriebnahme 1990 zahlreichen Fragestellungen der Hadronenphysik nachgeht [88]. Hierzu zählen unter anderem die Untersuchung der Eigenschaften von Schwerionen-Reaktionen bei hohen Dichten und Drücken, von Hyperonen-Zerfällen, Proton-Proton-Reaktionen oder In-Medium-Effekten durch Pion-induzierte Reaktionen [89].

Das FOPI-Spektrometer, dargestellt in Abbildung 2.19, besteht aus der CDC, die fassförmig von einem RPC-Flugzeit-Detektor²⁸ und Szintillationsdetektoren (Barrel) umgeben ist. In Vorwärtsrichtung befindet sich eine weitere Driftkammer (Helitron) und eine Szintillator-Flugzeitwand (PLAWA). Der gesamte Aufbau ist in einen supraleitenden Magneten mit 0,6 T integriert.

Mit der GEM-TPC als zusätzlichem Spurdetektor im FOPI-Spektrometer ist es möglich, die bisher erreichte Auflösung von einigen Millimetern in x-y-Richtung beziehungsweise 5 cm in z-Richtung entlang der Strahlachse deutlich auf wenige 100 µm zu verbessern, während für die Tests der GEM-TPC die FOPI-Detektoren als externe Referenz und Trigger genutzt werden können. Um die Daten aller Detektoren zusammenzuführen und mit einem gemeinsamen Zeitstempel zu versehen, wurde die Datenauslese der GEM-TPC in das Multi Branch System (MBS) des FOPI-Experiments eingegliedert [58].

 $^{^{28}}$ RPC - **R**esistive **P**late **C**hamber (engl.) - Widerstandsplattenkammer

Abbildung 2.18: Zusammengebaute GEM-TPC mit äußerem (1) und innerem (5) Feldkäfig, GEM/Auslese- (2) und Media-Flansch (3). Auf der Rückseite der Ausleseebene sind die Steckplätze (4) für die Front-End-Karten zu erkennen.

Seit dem Einbau der GEM-TPC Ende 2010 konnten in mehreren Strahlzeiten (⁸⁴Kr-, ¹⁹⁷Au-, ²D-, ²²Ne- oder π -Strahl) mit unterschiedlichen Targets (Kupfer-, Kohlenstoff-, Blei- oder Aluminiumtargets) sowie mit kosmischer Strahlung Daten genommen und dabei verschiedene Gasmischungen (ArCO₂ (90:10), NeCO₂ (90:10)), Driftfelder (unter anderem 234 V/cm, 302,4 V/cm, 309,6 V/cm, 324 V/cm, 352,8 V/cm und 360 V/cm) und GEM-Verstärkungen (zwischen 630 und 5100) getestet werden [70].

Abbildung 2.20 zeigt ein typisches Ereignis in der GEM-TPC, welches durch die Reaktion eines ²²Ne-Strahls an einem Aluminiumtarget hervorgerufen wurde.

Eine Auswertung der gesammelten Daten hinsichtlich der Driftgeschwindigkeit findet sich in Kapitel 7. In Kapitel 7.4 sind zudem Beispiele für weiterführende Analysen der Daten im Rahmen der GEM-TPC und der FOPI-Kollaboration aufgeführt.

Geometry	ie		GEM -Folien		
Driftlänge	Driftlänge 727,8 mm		Anzahl	3	
Au & endurchmesser	$308,0 \mathrm{~mm}$		Dicke	$50~\mu{ m m}$	
Innendurchmesser 104,0 mm			Lochabstand	$140~\mu{ m m}$	
			Folienabstand	$2~\mathrm{mm}$	
Ausleseebene					
Anzahl Pads 10254			$\operatorname{Driftgase}$		
Pad-Außenradius	$1,5~\mathrm{mm}$	-	$ArCO_2 (90:10)$		
Form der Pads hexagonal			$NeCO_2$ (90:10)		

 Tabelle 2.1: Parameter und vorgesehene Gase der GEM-TPC.

Abbildung 2.19: FOPI-Experiment mit Central Drift Chamber (CDC), Vorwärtsdriftkammer (Helitron), Szintillationsdetektoren (Barrel), RPC-Flugzeit-Detektor und Szintillator-Flugzeitwand (PLAWA). Die GEM-TPC befindet sich im Inneren der CDC [90].

Abbildung 2.20: Projektion auf die Ausleseebene (links) und dreidimensionale Rekonstruktion (rechts) eines typischen Ereignisses in der GEM-TPC, hervorgerufen durch einen ²²Ne-Strahl an einem Aluminiumtarget.

2.7 Kalibration

Um die Orts- und Energieauflösung des Detektors zu verbessern, ist es notwendig, die Driftgeschwindigkeit und die effektive Verstärkung zu kalibrieren. Viele der negativen Einflüsse auf die Driftgeschwindigkeit, wie Schwankungen in der Zusammensetzung des Driftgases, Temperaturschwankungen, elektrische Feldverzerrungen oder Ionenrückfluss-Effekte, lassen sich durch Kontrolle dieser Parameter und Vergleichsmessungen mit kosmischer Strahlung oder durch ein Laserkalibrationssystem korrigieren.

Abbildung 2.21: Integration der ⁸³Rb-Quelle in das Gassystem der GEM-TPC. Das innere Stahlröhrchen mit der radioaktiven Quelle ist über einen Bypass an das Gassystem der GEM-TPC angeschlossen, so dass über drei Gashähne zwischen normalem Betrieb und Gasfluss durch den Aufbewahrungsbehälter gewählt werden kann.

Für eine optimale Energieauflösung muss zusätzlich jeder Auslesekanal unabhängig von den anderen auf Schwankungen in der Ladungssensitivität oder der Verstärkung korrigiert werden. Hierzu wurde eine ⁸³Rb-Quelle in das Gassystem der Test-TPC und das der GEM-TPC integriert (siehe Abbildung 2.21). Das über Elektroneneinfang entstehende, gasförmige ^{83m}Kr mit einer Halbwertszeit von 1,83 Stunden bietet eine Vielzahl an Konversionselektronen und -photonen in einem Energiebereich von 9,4-41,6 keV für die Kalibration und eine fast vollständige Abdeckung des Detektorvolumens und des Auslesebereiches.

Aus den aufgezeichneten Kalibrationsdaten wurde über die sogenannte "Leader-Pad-Methode", wie sie für die Kalibration der HARP-TPC entwickelt wurde [92], ein Ausgleichsfaktor für die Verstärkung jedes einzelnen Pads bestimmt. Abbildung 2.22 zeigt eine Übersicht über die Ausgleichsfaktoren für die Verstärkung aller Pads auf der Ausleseebene der GEM-TPC. Die Sektorgrenzen der GEM-Folien sind klar zu erkennen, da hier durch die geringere Verstärkung ein höherer Ausgleichsfaktor notwendig ist. Mit Hilfe der Ausgleichsfaktoren konnte die effektive Verstärkung der GEMs bei verschiedenen Spannungseinstellungen für beide TPCs bestimmt werden sowie die Energieauflösung der GEM-TPC für beispielsweise den 41,6 keV-Peak aus dem ^{83m}Kr-Spektrum von 5,7 % auf 3,8 % verbessert werden (siehe Abbildung 2.23). Weitere Informationen und Ergebnisse finden sich in [91].

2.8 Der Prototyp im CBELSA/TAPS-Experiment

Für den Einsatz im CBELSA/TAPS-Experiment wird seit Anfang 2013 eine zweite Version des Prototypen gebaut. Diese hat die gleichen Dimensionen wie der erste Prototyp.

Abbildung 2.22: Übersicht über die Ausgleichsfaktoren für die Verstärkung aller Pads auf der Ausleseebene der GEM-TPC [91].

Abbildung 2.23: Aufsummierte Energie der Cluster aller 10254 Pads ohne (rot) und mit (blau) Verwendung der Ausgleichsfaktoren [91].

Es muss jedoch eine neue, kontinuierlich arbeitende Ausleseelektronik entwickelt werden, um die TPC freilaufend ohne einen externen Trigger oder selbst als Detektor in der ersten Triggerstufe verwenden zu können. Zudem muss die Auslese der GEM-TPC in die bestehende DAQ²⁹ des CBELSA/TAPS-Experiments eingebunden werden. Weiterhin muss eine Haltestruktur konstruiert werden, mit der die TPC mit allen Anschlüssen und der Ausleseelektronik anstelle des Innendetektors in den Crystal-Barrel-Detektor integriert werden kann (siehe Abbildung 2.24).

Um mit den notwendigen Tests des neuen Prototypen und der neuen Elektronik nicht die laufende Datennahme des CBELSA/TAPS-Experiments zu behindern, wurde für den Prototypen zusätzlich eine Halterung für die TestBench entworfen.

2.9 Der Magnet für das CBELSA/TAPS-Experiment

Für die Bestimmung von Transversalimpuls p_t , Energieverlust und Art der gemessenen Teilchen muss die TPC in einem homogenen Magnetfeld betrieben werden. Hierzu soll das bereits früher mit dem Crystal-Barrel-Detektor verwendete Eisenrückführjoch des ASTERIX-Experiments am CERN ([93], siehe Abbildung 2.25) genutzt und die alte Aluminiumspule wegen ihrer hohen Verlustleistung von 2,5 MW durch eine neue supraleitende Spule ersetzt werden. Das Rückführjoch besteht aus einem inneren und einem äußeren Joch und ist im Inneren mit zwei Schienen ausgestattet, auf denen der Crystal-Barrel-Detektor lagert und zu Wartungszwecken aus dem Rückführjoch gefahren werden kann.

Um zu untersuchen, wie ein Magnet mit einer Stärke von 2,0 T beziehungsweise 2,5 T konstruiert sein muss, um die geforderten Feldhomogenitäten von 1% im Bereich der TPC und 0,1% im Bereich des Targets bereitstellen zu können, wurde im Juni 2007

 $^{^{29}\}mathrm{DAQ}$ - $\mathbf{D}\mathrm{ata}$ $\mathbf{AQ}\mathrm{uisition}$ (engl.)- Datenerfassung

Abbildung 2.24: Technische Zeichnung der GEM-TPC im Inneren des Crystal-Barrel-Detektors [34].

eine Machbarkeitsstudie bei der Firma ACCEL (jetzt BRUKER EST) in Auftrag gegeben [94]. Durch die geforderte Feldhomogenität im Bereich des Targets wird es möglich sein, auch ohne die bisherigen Unterbrechungen der Datennahme zur Aufpolarisation einen hohen Polarisationsgrad zu erhalten. Abbildung 2.26 zeigt die vorgeschlagene Konfiguration mit drei Spulen und die magnetische Induktion |B| auf der Oberfläche des Eisenrückführjochs bei einem Feld von $B_z = 2,5$ T. Als Kühlsystem ist ein Kryostat mit geschlossenem Helium-Kreislauf und Stickstoffvorkühlung vorgesehen, welcher oben auf dem Rückführjoch montiert wird.

In [94] wurde zudem untersucht, welche Modifikationen am Rückführjoch durchgeführt werden müssen, um neben der geforderten Homogenität im Inneren auch die Streufelder außerhalb des Rückführjochs zu minimieren und trotzdem ausreichend Platz für die Durchführung der Kühlung und allen Kabeln zu erhalten.

Zusätzlich zu der Machbarkeitsstudie der Firma ACCEL wurde im Rahmen dieser Arbeit untersucht, ob und wie sich die Streufelder außerhalb des Eisenjochs auf den gesamten Bereich des CBELSA/TAPS-Aufbaus auswirken. Hierzu wurde mit dem Programm "CST EM Studio" [95] ein Magnet simuliert, welcher analog zum Vorschlag aus der Machbarkeitsstudie von zwei äußeren Spulen mit einem Innenradius von $r_i = 830$ mm, einem Außenradius von $r_a = 960,17$ mm und einer Breite von b = 200 mm sowie einer mittleren Spule mit $r_i = 830$ mm, $r_a = 875$ mm und b = 120 mm gebildet wird (siehe Abbildung 2.27). Die Geometrien und die Materialien des Strahlplatzes mit Betonboden, Elektronenstrahlführung, Ablenkmagneten und Strahlvernichter sowie des Crystal-Barrel-Detektors, des Targetkryostaten und des Rückführjochs konnten aus den technischen Zeichnungen des CBELSA/TAPS-Experiments übernommen werden und sind in Abbildung 2.28 dargestellt.

Abbildung 2.25: Crystal-Barrel-Rückführjoch des ASTERIX-Experiments mit der alten Aluminiumspule (links). Im inneren Teil (rechts) sind die Schienen als Halterung für den Crystal-Barrel-Detektor und die Löcher der Zuführung für die alten Spulen zu erkennen [34].

Die Simulationen wurden für verschiedene Modifikationen am Rückführjoch und unterschiedlich starke Magnetfelder zwischen 2 T und 7 T durchgeführt. Wie in Abbildung 2.29 beispielhaft für ein 3 T starkes Magnetfeld gezeigt ist, lassen sich schon mit wenigen Änderungen am Rückführjoch, insbesondere dem Schließen der Zuführung für die alten Aluminiumspulen, Streufelder außerhalb des Rückführjochs auf deutlich unter 1 % minimieren. Die umliegenden Detektoren und deren Elektronik werden somit nicht durch das Magnetfeld beeinflusst.

Da für die Installation des Rückführjochs am CBELSA/TAPS-Strahlplatz neue Fundamente und somit ein Umbau des Bodens und des kompletten Experiments notwendig sind, wird der Magnet nicht vor dem Ende der jetzigen Förderperiode und Datennahme im Jahr 2016 zum Einsatz kommen können. Die GEM-TPC wird somit am Anfang ohne Magnetfeld betrieben werden, so dass sich während dieser Zeit Transversalimpuls p_t und Art der gemessenen Teilchen alleine aus den Daten der GEM-TPC nicht bestimmen lassen. Eine Bestimmung des Energieverlustes und der Teilchenart ist jedoch in Verbindung mit den Daten des Crystal-Barrel-Detektors möglich, so dass zusammen mit der ebenfalls möglichen Messung geladener Endzustände und einer deutlichen Verbesserung der Orts- und Winkelauflösung gegenüber dem zur Zeit verwendeten Innendetektor auf $\approx 230 \,\mu$ m beziehungsweise 0,1° eine Erweiterung des physikalischen Programms des CB-ELSA/TAPS-Experiments auch ohne Magnetfeld erreicht wird.

Abbildung 2.26: Vorgeschlagene Konfiguration des supraleitenden Magneten (rot) und magnetische Induktion |B| auf der Oberfläche des alten Rückführjochs [94].

Abbildung 2.27: CST-Simulation eines 7 T starken Magnetfeldes im Bereich des Rückführjochs mit Crystal-Barrel-Detektor (grau), Targetkryostaten (gelb) und einem Dummyvolumen für die TPC (blau). Der Magnet wird von drei supraleitenden Spulen gebildet (orange Ringe).

Abbildung 2.28: Darstellung des CBELSA/TAPS-Experiments mit dem Rückführjoch in der Simulationssoftware.

Abbildung 2.29: CST-Simulation eines 3 T starken Magnetfeldes im gesamten Bereich des CBELSA/TAPS-Experiments.

Nur ein Narr macht keine Experimente.

(Charles Darwin)

3 Simulationen zur Driftgeschwindigkeit

Wie im vorherigen Kapitel erläutert, ist die genaue Kenntnis der Driftgeschwindigkeit der Elektronen für die präzise Rekonstruktion der Daten der GEM- und der Test-TPC von großer Bedeutung. Bei bekannten äußeren Parametern wie Druck und Temperatur kann die Bewegung und Diffusion von Ladungsträgern mit dem Programm Magboltz [96] simuliert werden. Solche Simulationen wurden im Rahmen dieser Arbeit für die mit der GEM-TPC und der Test-TPC verwendeten Gasgemische sowie verschiedene Driftfelder und äußere Bedingungen durchgeführt und werden im Folgenden beschrieben. Ausführlichere Simulationen der Vorgänge in der GEM-TPC und der kompletten Auslesekette sind in [57] oder [97] zu finden.

3.1 Simulationssoftware

Die Bewegung und Diffusion von Elektronen durch ein Gasgemisch unter dem Einfluss von elektrischen und magnetischen Feldern kann durch das Lösen der Boltzmannschen Transportgleichung bestimmt werden. Das Fortran-basierte Programm Magboltz 2 [96, 98, 99] führt diese Berechnungen für Gasgemische mit maximal sechs Komponenten mit Hilfe der Monte-Carlo-Integrations-Methode durch und liefert unter anderem simulierte Werte für die Driftgeschwindigkeit, den Townsend-Verstärkungsfaktor sowie für die longitudinale und transversale Diffusion. Dabei werden Genauigkeiten von unter 1 % für die Driftgeschwindigkeit beziehungsweise 2 % für alle weiteren Werte erreicht.

Die notwendigen Parameter für die Simulation werden über eine Textdatei geladen. Ein vollständiger Parametersatz für einen Programmdurchlauf besteht aus vier Zeilen:

	2	50	1	0.0				
2	12	0 0	0 0					
90.0	0000	10.0000	0.0000	0.0000	0.0000	0.0000	20.0000	760.0000
400	.000	25.000	0.000					

Die erste Zeile gibt die Anzahl verschiedener Gase an, die Anzahl betrachteter Kollisionen (als Vielfaches von 10^7), ob die Übertragung von Anregungsenergie bei Teilchenzusammenstößen (Penningeffekt [78]) mit berücksichtigt werden sollen und die maximale Elektronenergie (in eV). In der zweiten und dritten Zeile sind die Art der verschiedenen Gase über eine Kennnummer und deren prozentualen Anteile sowie die Temperatur (in °C) und der Druck (in Torr) angegeben. Die elektrischen und magnetischen Felder (in V/cm beziehungsweise kG) sowie der Winkel zwischen beiden finden sich in der vierten Zeile.

General settings (First Card) Number of gases in mixture - NGAS 2		Number of 1 (multiple of 1	real collisions .0^7) - NMAX (Include 50 ♀ Penning effects ☑		Upper limit energy	Upper limit of electron energy - EFINAL		
Choice of Gases	ans Gas	properties (Sec	ond+Third C	ard)	fix (start) valu	ue	end value	# stens	sten size
Gas 1 - NGAS1	Gas 2 - A	rgon	• Fracti	on 1 - FRAC1	90,0000 9	% Change	50,0000 %		0,0000 %
Gas 2 - NGAS2	Gas 12 - (02	Fracti	on 2 - FRAC2	10,0000 %	6 🗘 🗆 change	50,0000 %		0,0000 % 🕃
Gas 3 - NGAS3	(no gas ch	oosen.	Fracti	on 3 - FRAC3	0,0000 %	を 〇 Change	0,0000 %		0,0000 %
Gas 4 - NGAS4	AS4 no gas choosen		Fracti	on 4 - FRAC4	0,0000 %	∕o ☺ □ change	0,0000 %	10	0,0000 % 🤤
Gas 5 - NGAS5	no gas ch	nosen	Fracti	on 5 - FRAC5	0,0000 %	k 🗇 🗋 change	0,0000 %		0,0000 % 🕀
Gas 6 - NGAS6	no gas ch	loosen	S Fracti	on 6 - FRAC6	0,0000 %	6 🔄 🗆 change	0,0000 %	10	0,0000 % 🔅
Reset gas v	alues		Temperature -	ТЕМР	20,00 °C 🗘	Change	20,00 °C 💭	10	0,00 °C
Electric Field -		(start) value 400,000 V/cm 🔤	📄 🗆 change	end value	e # ste	eps step s	size	generate new N	Aagboltz Input
Magnetic Field -	BMAG	25.000 kGauss 合		0,000 kGa	uss 🕀 🔰	1 A 000 k	Gauss		
Angle between	E and B Fi	eld - BTHETA	0,000 ° 🗘					add to existing I	Magboltz Input
Angle between	50 0 0 10.0000 25.000	eld - BTHETA	0,000 ° 🔪 0.0	0.0000	0.0000 20	.0000 760.00	000 (00	add to existing I ve Magboltz I ave Input File as input_# r browse for file	Magboltz Input nput to file .in save save as

Abbildung 3.1: Graphische Benutzeroberfläche zur Erstellung von Magboltz-Eingabedateien.

Eine Eingabedatei kann mehrere vollständige Parametersätze umfassen, welche nacheinander abgearbeitet werden. Um die Erstellung größerer Eingabedateien zu vereinfachen und Fehler, wie eine von 100 % abweichende Summe der Gasanteile, zu vermeiden, wurde im Rahmen dieser Arbeit eine Qt-basierte graphische Benutzeroberfläche programmiert (siehe Abbildung 3.1 sowie Abschnitt 5.4).

Mit dieser GUI lassen sich die Parameter bequem über Eingabefelder festlegen, die zur Verfügung stehenden Gase über Pull-Down-Menüs auswählen und Simulationsreihen für verschiedene Parameter mit einstellbaren Schrittweiten erstellen.

3.2 Simulierte Gasgemische

Die Wahl des Gasgemisches ist von großer Bedeutung für den Betrieb einer Zeitprojektionskammer. Die gewünschte hohe Präzision bei der Messung verlangt ein Gas mit geringer Diffusion, einer geringen Anfälligkeit auf externe Einflüsse, guten Verstärkungseigenschaften sowie einer hohen Ionisationsrate. Solche Gase bringen jedoch selten eine hohe Ratenfestigkeit, ein schnelles "Entsorgen" der Ionen und eine geringe Reaktivität zur Vermeidung von Alterungseffekten mit, wie sie für einen stabilen Betrieb des Detektors notwendig sind.

Wie beispielsweise in [100] oder [101] ausführlich beschrieben wird, kommen vor allem die Edelgase Argon und Neon als Hauptkomponente von Driftgasen in Frage. Auch die Tests der GEM-TPC und der Test-TPC wurden mit diesen beiden Gasen durchgeführt. Als Löschgas, sogenannte Quencher oder Quenchgase, werden häufig Kohlenstoffdioxid (CO_2) , Methan (CH_4) , Ethan (C_2H_6) , Tetrafluormethan (CF_4) oder Stickstoff (N_2) beigemischt. Das Quenchgas hat unter anderem die Aufgabe, die beim Verstärkungsprozess entstehenden Photonen über zusätzliche Anregungszustände zu absorbieren, hierdurch Gasentladungen zu vermeiden und somit die Gasverstärkung zu stabilisieren. Für die GEM-TPC und die Test-TPC wird Kohlenstoffdioxid verwendet, da es im Vergleich zu anderen Quenchgasen am wenigsten reaktiv und am einfachsten zu handhaben ist sowie eine geringere Diffusion hervorruft.

Bei den Tests der GEM-TPC und der Test-TPC kamen Argon-Kohlendioxid und Neon-Kohlendioxid in einem Mischverhältnis von 90:10 (ArCO₂ (90:10), NeCO₂ (90:10)) sowie Argon-Kohlendioxid in einem Verhältnis von 70:30 (ArCO₂ (70:30)) als Driftgase zum Einsatz. Die Simulationen wurden daher vor allem für diese drei Gasgemische durchgeführt.

Zu Vergleichszwecken wurden zudem Argon (100), Neon (100), Ne CO_2N_2 (90:5:5) und Ne CF_4 (90:10) unter Standardbedingungen³⁰ in Abhängigkeit vom Driftfeld simuliert. Der simulierte Bereich von 0-2000 V/cm geht dabei über die für das GEM-TPC und Test-TPC maximal vorgesehene Driftfeld von 360 V/cm hinaus. Der Bereich, in dem die GEM-TPC während der Tests betrieben wurde, ist daher in den folgenden Graphen zusätzlich vergrößert dargestellt. Die beiden senkrechten Linien entsprechen dabei Driftfeldern von 234 V/cm ($\hat{=}$ 65 % $E_{drift, max}$) und 360 V/cm ($\hat{=}$ 100 % $E_{drift, max}$).

In Tabelle 3.1 sind die wichtigsten Werte der simulierten Gase und Gasgemische für ein Driftfeld von $360 \,\mathrm{V/cm}$, ein Magnetfeld von $2 \,\mathrm{T}$ und Standardbedingungen zusammenfassend aufgelistet.

Gasgemisch	Ar	CO_2	NeCO ₂	$\mathrm{NeCO_2N_2}$	${ m NeCF_4}$	Ar	Ne
Mischverhältnis [%]	70:30	90:10	90:10	90:5:5	90:10	100	100
long. Diffusion							
$D_L \ [\ \mu m/\sqrt{cm} \]$	140,0	259,4	$222,\!3$	$236,\!5$	$157,\!2$	$655,\!9$	1023,4
$\sigma_L \ [\ \mathrm{mm} \]$	$1,\!19$	2,21	$1,\!90$	2,02	$1,\!34$	5,60	8,73
trans. Diffusion $(0 T)$							
$D_T \ [\ \mu m/\sqrt{cm} \]$	139,0	$231,\!9$	$213,\!8$	$293,\!2$	$204,\!2$	1587,4	1568,2
$\sigma_T \ [\ \mathrm{mm} \]$	$1,\!19$	$1,\!98$	1,82	$2,\!50$	1,74	$13,\!54$	$13,\!38$
trans. Diffusion $(2T)$							
$D_T \left[\ \mu m / \sqrt{cm} \ \right]$	$123,\!8$	$119,\!8$	$128,\!6$	158,4	43,4	$1235,\!6$	$1354,\! 6$
$\sigma_T \ [\ \mathrm{mm} \]$	$1,\!06$	$1,\!02$	1,10	$1,\!35$	$0,\!37$	$11,\!56$	$11,\!56$
Driftgeschwindigkeit							
$v_{ m drift} \; [\; { m mm}/{ m \mu s} \;]$	8,36	$28,\!66$	$23,\!83$	29,51	77,41	3,23	6,70

Tabelle 3.1: Eigenschaften verschiedener Gasgemische, die in Zeitprojektionskammern zum Einsatz kommen. Die Werte sind für ein Driftfeld von 360 V/cm, ein Magnetfeld von 2 T, eine TPC-Länge von l=727,8 mm und Standardbedingungen simuliert. Zum Vergleich sind die Eigenschaften von reinem Argon und Neon aufgeführt.

 $^{^{30}}$ Temperatur $T=20\ensuremath{\,^\circ C}$, Druck $p=760\,{\rm Torr}=1013,25\,{\rm mbar}$

Abbildung 3.2: Simulation der longitudinalen Diffusion in verschiedenen Gasgemischen unter Standardbedingungen und einer Magnetfeldstärke von $B_Z=2$ T.

3.3 Longitudinale Diffusion

Die Ergebnisse für die longitudinale Diffusion in Abhängigkeit vom angelegten Driftfeld E_{drift} mit einem Magnetfeld der Stärke 2T sind in Abbildung 3.2 dargestellt. Hier wird deutlich, dass durch die Beimischung eines Quenchgases die Diffusion um einen Faktor drei (ArCO₂ (90:10) im Vergleich zu reinem Argon) bis acht (NeCF₄ (90:10) im Vergleich zu reinem Neon) reduziert werden kann. Für die in der GEM-TPC verwendeten Gasgemische ergeben sich bei einem Driftfeld von 360 V/cm Werte von

$$D_L(\text{ArCO}_2 (90:10)) = (259.4 \pm 11.4) \,\mu\text{m}/\sqrt{\text{cm}}$$

$$D_L(\text{NeCO}_2 (90:10)) = (222.3 \pm 6.0) \,\mu\text{m}/\sqrt{\text{cm}} ,$$

was über die gesamte Driftlänge von l=727,8 mm einer longitudinalen Diffusion von

 $\sigma_L(\text{ArCO}_2 (90:10)) = (2,21 \pm 0,10) \text{ mm} ,$ $\sigma_L(\text{NeCO}_2 (90:10)) = (1,90 \pm 0,05) \text{ mm}$

entspricht. Über den Bereich des verwendeten Driftfeldes bleiben diese Werte für alle Gasgemische nahezu konstant und ändern sich auch für höhere Driftfelder nur noch geringfügig.

Ein Vergleich mit den Ergebnissen der Simulation ohne Magnetfeld in Abbildung 3.3 zeigt, wie anhand den theoretischen Betrachtungen zu erwarten ist, dass die Werte nicht vom Magnetfeld abhängen.

Abbildung 3.3: Simulation der longitudinalen Diffusion in verschiedenen Gasgemischen unter Standardbedingungen und ohne Magnetfeld.

3.4 Transversale Diffusion

Anders verhält es sich bei der transversalen Diffusion, die in den Abbildungen 3.4 und 3.5 in Abhängigkeit vom Driftfeld E_{drift} mit und ohne Magnetfeld dargestellt ist. Der Vergleich der beiden Graphen zeigt deutlich, dass die transversale Diffusion durch Magnetfelder beeinflusst wird und sich die Diffusion mit einer für das CBELSA/TAPS-Experiment vorgesehenen Feldstärke von 2 T um einen Faktor zwei oder mehr verringern lässt. Zudem wird auch hier ersichtlich, dass die Beimischung eines Quenchgases einen starken, positiven Effekt auf die transversale Diffusion hat.

Auffällig ist bei allen Gasgemischen der Anstieg der Diffusion bei höheren Driftfeldern. Dies ist auf den Verlauf der Wechselwirkungsquerschnitte der einzelnen Gaskomponenten zurückzuführen und fällt mit Magnetfeld etwas deutlicher aus als ohne.

Für $ArCO_2$ (90:10) und $NeCO_2$ (90:10) erreicht die Diffusion gerade im Bereich der Driftfelder der GEM-TPC ihr Minimum und ist hier im Rahmen der systematischen Fehler konstant bei

$$D_T(\text{ArCO}_2 (90:10)) = (119,80 \pm 4,34) \,\mu\text{m}/\sqrt{\text{cm}} ,$$

$$D_T(\text{NeCO}_2 (90:10)) = (128,60 \pm 3.92) \,\mu\text{m}/\sqrt{\text{cm}} ,$$

Die transversale Diffusion für Elektronen, die über die gesamte Länge der GEM-TPC driften, liegt bei

$$\sigma_T(\text{ArCO}_2 (90:10)) = (1,02 \pm 0,04) \text{ mm}$$

$$\sigma_T(\text{NeCO}_2 (90:10)) = (1,10 \pm 0,04) \text{ mm}$$

Mit dem im FOPI-Experiment zur Verfügung stehenden Magnetfeld $(B_Z=0,6 \text{ T})$ ergibt sich für diese beiden Gasgemische erwartungsgemäß eine höhere transversale Diffusion

Abbildung 3.4: Simulation der transversalen Diffusion in verschiedenen Gasgemischen unter Standardbedingungen und einer Magnetfeldstärke von $B_Z=2$ T.

von

$$D_T(\text{ArCO}_2 (90:10)) = (206,3 \pm 9,7) \, \mu\text{m}/\sqrt{\text{cm}} ,$$

$$D_T(\text{NeCO}_2 (90:10)) = (200,0 \pm 6,3) \, \mu\text{m}/\sqrt{\text{cm}} ,$$

so dass die Diffusion für Elektronen, die über die gesamte Länge der GEM-TPC driften, mit Werten von

$$\sigma_T(\text{ArCO}_2 \ (90:10)) = (1,76 \pm 0,08) \text{ mm} ,$$

$$\sigma_T(\text{NeCO}_2 \ (90:10)) = (1,71 \pm 0,05) \text{ mm}$$

in der Größenordnung der Pads auf der Ausleseebene liegt. Dadurch hat die transversale Diffusion einen großen Einfluss auf die Ortsauflösung der Zeitprojektionskammer. Durch geeignete Cluster- und Spurrekonstruktion lässt sich die Auflösung verbessern, für die GEM-TPC beispielsweise auf einige 100 µm [70].

3.5 Driftgeschwindigkeit

In Abbildung 3.6 sind die Driftgeschwindigkeiten von Elektronen in den verschiedenen simulierten Gasen in Abhängigkeit von den angelegten Driftfeldern aufgetragen. Es zeigt sich, dass durch die Beimischungen eines Quenchgases eine deutlich höhere Driftgeschwindigkeit erreicht werden kann, als es mit reinem Argon oder Neon möglich wäre. Während der positive Effekt auf die Diffusion für die unterschiedlichen Quenchgase jedoch in der gleichen Größenordnung liegt, ist der Effekt auf die Driftgeschwindigkeit

Abbildung 3.5: Simulation der transversalen Diffusion in verschiedenen Gasgemischen unter Standardbedingungen und ohne Magnetfeld.

stark vom Quenchgas und der prozentualen Beimischung abhängig. Bei Gasmischungen mit CF₄ können schon für niedrige Driftfelder sehr hohe Driftgeschwindigkeiten erreicht werden. In NeCF₄ (90:10) wird beispielsweise für Driftgeschwindigkeiten über $50 \text{ mm/}\mu\text{s}$ lediglich ein Driftfeld von 130 V/cm benötigt. Für hohe CO₂-Konzentration im Driftgas hingegen steigt die Driftgeschwindigkeit nur langsam mit dem Driftfeld an. Wie zu erwarten ist, zeigt der Vergleich mit den ohne Magnetfeld simulierten Werten in Abbildung 3.7 keine Abweichung.

Idealerweise sollte eine Zeitprojektionskammer mit einem Driftfeld betrieben werden, bei dem sich die Driftgeschwindigkeit bei Spannungsschwankungen nur wenig ändert oder konstant ist. Für alle simulierten Gasgemische wird jedoch erst ab einem Driftfeld von über 700 V/cm solch ein Plateau oder Maximum erreicht. Der Bereich, in dem die GEM-TPC und die Test-TPC betrieben werden können, liegt somit für alle Gasgemische in der ansteigenden Flanke. Um während der Messungen große Variationen in der Driftgeschwindigkeit zu vermeiden, müssen die angelegten Spannungen daher von der SlowControl konstant gehalten und die äußeren Parameter genau überwacht werden, wie in Kapitel 4 und 5 ausgeführt ist.

Wie aus den Gleichungen 2.4 und 2.5 ersichtlich ist, hängt die Driftgeschwindigkeit von der mittleren freien Zeit zwischen zwei Stößen τ und somit von der Temperatur und dem Druck ab.

Die weiteren Simulationen wurden vor allem für die in der GEM-TPC verwendeten Gasgemische $\operatorname{ArCO}_2(90:10)$ und $\operatorname{NeCO}_2(90:10)$ mit der im FOPI-Experiment verfügbaren Magnetfeldstärke von 0,6 T für verschiedene Temperaturen T, Drücke p und Konzentrationsschwankungen durchgeführt.

Abbildung 3.6: Elektronendriftgeschwindigkeit in verschiedenen Gasgemischen in Abhängigkeit vom angelegten Driftfeld unter Standardbedingungen und einer Magnetfeldstärke von $B_Z=2$ T.

Abbildung 3.7: Elektronendriftgeschwindigkeit in verschiedenen Gasgemischen in Abhängigkeit vom angelegten Driftfeld unter Standardbedingungen und ohne Magnetfeld.

Abbildung 3.8: Abhängigkeit der Elektronendriftgeschwindigkeit in $\operatorname{ArCO}_2(90:10)$ von der Temperatur bei verschiedenen Driftfeldern.

3.5.1 Temperaturabhängigkeit

Die Abhängigkeit der Driftgeschwindigkeit von der Temperatur wurde für $ArCO_2$ (90:10) und $NeCO_2$ (90:10) für einen Bereich von 20 °C bis 50 °C simuliert. Abbildung 3.8 und 3.9 zeigen die simulierten Driftgeschwindigkeiten bei den während der Datennahme vorzugsweise eingestellten Driftfeldern.

Die Simulationen weisen für beide Gasgemische in diesem Temperaturbereich einen nahezu linearen Anstieg der Driftgeschwindigkeit mit zunehmender Temperatur auf.

Da sich der simulierte Bereich für beide Gasgemische in der ansteigenden Flanke befindet, steigt die Driftgeschwindigkeit für die verschiedenen Driftfelder unterschiedlich stark mit der Temperatur an. Für ein Driftfeld von $100\% E_{\rm drift,\,max}$ ändert sich die Driftgeschwindigkeit in ArCO₂ beispielsweise um $0,11 \,\rm mm/\mu s$ pro 1°C, während die Änderung bei 65% $E_{\rm drift,\,max}$ lediglich $0,07 \,\rm mm/\mu s$ pro 1°C beträgt. In NeCO₂ ist die Änderungsrate generell etwas niedriger und liegt für ein Driftfeld von $100\% E_{\rm drift,\,max}$ bei nur $0,08 \,\rm mm/\mu s$ pro 1°C.

3.5.2 Druckabhängigkeit

Mit steigendem Druck erhöht sich die Anzahl der Teilchen im Gasvolumen. Für die driftenden Elektronen steigt somit die Wahrscheinlichkeit eines Stoßes mit diesen. Die Driftgeschwindigkeit nimmt daher mit steigendem Druck ab, wie in den Abbildungen 3.10 und 3.11 für verschiedene Driftfelder und Temperaturen von 20 °C, 25 °C, 30 °C und 35 °C dargestellt ist. Wie bei der Temperaturabhängigkeit ist die Änderungsrate im simulierten Bereich vom Driftfeld abhängig. Je höher das Driftfeld gewählt wird, desto größer sind die Änderungen der Driftgeschwindigkeit bei einer Druckänderung. Die

Abbildung 3.9: Abhängigkeit der Elektronendriftgeschwindigkeit in NeCO₂ (90:10) von der Temperatur bei verschiedenen Driftfeldern.

Reduzierung des Driftfeldes folgt in diesem Bereich jedoch keinem linearen Zusammenhang, so dass sich für die Änderung der Driftgeschwindigkeit für eine Druckänderung von 10 mbar nur ein Näherungswert von $0.15 \text{ mm/}\mu\text{s}$ (in ArCO₂, bei einem Driftfeld von $65 \% E_{\text{drift, max}}$) bis $0.325 \text{ mm/}\mu\text{s}$ (in ArCO₂, bei einem Driftfeld von $100 \% E_{\text{drift, max}}$) angeben lässt.

3.5.3 Abhängigkeit von der Gaszusammensetzung

Wie bereits gezeigt wurde, hat die Beimischung eines Quenchgases einen starken Einfluss auf die Driftgeschwindigkeit. Für die Tests der GEM-TPC wurde ein Mischverhältnis zwischen Argon beziehungsweise Neon und CO_2 als Quenchgas von 90:10 Massenanteilen verwendet. Da es jedoch auch bei industriell vorgemischten Gasen zu leichten Schwankungen in der Zusammensetzung kommen kann, wurde die Driftgeschwindigkeit in Abhängigkeit von der Argon- und Neonkonzentration für verschiedene Driftfelder und Temperaturen von 20 °C, 25 °C, 30 °C und 35 °C simuliert.

Die Abbildungen 3.12 und 3.13 zeigen die Ergebnisse der Simulation für eine Argonbeziehungsweise Neonkonzentration von 88-92 %. Der fehlende Anteil in den Gasgemischen ist jeweils CO₂. Für beide Gasgemische äußert sich die Erhöhung der Konzentration der Hauptkomponente in einem vom Driftfeld abhängigen Anstieg der Driftgeschwindigkeit, wobei in ArCO₂ ein deutlich größerer Anstieg über den gesamten Bereich zu verzeichnen ist als in NeCO₂. In ArCO₂ steigt die Driftgeschwindigkeit abhängig vom Driftfeld schon für eine geringe Konzentrationsänderung von 0,1 % um näherungsweise 0,194 mm/µs (bei einem Driftfeld von 65 % $E_{drift, max}$) bis 0,31 mm/µs (bei einem Driftfeld von 100 % $E_{drift, max}$). Für NeCO₂ ergibt sich eine Änderungsrate der Driftgeschwin-

Abbildung 3.10: Abhängigkeit der Elektronendriftgeschwindigkeit in $ArCO_2$ (90:10) vom Druck bei verschiedenen Driftfeldern und Temperaturen.

digkeit von 0,177 mm/µs (bei einem Driftfeld von 90 % $E_{\text{drift, max}}$) bis 0,190 mm/µs (bei einem Driftfeld von 100 % $E_{\text{drift, max}}$).

Weitere Änderungen an der Gaszusammensetzung sind durch Verunreinigungen mit beispielsweise Sauerstoff oder Wassermolekülen zu erwarten. Für den in Abbildungen 3.14 und 3.15 dargestellt Bereich von bis zu 400 ppm und darüber hinaus haben Sauerstoffbeimischungen im Driftgas keinen Einfluss auf die Driftgeschwindigkeit. Bei steigender Wasserkonzentration im Driftgas zeigt sich hingegen eine Abnahme der Driftgeschwindigkeit (siehe Abbildungen 3.16 und 3.17). Die Änderungsrate ist mit 0,014 mm/µs pro 10 ppm für ArCO₂ und 0,008 mm/µs pro 10 ppm für NeCO₂ jedoch so gering, dass eine Verunreinigung mit Wasser im erwarteten Bereich von unter 50 ppm keinen nennenswerten Einfluss auf die Driftgeschwindigkeit hat.

Das größere Problem dieser Verunreinigungen besteht in der Anlagerung von Primärelektronen an die Wasser- und Sauerstoffmoleküle, sogenanntes Attachment³¹. Auf diese Weise werden die Elektronen gebunden und können nicht mehr vervielfacht und detektiert werden, wodurch sich die Orts- und die Energieauflösungsvermögen verschlechtern [100, 102]. Trotz des geringen Einflusses auf die Driftgeschwindigkeit muss daher die Sauerstoff- und Wasserkonzentration gering gehalten und überwacht werden.

3.5.4 Verwendbarkeit der Simulationsergebnisse

Alle durchgeführten Simulationen bestätigen, dass die äußeren Bedingungen einen großen Einfluss auf die Driftgeschwindigkeit haben. Aus der Ungenauigkeit der Driftgeschwindigkeit in Abhängigkeit von den einzelnen Parametern lässt sich die Abweichung

³¹attachment (engl.) - Anhang, Anlagerung

Abbildung 3.11: Abhängigkeit der Elektronendriftgeschwindigkeit in $NeCO_2$ (90:10) vom Druck bei verschiedenen Driftfeldern und Temperaturen.

der Simulationsergebnisse von der tatsächlichen Driftgeschwindigkeit näherungsweise über

$$\Delta v_{\rm drift}({\rm gesamt}) = \sqrt{\begin{array}{c} \Delta v_{\rm drift}^2({\rm Driftfeld}) + \Delta v_{\rm drift}^2({\rm Temperatur}) + \\ + \Delta v_{\rm drift}^2({\rm Druck}) + \Delta v_{\rm drift}^2({\rm Konzentration}) + \cdots \end{array}}$$
(3.1)

abschätzen. Da sich der Fehler der Driftgeschwindigkeit direkt auf die rekonstruierte z-Komponente überträgt, ist eine exakte Steuerung und Überwachung aller Detektorparameter für eine sinnvolle Verwendung der simulierten Driftgeschwindigkeiten von großer Wichtigkeit.

Mit Hilfe der Werte der SlowControl, deren Hard- und Software in den folgenden Kapiteln ausführlich beschrieben wird, kann für jede einzelne Datendatei leicht ein eigener Parametersatz erstellt und die Driftgeschwindigkeit hierfür simuliert werden. Auf die Genauigkeit der SlowControl-Werte im Hinblick auf die Verwendbarkeit der Simulationsergebnisse wird in Kapitel 6 nochmals genauer eingegangen.

Wird die Abweichung der Simulationsergebnisse durch Messungenauigkeiten oder durch fehlende Werte einzelner Parameter jedoch zu groß, so ist eine Bestimmung der Driftgeschwindigkeit aus den Daten notwendig, wie sie in Kapitel 7 beschrieben wird.

Abbildung 3.12: Abhängigkeit der Elektronendriftgeschwindigkeit in $ArCO_2$ (90:10) von der Argonkonzentration bei verschiedenen Driftfeldern und Temperaturen.

Abbildung 3.13: Abhängigkeit der Elektronendriftgeschwindigkeit in $NeCO_2$ (90:10) von der Neonkonzentration bei verschiedenen Driftfeldern und Temperaturen.

Abbildung 3.14: Abhängigkeit der Elektronendriftgeschwindigkeit in $ArCO_2$ (90:10) von der Sauerstoffkonzentration im Driftgas bei verschiedenen Driftfeldern und Temperaturen.

Abbildung 3.15: Abhängigkeit der Elektronendriftgeschwindigkeit in $NeCO_2$ von der Sauerstoffkonzentration im Driftgas bei verschiedenen Driftfeldern und Temperaturen.

Abbildung 3.16: Abhängigkeit der Elektronendriftgeschwindigkeit in $ArCO_2$ (90:10) von der Wasserkonzentration im Driftgas bei verschiedenen Driftfeldern und Temperaturen.

Abbildung 3.17: Abhängigkeit der Elektronendriftgeschwindigkeit in NeCO₂ (90:10) von der Wasserkonzentration im Driftgas bei verschiedenen Driftfeldern und Temperaturen.

Miss alles, was sich messen lässt, und mach alles messbar, was sich nicht messen lässt.

(Galileo Galilei)

4 SlowControl-Hardware

Für einen sicheren und zuverlässigen Betrieb der TestBench und der GEM-TPC sowie eine exakte Simulation der Driftgeschwindigkeiten müssen zahlreiche Parameter, die sich im Vergleich zu den beobachteten physikalischen Größen nur langsam ändern, überwacht und gesteuert werden. Neben den Temperaturen inner- und außerhalb der Detektoren, den Parametern der Gassysteme und den Spannungen für die Ausleseelektronik gilt dies vor allem für die Hochspannungen an den GEM-Folien sowie für die Driftspannung. Zentrales Thema der vorliegenden Arbeit ist daher die Entwicklung von Hard- und Software für eine SlowControl zur Überwachung dieser Detektorparameter.

Bei der Hardware zur Überwachung und Steuerung der Detektoren auf der TestBench und an der GEM-TPC konnte nur teilweise auf bestehende Systeme zurückgegriffen werden. Dies ist zum Beispiel für die Hochspannungsversorgung der Fall. Andere Komponenten, wie das Gassystem für die TestBench, mussten völlig neu konstruiert werden. Auch für die Auslese der meisten Sensoren mussten neue Hardwaremodule entwickelt werden, um eine Kommunikation über Ethernet realisieren zu können. Dies ermöglicht ein hohes Maß an Stabilität, Flexibilität, Fernsteuerbarkeit und Erweiterbarkeit um zusätzliche Komponenten.

4.1 Hardware-Komponenten für die GEM-TPC

4.1.1 Hochspannung

Der Betrieb der GEM-TPC verlangt zum Einen eine konstante Überwachung jeder einzelnen, an den GEM-Folien oder dem Feldkäfig angelegten Hochspannung und zum Anderen die Möglichkeit, alle Hochspannungskanäle gleichzeitig zu steuern. Letzteres ist vor allem beim Hoch- und Runterfahren der Spannungen von großer Bedeutung, um Beschädigungen der GEM-Folien und des Feldkäfigs durch Überspannungen, Kurzschlüsse oder Funkenentladungen zu vermeiden. Um dies zu gewährleisten, sind sowohl hard- als auch softwareseitig entsprechende Vorkehrungen getroffen worden.

Die Hochspannungsversorgung der GEM-Folien und des letzten Rings des Feldkäfigs muss über eine sehr gute Spannungsstabilität mit einer Restwelligkeit und einem Rauschen unter 100 mV bei einer maximalen Spannung von 6 kV, eine hochpräzise Strommessung mit einer Auflösung im nA-Bereich, einstellbare Rampgeschwindigkeiten sowie eine kanalweise regulierbare Notfallabschaltung verfügen. Alle Funktionen müssen sich zudem über eine Netzwerkverbindung fernsteuern lassen.

Abbildung 4.1: W-IE-NE-R MPOD-Crate mit ISEG Hochspannungsmodulen [103].

Die Hochspannungsmodule EHS-8060n der Firma ISEG [104, 105] entsprechen den genannten Anforderungen und sind über ein MPOD-Crate³² der Firma W-IE-NE-R ansteuerbar (siehe Abbildung 4.1, [103, 106]). Die Kommunikation erfolgt mit Hilfe von SNMP³³-Kommandos über Ethernet oder direkt über den intern genutzten CAN-Bus³⁴. Für die Driftspannung ist eine separate Spannungsversorgung notwendig, da hier zwar ähnliche Anforderungen gelten wie für die GEM-Folien, jedoch eine maximale Spannung von 30 kV bei Strömen bis zu 1 mA erreicht werden muss. Das verwendete 30 kV Modul ISEG HPn300 (siehe Abbildung 4.2, [107]) bietet eine Restwelligkeit und Spannungsstabilität von 0,01 %·U_{max} = 3 V und lässt sich sowohl über RS-232³⁵ als auch mit dem MPOD-Crate steuern.

Abbildung 4.2: 30-kV-Hochspannungsversorgung ISEG HPn300 [104].

³²crate (engl.) - Überrahmen

 ³³SNMP - Simple Network Management Protocol (engl.) - einfaches Netzwerkverwaltungsprotokoll
 ³⁴CAN-Bus - Controller Area Network (engl.) - echtzeitfähiger Feldbus zur serielle Datenübertragung

 $^{^{35}\}mathrm{RS}$ - Recommended Standard (engl.) - empfohlener Standard

Bei diesen hohen Spannungen ist ein hardwareseitig realisiertes Sicherheitssystem zwingend notwendig, da von Benutzer- oder Softwareseite aus kaum schnell genug auf unvorhergesehene Ereignisse reagiert werden kann. Hierzu lassen sich beide Hochspannungsmodule über einen Interlock-Anschluss verbinden und somit eine gemeinsame Notfallabschaltung beider Systeme erreichen. Im Regelfall ist ein zu hoher Strom auf einem der Hochspannungskanäle, ein sogenannter Trip, der Grund für eine solche Notfallabschaltung. Über das MPOD-Crate können noch weitere Auslöser sowie die Reaktionszeit der Notfallabschaltung eingestellt werden. Die Hochspannungsmodule können jedoch auch ohne die Interlock-Verbindung betrieben werden. In diesem Fall wird bei einem Trip je nach Einstellung nur die Hochspannung des jeweils auslösenden Systems oder des einzelnen Kanals abgeschaltet. Bei einem Trip durch die GEM-Folien kann dies von Vorteil sein, da ein Hochfahren der Driftspannung einige Stunden in Anspruch nehmen und somit Messzeit verloren gehen kann. Um in einem solchen Fall die Gefahr von Entladungen zwischen der ersten GEM-Folie und dem Feldkäfig zu minimieren, wird die Driftspannung softwareseitig auf ein sicheres Niveau heruntergefahren, welches sich über die graphische Benutzeroberfläche definieren lässt. Als weitere Sicherheitsvorkehrung ist in der Software zudem ein kontrolliertes Herunterfahren der Drift- und GEM-Spannungen vorgesehen, sollten die gemessenen Spannungen und Ströme unerwartet ansteigen oder abfallen (siehe Anhang C.2, OverVoltage/OverCurrent Limit).

4.1.2 Temperaturüberwachung und -regelung

Für die Überwachung der Temperaturen befinden sich 210 Dallas 1-Wire Temperatursensoren des Typs 18B20U gleichmäßig verteilt auf dem Feldkäfig. Sie sind somit möglichst nah am Gasvolumen, stören aber nicht die Homogenität des elektrischen Feldes. Diese digitalen Sensoren werden derzeit nicht über die SlowControl ausgelesen und dargestellt, sondern separat über eine USB-Schnittstelle und ein LabVIEW³⁶-Programm ausgewertet und gespeichert.

Auf der Ausleseebene der GEM-TPC sind zudem zwölf analoge Pt100-Temperatursensoren in SMD-Bauweise angebracht, um die Temperaturen der Front-End-Karten zu überwachen. Letztere werden mit einem Kühlsystem konstant gehalten. Am Gaseinund Gasauslass lassen sich die Temperaturen mit den dort angebrachten Gasflussmessern aufzeichnen.

a) Pt100-Temperatursensoren

Pt100-Sensoren sind Kaltleiter die es erlauben, die Temperatur aus der Änderung der elektrischen Leitfähigkeit eines Platindrahtes oder einer dünnen Platinschicht zu bestimmen. Der Name leitet sich von dem verwendeten Material und dem Widerstand bei einer Temperatur von 0°C ab. Für die Auslese dieser analogen Sensoren wird eine konstante Spannung angelegt, die über einem Pt100 abfallende Spannung abgegriffen und diese auf einen Operationsverstärker gegeben. Das verstärkte Signal kann mit einem ADC ausgelesen und in einen Widerstands- beziehungsweise Temperaturwert umgerechnet werden.

³⁶LabVIEW - graphische Entwicklungsumgebung zur Experimentsteuerung und - überwachung der Firma NATIONAL INSTRUMENTS [108]

Abbildung 4.3: Auslese der Pt100-Sensoren: Die über einem Pt100 abfallende Spannung wird verstärkt und mit einem ADC in ein digitales Signal umgewandelt. 16 dieser Auslesekanäle (links) sind auf der fertig bestückten Platine (rechts) untergebracht.

Für die GEM-TPC wurde eine Platine entworfen, auf der 16 der in Abbildung 4.3 skizzierten Auslesekanäle mit sogenannter Vierleitermessung für die Pt100-Temperatursensoren untergebracht sind. Über zwei Leitungen fließt ein bekannter elektrischer Strom durch den Widerstand, die anderen beiden Leitungen greifen die am Widerstand abfallende Spannung ab. Durch diese Schaltung wird eine Verfälschung der Messwerte durch Leitungs- und Anschlusswiderstände vermieden, welche bei den vorhandenen Leitungslängen von mehreren Metern zwangsläufig auftreten. Die Auslese der verwendeten 12-Bit ADCs des Typs AD7998 erfolgt über I²C, einem seriellen Zweidrahtbus mit einer Takt- (SCL) und einer Datenleitung (SDA), mittels eines Ethernet-I²C-Adapters.

Da die Verstärkung des verwendeten Operationsverstärkers LMV 772 durch die verbauten Widerstände eingestellt wird und diese nur innerhalb einer gewissen Toleranz denselben Wert aufweisen, ist eine Kalibrationsmessung mit bekannten Widerständen für jeden einzelnen Kanal notwendig. Aus den ADC-Werten x lassen sich die Widerstandswerte der Sensoren R über die Beziehung $R = m \cdot x + b$ mit den in Anhang B für die beiden hergestellten Ausleseplatinen tabellarisch dargestellten Werten für die Eichgeraden bestimmen. Die Umrechnung in Temperaturwerte T ist in DIN EN 60571 festgelegt und in Abbildung 4.4 graphisch dargestellt. Sie entspricht für den Bereich von 0 °C bis 850 °C einem Polynom 2. Grades:

$$R = R_0 \cdot \left(1 + a \cdot T + b \cdot T^2\right) \quad \Leftrightarrow \quad T = \frac{a - \sqrt{a^2 + 4b \cdot \left(1 - \frac{R}{R_0}\right)}}{2b}$$

mit $a = 3,908\,02 \cdot 10^{-3}\,1/^{\circ}$ C, $b = 5,801\,95 \cdot 10^{-7}\,1/^{\circ}$ C² und $R_0 = 100\,\Omega$. Die erreichte Genauigkeit der Messung liegt bei $0,2^{\circ}$ C und wird im Wesentlichen von der Auflösung des ADCs bestimmt.

Abbildung 4.4: Umrechnung der gemessenen Widerstandswerte der Pt100-Sensoren in Temperaturen für den Bereich von 0 °C bis 145 °C.

b) Kühlsystem

Die Temperatur der Front-End- und ADC-Karten wird mit einem HUBER Unichiller UC080T-H mit einer Kühlleistung von ≈ 8 kW geregelt (Abbildung 4.5, [109]). Die als Kühlflüssigkeit verwendete Mischung aus Wasser und Glysantin G48³⁷ gelangt über einen geschlossenen Kreislauf zu den mit Kupfer-Kühlkörpern auf der Elektronik verbundenen Wärmetauschern (siehe Abbildung 4.6 [70]), wo ein Pt100-Sensor das Erreichen des eingestellten Sollwerts überwacht. Der Soll- und der Ist-Wert dieser Temperaturmessung sowie die interne Temperatur und der Status des Geräts lassen sich über eine RS-232-Schnittstelle einstellen beziehungsweise abfragen. Weitere Einstellungen können über eine Steuereinheit mit Display am Gerät selber vorgenommen werden.

Abbildung 4.5: HUBER Unichiller UC080T-H.

Abbildung 4.6: Zeichnung des vollständigen Kühlrings (braun) für die Front-End-Karten [70].

³⁷Glysantin - Markenname einer Kühlflüssigkeit mit Monoethylenglykol als Hauptbestandteil

Abbildung 4.7: Dual-XPort-Platine zur Kommunikation mit zwei RS-232-Schnittstellen, zwei MAX232 zur Pegelanpassung, zwei XPorts sowie die notwendige Stromversorgung.

RS-232 ist ein weit verbreiteter Standard für die serielle, digitale Übertragung von Daten. Die Informationen werden durch Pegelwechsel der Signalspannung auf einer ein-(RxD) beziehungsweise ausgehenden (TxD) Leitung in Paketen zu 8 Bit (1 Byte) übertragen - angeführt beziehungsweise abgeschlossen von einem Start- und einem Stopp-Bit. Zur Vermeidung von Datenverlusten kann ein sogenannter Software-Handshake über spezielle Steuerkommandos oder ein Hardware-Handshake über zusätzliche Steuerleitungen die Datenübertragung zwischen Sender und Empfänger regulieren.

Mit einem MAXIM MAX232-Pegelwandler sind die RS-232-Spannungspegel in TTL-Spannungspegel³⁸ umwandelbar und lassen sich mit einem LANTRONIX XPort weiterverarbeiten. Ein XPort besteht aus einer RJ45-Ethernet-Buchse, in die ein Netzwerkserver integriert ist (Abbildung 4.7, [110]). Über einen internen Webserver ist es möglich, verschiedene serielle Einstellungen für die RS-232-Kommunikation wie Baudraten, Hardwareoder Software-Handshake, Start- und Stopp-Bits sowie Ethernet-Einstellungen vorzunehmen.

4.1.3 Gassystem

Für die GEM-TPC wurde ein geschlossenes Gassystem aufgebaut, welches über einen dedizierten Rechner mit einem LabVIEW basierten Programm überwacht und gesteuert wird [111]. In der SlowControl sind bisher lediglich die Werte der Fluss- und Drucksensoren auf dem Media-Flansch verfügbar.

Der Gasfluss am Ein- und Auslass der GEM-TPC wird mit zwei SENSIRION "ASF 1400

 $^{^{38}\}mathrm{TTL}$ - $\mathbf{Transistor}\text{-}\mathbf{Transistor}\text{-}\mathbf{Logik}$

Abbildung 4.8: Gassensoren am Media-Flansch: Massenflussmesser ASF 1400 (links) und Drucksensor MEAS M5100 (rechts).

Bidirectional Mass Flow Meter" (Abbildung 4.8, [112]) mit einer Genauigkeit von bis zu 5 ml/h bestimmt. Um den maximal messbaren Gasfluss von 24 l/h bei direktem Durchfluss auf bis zu 600 l/h zu erhöhen, sind beide Sensoren in einen Bypass eingebaut. So gelangt nur ein Teil des Gases direkt durch die Sensoren und der tatsächliche Gasfluss kann aus dem ermittelten Durchfluss mit Hilfe einer Vergleichsmessung berechnet werden.

Die eigentliche Bestimmung des Gasflusses findet beim ASF 1400 durch die Messung einer asymmetrischen Wärmeverteilung vor und hinter einem Heizwiderstand auf einer wärmeisolierten Membran statt. Die Temperatur des Gases ist somit ebenfalls als Ausgabewert mit einer Auflösung von 0,1 °C verfügbar.

Die Kommunikation mit den beiden ASF 1400 erfolgt über RS-232 und die neu entwickelte XPort-Platine (Abbildung 4.7). Der Schaltplan ist in Anhang A zu finden.

Die M5100-Drucksensoren von MEASUREMENT SPECIALTIES messen den absoluten Druck am Ein- und Auslass der GEM-TPC bis zu einem Maximalwert von 3,5 bar und wandeln diesen in eine Spannung von 1-5 V um [113]. Mit einem AVR-NET-IO, einer Ethernet-Platine mit einem frei programmierbaren ATMega32-Prozessor, einem Netzwerkcontroller, 8 digitalen Ausgängen, 4 digitalen und 4 ADC-Eingängen mit 11-Bit-Auflösung [114], wird die Spannung ausgelesen und digitalisiert. Aus den ADC-Werten lässt sich über

$$U_{gemessen} = (\text{ADC-Wert} \cdot \frac{10 \text{ V}}{2048}) \quad \text{und}$$

 $P = \frac{U_{gemessen} - 1 \text{ V}}{\frac{4 \text{ V}}{3,5 \text{ bar}}}$

der gemessene Druck P berechnen. Die Auflösung der Druckmessung liegt im Bereich von ≈ 50 mbar, vor allem bedingt durch die Genauigkeit der Sensoren von 1% des Maximalwerts. Dies ist ausreichend, um vor gefährlich hohen Drücken in der GEM-TPC zu warnen und eine generelle Tendenz des Druckverlaufs abzubilden. Da jedoch eine Druckänderung von 1% auch eine Änderung der Driftgeschwindigkeit von 1% nach sich zieht (siehe Kapitel 3.5), wäre eine um eine Größenordnung bessere Messgenauigkeit im Bereich von 1 mbar wünschenswert. Für den zweiten Prototypen müssen daher andere Drucksensoren gewählt werden.

4.2 Hardware-Komponenten für die TestBench

4.2.1 Hochspannung

Die Anforderungen an die Hochspannung für den Betrieb der Test-TPC entsprechen im Wesentlichen denjenigen der GEM-TPC, so dass hier ebenfalls ein MPOD-Crate mit ISEG-Hochspannungsmodulen eingesetzt wird. Durch die einfache Erweiterbarkeit mit zusätzlichen Modulen können auch die weiteren Detektoren der TestBench über das MPOD-Crate mit Hochspannung versorgt werden: Ein 6 kV-Hochspannungsmodul (ISEG EHS-8060n) liefert die Hochspannung für die GEM-Folien, während für die Driftspannung, die planaren GEM-Detektoren und den Betrieb der Photomultiplier ein 8 kV-Modul (ISEG EHS-8080n) Verwendung findet. Die Siliziumstreifendetektoren benötigen eine vergleichsweise geringe Spannung von ≈ 70 V, die über ein ISEG EHS-8005p zur Verfügung gestellt wird.

4.2.2 Niederspannung

Abbildung 4.9: Für die Versorgung der Ausleseelektronik verwendete Labornetzgeräte: EA-PS 3016-20B (links) und HAMEG 4040 (rechts).

Die Ausleseelektronik der Test-TPC besteht aus einer ADC- und einer sogenannten Transition-Karte³⁹, die jeweils eine Niederspannung von -5 V, +5 V und einen Massenanschluss sowie einen Strom von ca. 3 A pro angeschlossener ADC- beziehungsweise Transition-Karte benötigen. Die Spannungen werden mit zwei "EA-PS 3016-20B"-Labornetzgeräten bereitgestellt. Strom und Spannung lassen sich an den Geräten über Regler oder eine 15-polige analoge Schnittstelle in einem Bereich von 0-16 V beziehungsweise 0-20 A einstellen. Um diese Schnittstelle zur Abfrage der Spannungen und Ströme sowie zum Einstellen der Soll-Spannung nutzen zu können, wird eine "speicherprogrammierbare Steuerung" (SPS, siehe 4.2.3) eingesetzt.

Für die baugleiche Ausleseelektronik der GEM- und Siliziumstreifendetektoren wird ein HAMEG HMP4040-Labornetzgerät sowie zwei Verteilerboxen mit Ausgängen für fünf ADC- beziehungsweise Transition-Karten verwendet. Das HMP 4040 verfügt über vier Ausgänge, die bei einer Spannung von 0-32 V einen Strom von bis zu 10 A liefern können. Zudem können die Spannungsabfälle auf den Versorgungsleitungen über sogenannte Sense-Anschlüsse kompensiert werden. Über ein Display am Gerät können zahlreiche Einstellungen, wie das gleichzeitige Notabschalten von Kanälen bei zu hohen Strömen,

³⁹transition (engl.) - Übergang, Überleitung

Abbildung 4.10: Geöffnete SPS mit Zentralbaugruppe, Eingabebaugruppe zur Stromund Spannungsmessung, Ausgabebaugruppe und Eingabebaugruppe zur Temperaturoder Widerstandsmessung (von links nach rechts).

vorgenommen und die Messwerte ausgelesen werden. Mit Hilfe der Skriptsprache SCPI⁴⁰ ist dies auch über die eingebaute Ethernet-Schnittstelle möglich.

Die Trennung der Niederspannungsversorgungen für die ADCs ist notwendig, um mögliche Störungen der Test-TPC durch die anderen Detektoren und deren Auslese zu minimieren.

4.2.3 Speicherprogrammierbare Steuerung (SPS)

Speicherprogrammierbare Steuerungen, kurz SPS, werden vornehmlich in der Automatisierungstechnik und zur Anlagensteuerung eingesetzt und bestehen im Wesentlichen aus digitalen und analogen Eingängen, Ausgängen, einem Betriebssystem und einer Schnittstelle, über die es möglich ist, ein Anwenderprogramm zu laden. Dieses Anwenderprogramm legt fest, welche Werte gemessen und ob und wie die Ausgänge in Abhängigkeit von den Eingängen geschaltet werden sollen.

Die für die SlowControl verwendete SIEMENS SIMATIC S7-300 setzt sich aus einer Stromversorgungsbaugruppe (PS 307; 5A), einer Zentralbaugruppe mit CPU (CPU 315-2PN/DP) und zwei Ein- und einer Ausgabebaugruppe zusammen, die gemeinsam auf einer Profilschiene montiert sind (Abbildung 4.10, [115]). Die Analogeingabebaugruppen verfügen jeweils über acht Eingänge, die sich kanalweise auf die Messung von Spannungen oder Strömen (SM331; AI 8x16Bit) beziehungsweise Temperaturen oder Widerständen (SM331; AI 8xRTD) programmieren lassen. Mit den vier Kanälen der Ausgabebaugruppe (SM332; AO 4x0/4..20mA) ist es möglich, einen Strom zwischen 0 und 20 mA beziehungsweise 4 und 20 mA auszugeben. Die Kommunikation zwischen

⁴⁰SCPI - Standard Commands for Programmable Instruments (engl.) - Standardbefehle f
ür programmierbare (Mess-)Instrumente

der CPU und den einzelnen Baugruppen erfolgt intern über einen MPI⁴¹-Bus. Dieser basiert auf der RS-485-Schnittstelle und arbeitet standardmäßig mit einer Übertragungsrate von 187,5 kBaud. Über das mitgelieferte Programm "STEP 7" kann die grundlegende Konfiguration der SPS vorgenommen und das Anwenderprogramm auf die CPU-Baugruppe geladen werden. Das Anwenderprogramm ist als Anweisungsliste (AWL) implementiert und legt vor allem die Formate der Mess- und Ausgabewerte fest, da die Speicherung und Weiterverarbeitung der Werte durch die eigentliche SlowControl-Software stattfindet.

Über die analoge Schnittstelle der vier "EA-PS 3016-20B"-Labornetzgeräte wird der IST-Strom als Spannung zwischen 0 und 10 V ausgegeben. In der ersten Eingabebaugruppe sind daher vier Kanäle auf die Messung einer Spannung mit einer Auflösung von 1 mV programmiert. Mit den restlichen vier Kanälen kann ein Strom zwischen 4 und 20 mA und einer Genauigkeit von 1 µA gemessen werden. Die vier Ausgangskanäle sind so programmiert und verschaltet, um mit ihnen die Sollspannungen an den Labornetzgeräten einzustellen.

Die Kanäle der zweiten Eingabebaugruppe sind auf die Messung von Temperaturen mit Pt100-Sensoren programmiert. Von den vier ausgelesenen Sensoren sind zwei auf der Ausleseebene der Test-TPC angebracht, die anderen beiden messen die Temperaturen an den Front-End-Karten und der Ausleseelektronik. Die Genauigkeit der Temperaturmessung liegt bei 0,25 °C.

4.2.4 Gassystem

Für die TestBench wurde ein Gassystem mit zwei Leitungen für die GEM-Detektoren und die Test-TPC konstruiert (Abbildungen 4.11 und 4.12). Das verwendete Driftgas wird vorgemischt in der gewünschten Konzentration von einer gemeinsamen Druckgasflasche für beide Leitungen zur Verfügung gestellt. Zum Spülen der Detektoren während längerer Messpausen ist für beide Leitungen eine Stickstoffflasche vorgesehen.

Beide Leitungen bestehen aus einem Massenflussregler (MKS Mass Flow Controller 1179), einem Drei-Wege-Hahn zur Wahl der Gaszuleitung und einem weiteren Drei-Wege-Hahn, um die Leitung nach einem Wechsel der Gasflasche spülen zu können, ohne dass Verunreinigungen in die Detektoren gelangen. Die Leitung für die Test-TPC enthält zusätzlich noch einen Wasser- und Sauerstoffabsorber (APLHAGAS Purifier), der bei Bedarf zwischengeschaltet werden kann.

Innerhalb der Massenflussregler wird der Gasfluss in einem kleinen Bypass durch die Messung einer asymmetrischen Wärmeverteilung vor und hinter einem Heizwiderstand bestimmt. Die Temperaturdifferenz ΔT ist dabei proportional zur transportierten Wärme $\Delta Q = c_P \cdot m \cdot \Delta T$, so dass bei bekannter Wärmekapazität c_P des Gases die Masse $m = \rho \cdot V$ und hierüber der Gasfluss berechnet werden können. Die Sensoren wurden mit Stickstoff kalibriert, wodurch für eine fehlerfreie Messung anderer Gase und Gasgemische ein Gaskorrekturfaktor (GCF) erforderlich ist. Dieser wird über

$$GCF = \frac{\rho_{\text{(Stickstoff)}} \cdot c_{p(\text{Stickstoff})} \cdot \sum a_i \cdot s_i}{\sum a_i \cdot \rho_i \cdot c_{p\,i}}$$

⁴¹MPI -**M**ulti-**P**oint Interface (engl.) - mehrpunktfähige Schnittstelle

Abbildung 4.11: Aufbau des Gassystems für die TestBench mit den beiden Leitungen für die GEM-Detektoren und die Test-TPC.

berechnet. a_i sind dabei die Anteile der Gase, s_i ein molekularer Strukturkorrekturfaktor für die Gase, ρ_i die Normdichten und c_{pi} die spezifische Wärmekapazitäten. Die Gaskorrekturfaktoren für die in der Test-TPC verwendeten Gasmischungen sind in Tabelle 4.1 aufgelistet.

Gas	Mischverhältnis	GCF
N_2	100	$1,\!000$
ArCO_2	70:30	1,137
ArCO_2	90:10	1,326
ArCO_2	93:7	1,360
$NeCO_2$	90:10	1,328

Tabelle 4.1: Gaskorrekturfaktoren (GCF) für die in der Test-TPC verwendeten Gase.

Die Steuerung und Auslese der Flussregler erfolgt mit Hilfe eines MKS 647b Gasfluss-/ Druck-Controllers mit acht Kanälen (Abbildung 4.13, [116]). Über ein Display am Gerät oder über eine RS-232-Schnittstelle in Verbindung mit einer XPort-Platine können der Gasfluss für jeden einzelnen Kanal, die Messbereiche der Flussregler, die Gaskorrekturfaktoren, Warngrenzen und Statusmeldungen gesetzt und abgefragt werden.

Abbildung 4.12: Gassystem für die GEM-Detektoren (linke Hälfte) und die Test-TPC (rechte Hälfte).

Da zu starke Verunreinigungen der Driftgase mit Wasser oder Sauerstoff zu abweichenden Driftgeschwindigkeiten, Attachement oder Beschädigungen der GEM-Folien führen können, sind alle Rohre (Swagelok SS83-XKS6MM), Flussregler und Drei-Wege-Hähne aus Edelstahl gefertigt. Lediglich die letzten Meter vor den Detektoren und Abgasleitung bestehen aus PFA-Rohren, um die Detektoren auf der TestBench bewegen zu können. Um eine Messung des Sauerstoff- und Wassergehalts zu ermöglichen, ist die Abgasleitung der Test-TPC an ein Gasmesssystem angeschlossen (Abbildung 4.14). Dieses besteht aus einem Sauerstoffsensor (Teledyne Analytical Instruments Trace Oxygen Analyzer Model 3190, [117]), welcher eine Mikro-Brennstoffzelle als hochempfindlichen Sauerstoffsensor verwendet und auch Spuren unter 10 ppm nachweisen kann, sowie aus einem Feuchtigkeitssensor (PANAMETRICS AMX 1+ Transmitter), bei dem die Feuchtigkeit des Gases mittels einer kapazitiven Taupunktmessung ermittelt wird. Eine ausführlichere Beschreibung des Gasmesssystems ist in [118] zu finden. Die Messwerte beider Sensoren werden als Strom von 4-20 mA ausgegeben und mit Hilfe der ersten Eingabebaugruppe der SPS aufgezeichnet.

Abbildung 4.13: MKS 647b Gasfluss-/Druck-Controller zur Steuerung und Auslese der Gasflussregler.

Abbildung 4.14: Gasmesssystem für die Test-TPC mit Feuchtigkeitssensor (links) und Sauerstoffsensor (rechts).

4.3 SlowControl-Server und Netzwerkinfrastruktur

Alle SlowControl-Komponenten der TestBench beziehungsweise der GEM-TPC sind über einen Ethernet-Switch an den jeweiligen SlowControl-Server angeschlossen und bilden auf diese Weise ein lokales, abgeschlossenes Netzwerk. Die beiden baugleichen Server mit INTEL Xeon 2 GHz QuadCore, 8 GB RAM und CENTOS 5.6 (64bit, kernel 2.6.18-238.9.1.e15) als Betriebssystem erlauben die Einrichtung eines externen und eines internen Netzwerkes, so dass unberechtigte oder unbeabsichtigte Zugriffe auf die Slow-Control-Komponenten erschwert werden. Der externe Netzwerkanschluss ermöglicht den Zugriff auf die Server von einem entfernten Rechner aus, beispielsweise über eine SSH⁴²-Verbindung. Die Steuerung und Überwachung der SlowControl-Komponenten ist somit von einem beliebigen Ort aus möglich, solange eine Internet-Anbindung zur Verfügung steht.

Die auf den Servern installierte SlowControl-Software wird im folgenden Kapitel ausführlich beschrieben.

⁴²SSH - Secure SHell - Netzwerkprotokoll beziehungsweise Programm mit dem eine verschlüsselte Netzwerkverbindung mit einem entfernten Gerät herstellt werden kann

Kein Ding entsteht planlos, sondern alles aus Sinn und unter Notwendigkeit.

(Leukipp)

5 SlowControl-Software

Die Struktur der SlowControl-Software für die TestBench und die GEM-TPC ist an die in [119] beschriebene Überwachung des CBELSA/TAPS-Experiments angelehnt. Die zentrale Komponente ist eine Datenbank, in der die auszuführenden Befehle, die ausgelesenen Daten und Einstellungen aller Subdetektoren gespeichert werden. Für die Kommunikation zwischen der Datenbank und der Hardware wurde ein im Hintergrund ablaufendes Programm entwickelt, in Unix oder unixartigen Systemen als "Daemon" bezeichnet (Abschnitt 5.2). Die Darstellung und Kontrolle der Parameter und Messwerte sowie die Eingabe neuer Parameter erfolgt über eine PHP-Web-Oberfläche (Abschnitt 5.3) oder eine graphische Benutzeroberfläche (Abschnitt 5.4).

Um für die Simulation der Driftgeschwindigkeit und die Analyse der aufgezeichneten Daten einen einfachen Zugriff auf die SlowControl-Werte zu ermöglichen, wurde zudem eine Run-Datenbank angelegt. In dieser sind für jeden einzelnen Run zahlreiche Parameter und Informationen abgespeichert, die sich über eine graphische Benutzeroberfläche abrufen und bearbeiten lassen (Abschnitt 5.5).

5.1 Datenbank

Die abgefragten und eingestellten Parameter der TestBench und der GEM-TPC sollen nicht nur angezeigt werden, sondern auch für eine spätere Kontrolle und die Analyse der Daten zur Verfügung stehen. Daher müssen sie über einen längeren Zeitraum gespeichert werden. Um einen einfachen Zugriff auf die Daten, die Datenintegrität und -sicherheit zu gewährleisten, wird zur Speicherung und Verwaltung der Daten ein Datenbanksystem eingesetzt. Dieses besteht aus der Menge der zu verwaltenden Daten, der eigentlichen Datenbank, und einem Datenbankmanagementsystem, welches die strukturierte Speicherung der Daten organisiert und alle Schreib- und Lesezugriffe auf die Daten sowie die Benutzerverwaltung kontrolliert.

Wie beim CBELSA/TAPS-Experiment ist die SlowControl-Datenbank als relationale Datenbank umgesetzt worden, bei der die Daten in Form von Tabellen abgelegt werden. Die Definition der Datenstrukturen und die Modifikation der Tabellen wird durch die Datenbanksprache SQL⁴³ und PostgreSQL ([120], Version 8.1.23) als Datenbankmanagementsystem realisiert.

PostgreSQL ist eine der fortschrittlichsten und am weitesten verbreiteten Open-Source-Datenbanken. Sie zeichnet sich durch eine geringe Systembelastung und eine hohe Geschwindigkeit aus. Die maximale Datenbankgröße ist nur durch den zur Verfügung ste-

 $^{^{43}\}mathrm{SQL}$ - $\mathbf{S}\mathrm{tructured}$ $\mathbf{Q}\mathrm{uery}$ $\mathbf{L}\mathrm{anguage}$ (engl.) - strukturierte Abfragesprache

henden Speicherplatz begrenzt. Mit steigender Datenbankgröße vergrößern sich jedoch die Abfragezeiten, so dass zum Einen die Abfragen optimiert werden müssen und zum Anderen nur die notwendigsten Daten auf Dauer gespeichert werden sollten. Der Zugriff auf die PostgreSQL-Datenbank kann durch verschiedene Programmiersprachen geschehen, beispielsweise durch die von PostgreSQL zur Verfügung gestellte C-Bibliothek *libpq* beim Daemon oder die in PHP⁴⁴ integrierte Schnittstelle bei der Web-Oberfläche. Die in der Datenbank angelegten Tabellen erfüllen verschiedene Aufgaben, die im fol-

genden aufgeführt werden.

5.1.1 Konfigurationstabellen

Die Konfigurationstabellen stellen Informationen über die vorhandene Hardware und deren Einstellungen für die anderen Software-Komponenten zur Verfügung.

In der Tabelle HARDWARE sind alle Geräte erfasst, die mit der SlowControl ausgelesen werden können. Für jedes Gerät werden hier eine Identifikationsnummer (*hardware_nr*), der Zeitpunkt der Installation (*installation_time*), der Name der zugehörigen Datentabelle (*device_queue*), der Name (*description_short*) und eine Beschreibung (*description_long*) gespeichert. Zudem sind hier Referenzen zum Statuscode (*status_code*), zum Fehlercode (*error_code*), zu Informationen über den Typ des Geräts (*device*) und zur Art der Verbindung (*connection*) abgelegt, deren eigentliche Werte sich jeweils in einer eigenen Tabelle befinden. Über den *status_code* ("Online", "Offline" oder "Unknown") kann ausgewählt werden, welche Geräte tatsächlich vom Daemon ausgelesen werden sollen.

In der Tabelle CONFIG ist unter anderem der Zeitraum festgehalten, der zwischen zwei SlowControl-Events liegen soll. Für jeden dieser Zyklen wird eine Eventnummer generiert und zusammen mit der dazugehörigen Zeit in der EVENTS-Tabelle abgespeichert. Die Eventnummer wird an alle neu in die Datenbank eingetragenen Daten angehängt und stellt somit eine komponentenübergreifende Zeitmarkierung für die SlowControl-Werte dar.

Die registrierten Benutzer der Datenbank sind zusammen mit einem verschlüsselten Passwort und den entsprechenden Zugriffsrechten in der Tabelle USER DB abgelegt.

5.1.2 Datentabellen

Für jede Hardware-Komponente existiert eine im Aufbau identische Datentabelle. Die durch den Daemon ausgelesenen Daten werden mit der entsprechenden Eventnummer (*event_nr*), einer bei jeder neu eingetragenen Zeile hochgezählten und für jede Datentabelle einzigartigen Kennnummer (*id_nr*), der Auslesezeit (*last_operation_time*), dem ausgeführten Kommando (*command*), der ausgelesenen Kanalnummer (*param1*, bei der SPS zusätzlich *param2*) und dem eigentlichen Messwert (*param3*) als neue Zeile an die vorhandene Tabelle angefügt.

Zusätzlich beinhalten die Datentabellen für jeden Kanal der entsprechenden Komponente eine kurze Beschreibung als "*alias*"-Name sowie eine Information darüber, ob der Kanal angeschlossen ist ("*connected*").

 $^{^{44}\}mathrm{PHP}$ - $\mathbf{P}\mathrm{HP}$ Hypertext $\mathbf{P}\mathrm{reprocessor}$

Die Tabelle AKTUELL stellt unter den Datentabellen eine Ausnahme dar und ist eine Erweiterung gegenüber der CBELSA/TAPS-Experimentüberwachung. In ihr werden die Werte aller SlowControl-Komponenten durch Überschreiben der alten Werte abgespeichert, so dass jede Messgröße für jeden Kanal genau einmal in der Tabelle enthalten ist. Die Tabelle AKTUELL gibt somit nur den zuletzt ausgelesenen oder gesetzten Zustand aller Hardware-Komponenten wieder. Durch die festgelegte Anzahl an Parametern und Kanälen ändert sich die Größe der Tabelle und somit die Abfragezeit nicht, was hinsichtlich einer Echtzeitüberwachung der TestBench und der GEM-TPC einen entscheidenden Vorteil gegenüber den normalen Datentabellen bringt.

5.1.3 Befehls-Queue-Tabelle

Über die Web-Oberfläche und die graphische Benutzeroberfläche können bestimmte Werte der SlowControl-Komponenten geändert werden. Die hierzu notwendigen Befehle werden in der QUEUE-Tabelle abgelegt, welche identisch zu den Datentabellen aufgebaut ist. Sie verfügt jedoch über eine zusätzliche Spalte, in der jedem eingetragenen Befehl eine eindeutige Kennnummer zugeordnet wird (*queue_id*). Die Einträge werden vom Daemon ausgelesen, schrittweise umgesetzt und nach ihrer Ausführung aus der Tabelle gelöscht.

Um die ausgeführten Aktionen zu protokollieren und bei einer fehlerhaften Umsetzung eine mögliche Ursache finden zu können, erfolgt parallel ein Eintrag aller Befehle in die LOG-Tabelle.

5.1.4 Fehlertabelle

Erkennt der Daemon anhand ausgelesener Statusmeldungen oder voreingestellter Vergleichswerte einen Fehler in den Daten, wie beispielsweise einen zu niedrigen Gasfluss, so wird eine Fehlermeldung mit der Eventnummer $(event_nr)$, einer Kennnummer (id_nr) , dem Zeitpunkt $(last_operation_time)$, der betroffenen Hardware (device) dem ausgeführten Kommando (command), der Kanalnummer (param1), falls vorhanden dem eigentlichen Sollwert (param2) und dem Messwert (param3) in die Tabelle ERROR_LIST eingetragen.

Über ein $PL/PerlU^{45}$ -Skript ist es möglich, für jeden neuen Eintrag in dieser Tabelle eine automatische Email-Benachrichtigung verschicken zu lassen.

5.1.5 Logbuch

Für die Analyse der Daten ist es notwendig, alle zeitlich zu einer gespeicherten Datendatei (Run) gehörenden Umgebungsparameter zu erfassen. Neben den SlowControl-Werten, die anhand ihrer Zeitmarkierung zugeordnet werden können, sind dies eine Run-Nummer (run_nr) , die Startzeit des Runs $(start_time)$, die Art des Runs (run_type)

⁴⁵PL/PerlU - Procedural Language/Perl (Untrusted) (engl.) - verfahrensorientierte Programmiersprache (ungesichert)

und der verwendete Trigger (*trigger*). Diese Informationen werden vom Benutzer zusammen mit einem Kommentar als zusätzlicher Erklärung (*comment*) in Form eines elektronischen Logbuchs in der Tabelle LOGBOOK abgelegt.

5.2 Daemon

Die Aufgabe des Daemons ist die Kommunikation zwischen Datenbank und SlowControl-Hardware. Dies beinhaltet neben der Abfrage aller Parameter und deren Speicherung in der Datenbank auch das Auslesen der auszuführenden Aktionen aus der Datenbank und deren Weitergabe an die Hardware. Die erforderliche Software muss also über Schnittstellen zu allen Hardware-Komponenten sowie zur PostgreSQL-Datenbank verfügen.

Die Schnittstellen sind als C/C++-Klassen in separaten Header-Dateien implementiert und beinhalten die notwendigen Methoden zur Weitergabe von Befehlen an die Hardware, zum Auslesen und Speichern von Parametern in der Datenbank und zum Herstellen der Verbindungen zur Hardware.

Für die TestBench und die GEM-TPC wurde jeweils ein eigenes Hauptprogramm erstellt (SlowTPC.cpp, siehe Anhang D), welches auf dem entsprechenden SlowControl-Server als ein im Hintergrund ablaufendes Programm ausgeführt wird. Beide Hauptprogramme haben zwar im Prinzip die gleiche Struktur, sind im Detail jedoch an die zu überwachende Hardware angepasst.

5.2.1 Initialisierung

Im Initialisierungsteil werden die notwendigen Variablen deklariert, die Instanzen der Schnittstellenklassen erzeugt und die Hardware-Komponenten mit dem Daemon verbunden. Die Instanzen übernehmen dabei alle eingebauten Funktionen der Klassen, die somit im Hauptprogramm zur Verfügung stehen.

Für die Verbindung mit der Hardware liest der Daemon die möglichen Geräte (*de-vice*) und deren Status (*status_code*) aus der Tabelle HARDWARE aus. Falls ein Gerät in der Datenbank aktiviert ist und somit ausgelesen werden soll, wird über die connect-Funktion der entsprechenden Klasse versucht, eine Verbindung herzustellen. Sollte der Verbindungsversuch nicht erfolgreich sein, wird der Daemon über die Variable endprogramm mit einer entsprechenden Fehlermeldung beendet, ohne die Hauptroutine zu durchlaufen.

Für ein MPOD-Crate mit der Instanz newMPOD und der Funktion connectMPOD() sieht der entsprechende Code-Ausschnitt beispielsweise wie folgt aus:

5.2.2 Hauptroutine

Der Großteil des Hauptprogramms wird von der geschachtelten while- und do..while-Schleife gebildet, die in dem Flussdiagramm in Abbildung 5.1 dargestellt ist. Hier werden die Auslese der Hardware und die Abfrage neuer Aktionen aus der QUEUE-Tabelle in regelmäßigen Abständen initiiert und mögliche neue Aktionen ausgeführt. Ein Beenden der äußeren while-Schleife und somit des gesamten Daemon durch den Benutzer ist über die Variable endprogramm möglich.

Abbildung 5.1: Flussdiagramm des Hauptprogramms SlowTPC.cpp.

Den Anfang der while-Schleife bilden mehrere Datenbankzugriffe: Die Tabelle AKTUELL wird nach dem Programmstart und danach alle zwei Stunden von ungültig gewordenen Speicherbereichen bereinigt, die Eventnummer hochgezählt und die letzte und somit höchste Eventnummer ausgelesen. Jeder Durchlauf dieser Schleife benötigt die in der CONFIG-Tabelle eingestellte Zykluszeit und bildet auf diese Weise ein neues SlowControl-Event, bei dem für die verbundenen Hardware-Komponenten die Parameter ausgelesen und in den Datentabellen und der Tabelle AKTUELL gespeichert werden. Während beim ersten Durchlauf über die completeStatus-Funktionen der Schnittstellenklassen alle verfügbaren Parameter abgefragt werden, ist dies bei allen weiteren Schleifendurchläufen lediglich für einen eingeschränkten Status (shortStatus) der Fall, da sich einige der Parameter nur selten oder gar nicht ändern.

Um einen Überblick über den Zustand der Hardware zu bekommen, ist die Abfrage der Parameter einmal pro SlowControl-Event ausreichend. Für eine Echtzeitüberwachung, insbesondere bei einem noch im Test befindlichen Detektor, sind Zykluszeiten von 10 bis 15 Minuten, wie sie im CBELSA/TAPS-Experiment verwendet werden, jedoch merklich zu lang. Eine Verringerung der Zykluszeiten auf wenige Sekunden würde zwar die Anzahl der aufgezeichneten Parameter deutlich verbessern, dabei aber die Datentabellen in einem solchen Maße anwachsen lassen, dass sich die Zugriffszeiten um ein Vielfaches erhöhen und ein Betrachten der Daten in Echtzeit unmöglich machen würden: Die Abfrage der ausgelesenen Spannungen an der TestBench beispielsweise nimmt bei einer Tabellengröße von mehr als 9 Millionen Zeilen über 2,5 s in Anspruch, während bei lediglich 1000 Zeilen die Zugriffszeit bei wenigen Millisekunden liegt. Die für das Ausführen eines Abfragebefehls benötigte Zeit lässt sich in PostgreSQL über ein Voranstellen von EXPLAIN ANALYZE nachprüfen.

In der inneren do..while-Schleife werden daher nur die wichtigsten Parameter mit Hilfe der FASTstatus-Funktion der jeweiligen Schnittstellenklassen abgefragt. Bei den MPOD-Crates sind dies beispielsweise nur die Spannungs- und Stromwerte sowie der Status der einzelnen Kanäle. Einerseits lässt sich hierdurch die insgesamt zu speichernde Menge an Parametern reduzieren, andererseits wird mit den ausgelesenen Werten vornehmlich die Tabelle AKTUELL aktualisiert. Ein Eintrag in die eigentliche Datentabelle erfolgt nur, falls sich der letzte Messwert signifikant vom vorherigen unterscheidet. Die Größen und darüber die Zugriffszeiten der Datentabellen wachsen so nur langsam an, während die Auslesezeiten der AKTUELL-Tabelle durch ihre feste Größe konstant bei unter 10 ms bleiben.

Um die Gesamtdauer der FASTstatus-Abfragen weiter zu minimieren, werden diese Funktionen als unabhängig voneinander und parallel ablaufende Prozesse, sogenannte Threads⁴⁶, gestartet. Insgesamt lässt sich eine Ausleserate von 1-2 Hz erreichen, nur beschränkt von der benötigten Auslesezeit der Hardware-Komponenten und einer Pause, die sich aus der Wartezeit auf noch nicht beendete Threads ergibt.

Die Überprüfung der QUEUE-Tabelle auf neue Einträge findet ebenfalls in der inneren Schleife statt. Die vorhandenen Resultate werden mit den für die verbundene Hardware möglichen Befehlen verglichen. Bei einer Übereinstimmung wird eine Befehls-ID, die zugehörige Kanalnummer und der neue Sollwert in entsprechenden Arrays zwischengespeichert und der QUEUE-Eintrag anschließend mit Hilfe seiner **queue_id** aus der Tabelle gelöscht. Die Weitergabe und Verarbeitung der Befehle erfolgt erst nach Abschluss der QUEUE-Abfrage anhand der Befehls-IDs. Hierdurch lassen sich die Befehle zeitlich enger zusammen liegend ausführen, was beispielsweise beim gleichzeitigen Anschalten mehrerer Hochspannungskanäle von Bedeutung ist.

⁴⁶thread (engl.) - Faser, Strang, Faden

5.2.3 Kommunikation mit der Datenbank

Die Kommunikation des Daemon mit der Datenbank findet über die von PostgreSQL in der Datei libpq-fe.h bereitgestellten Funktionen statt. Bevor ein Befehl an die Datenbank gesendet werden kann, muss mit Hilfe der Funktion PGconn *PQconnectdb(const char *conninfo) eine TCP/IP⁴⁷-Verbindung zur Datenbank auf dem Server aufgebaut werden. Die übergebene Zeichenkette mit der Verbindungsinformation conninfo setzt sich aus dem Datenbank-, Server- und Benutzernamen sowie dem Benutzerpasswort zusammen. Der Rückgabewert der Funktion vom Typ PGconn erlaubt den Zugriff auf die erstellte Verbindung.

Abfrage- und Schreibbefehle lassen sich über die Funktion PGresult *PQexec(PGconn *conn,const char *query) an die Datenbank senden, wobei die SQL-Kommandos als Zeichenkette query übergeben werden. Über Funktionen wie int PQntuples(const PGresult *res), welche die Anzahl ausgelesener Zeilen angibt, oder char *PQgetvalue (const PGresult *res, int tup_num, int field_num), welche den Wert einer bestimmten Zeile (tup_num) und Spalte (field_num) zurück gibt, kann auf die Ergebnisse einer solchen Abfrage zugegriffen werden, die als Rückgabewert PGresult verfügbar sind. Im Folgenden ist beispielhaft der notwendige Code-Ausschnitt zur Abfrage der QUEUE-Tabelle dargestellt:

```
1 conn = PQconnectdb(conninfo);
2 sprintf(query,"SELECT command,param1,param3,queue_id FROM queue ORDER
BY queue_id");
3 res=PQexec(conn,query);
4 ...
5 PQclear(res);
6 PQfinish(conn);
```

Um Speicherlecks zu vermeiden, muss nach dem Verarbeiten einer Abfrage der vom Rückgabewert belegte Speicherplatz mit void PQclear (PGresult *res) freigegeben werden. Die Verbindung zur Datenbank lässt sich mit der Funktion void PQfinish (PGconn *conn) schließen.

5.2.4 Schnittstellenklassen

Die implementierten Schnittstellenklassen stellen die Funktionen für die Kommunikation mit den einzelnen Hardware-Komponenten zur Verfügung und unterscheiden sich im Wesentlichen durch die möglichen Befehle zum Auslesen und Setzen von Parametern sowie durch die verwendeten Kommunikationsprotokolle. Die entsprechenden Header-Dateien sind in Anhang D zu finden.

a) Kommunikationsprotokolle

Wie in Kapitel 4 erläutert wurde, erfolgt die Kommunikation mit den verschiedenen Hardware-Komponenten über unterschiedliche Schnittstellen und dementsprechend über verschiedene Protokolle:

 $^{^{47}\}mathrm{TCP}/\mathrm{IP}$ - Transmission Control Protocol/Internet Protocol

• Kommunikation über SNMP (MPOD-Crates):

Die MPOD-Crates werden über die in der frei verfügbaren Net-SNMP-Bibliothek zur Verfügung gestellten Funktionen angesteuert. Diese ermöglichen das Senden von SNMP-Befehlen über einen UDP⁴⁸-Socket. UDP ist ein minimales, verbindungsloses Netzwerkprotokoll zur Prozess-zu-Prozess-Übertragung, bei dem die Daten in Paketen, bestehend aus einem Header mit Quell- und Ziel-Port, Länge der Daten und einer Prüfsumme, sowie einer Zeichenkette mit den eigentlichen Daten, gesendet werden. Mit Hilfe des Ziel-Ports werden die Daten dem richtigen Programm auf dem Zielrechner zugeordnet, welcher über den Quell-Port eine mögliche Antwort zurücksenden kann. Mit der übermittelten Prüfsumme kann die Übertragung auf Fehler überprüft werden. Nach dem Erstellen des Sockets muss vor einem Übertragungsbeginn keine neue Verbindung aufgebaut werden, so dass Sender und Empfänger schneller mit dem Datenaustausch beginnen können. Gerade beim Austausch kleinerer Datenmengen bringt dies eine deutliche Zeitersparnis.

Die an der Hardware abzufragenden Parameter und deren Einheit werden durch eine MIB⁴⁹-Datei definiert, in der die relevanten Informationen in Form einer Baumstruktur angelegt sind. W-IE-NE-R stellt für ihre MPOD-Crates die Datei WIENER-CRATE-MIB.txt zur Verfügung [103].

• Kommunikation über RS-232 (Unichiller, HMP4040, Gassysteme, optional beim HPn300):

Für die Kommunikation über RS-232 lässt sich mit Hilfe der connect-Funktion aus der Datei sys/socket.h eine TCP/IP-Verbindung zu den XPorts aufbauen. Über diesen Socket können mit den Funktionen int send(SOCKET sock, const char *buffer, int buf_length, int flags) beziehungsweise int recv(..) Zeichenketten an die Hardware gesendet und von dieser empfangen werden. Die Zeichenketten und die hierdurch zur Verfügung stehenden Befehle sind durch die jeweils auszulesende Hardware-Komponente vorgegeben (siehe [107, 109, 112, 116]).

Auch die Übertragung der Daten zum HAMEG Labornetzgerät erfolgt über eine solche TCP/IP-Socket-Verbindung, da sich die vordefinierten SCPI-Befehle ebenfalls mittels der Funktionen int send(..) und int recv(..) senden und empfangen lassen (siehe [121]).

• Kommunikation über I²C (Pt100-Ausleseplatine):

Mit Hilfe des Ethernet-I²C-Adapters ist es möglich, mit den ADCs auf der Pt100-Ausleseplatine zu kommunizieren. Hierzu wird ein UDP-Socket angelegt, über den die einzelnen Speicherregister auf den ADCs anhand ihrer ADC- und Sub-Adressen ausgelesen werden können. Mit der Funktion bool I2CWrite(unsigned char adc_address, int num_bytes, unsigned char *data) muss der angesprochene ADC zuerst dazu veranlasst werden, den Inhalt der adressierten Register als Datenstrom zu versenden. Dieser Datenstrom kann dann mit bool I2CRead(unsigned char adc_address, int num_bytes, unsigned char* data) empfangen und ausgewertet werden.

 $^{^{48}\}mathrm{UDP}$ - User Datagram Protocol

 $^{^{49}\}mathrm{MIB}$ - Management Information Base

• Kommunikation über LIBNODAVE (SPS):

LIBNODAVE ist eine frei verfügbare Programmbibliothek, die Funktionen zur Kommunikation mit der CPU einer SIEMENS SIMATIC S7 bereitstellt. Vor dem Erstellen einer Verbindung zur CPU muss ein serielles Interface, ein daveInterface, der MPI-Adapter und eine daveConnection initialisiert werden. Mit Hilfe der Funktionen daveReadBytes(int daveConnection *dc, int area, int DB, int start, int len, void *buffer) und float daveGetFloat(daveConnection *dc) können im Anschluss Daten von der SPS über einen Zwischenspeicher ausgelesen oder mit int daveWriteBytes(daveConnection *dc,int area, int DB, int start, int len, void * buffer) an die SPS gesendet werden.

b) Funktionen zur Weitergabe von Befehlen an die Hardware

Die Weitergabe von Befehlen an die Hardware erfolgt in zwei Schritten durch eine Auslese- und eine Übermittlungsfunktion. In der Auslesefunktion, in der Regel durch ein vorangestelltes get... oder set... zu identifizieren, wird aus dem auszuführenden Befehl, der übergebenen Kanalnummer und einem möglichen Sollwert eine Zeichenkette erstellt. Diese Zeichenkette wird mit Hilfe einer Übermittlungsfunktion an die entsprechende Hardware gesendet. Für die meisten Hardware-Komponenten sind die Übermittlungsfunktionen mit sendCommand(...) oder sendRecieveCommand(...) bezeichnet. Lediglich für die Kommunikation mit den MPOD-Crates sind verschiedene Übermittlungsfunktionen für die einzelnen Datentypen notwendig und beispielsweise als getFloat(...) oder setInt(...) implementiert.

Die von der Hardware zurückgesendete Antwort wird von der Übermittlungsfunktion an die Auslesefunktion übergeben, von dieser ausgewertet und gegebenenfalls in der Datenbank gespeichert. Als Rückgabewert erhält die Übermittlungsfunktion die Anzahl empfangener beziehungsweise gesendeter Zeichen oder einen Wert von -1 bei einer fehlerhaften Übertragung.

Um zum Beispiel die Sollspannungen eines Kanals am MPOD-Crate auszulesen, wird die Funktion void getVoltage(int channel) aus der MPOD-Crate-Klasse aufgerufen:

```
1 void MPOD_new::getVoltage (int channel){
    float value;
2
3
    char temp[40];
4
    int a;
\mathbf{5}
    sprintf(temp, "outputVoltage.%d",channel);
6
    a = getFloat(temp,value);
7
8
    if ((a!=-1) && WRITE_LOG) logFloat("'GetVoltage'", channel, value);
9
    if (WRITE_ERG) printf("ausgelesener Wert (%s)?: %f\n",temp,value);
10
11 }
```

In der Variablen temp wird der entsprechende Befehl (outputVoltage) zusammen mit der Kanalnummer (channel) als Zeichenkette gespeichert (Zeile 5). Mit der Übermittlungsfunktion getFloat(temp,value) wird in Zeile 6 die Zeichenkette an das MPOD-Crate gesendet und der ausgelesene Spannungswert als value zurückgegeben. Tritt bei der Auslese kein Fehler auf und ist die Speicherung in der Datenbank über die Konstante WRITE_LOG aktiviert, wird der Spannungswert mit logFloat("GetVoltage'", channel, value) in der Datenbank abgespeichert (Zeile 9). Zudem können der Befehl und der ausgelesene Werte auf der Konsole ausgegeben werden (Zeile 10).

c) Status-Funktionen

Um beim Start des Daemon den aktuellen Zustand der Hardware-Komponenten zu erhalten, sind die completeStatus-Funktionen in den einzelnen Schnittstellenklassen implementiert. Hier werden in einer Funktion die Abfragen aller Parameter und für alle verfügbaren Kanäle der jeweiligen Hardware aufgerufen.

In den shortStatus-Funktionen hingegen sind nur Abfragen der wichtigsten Parameter zusammengefasst. Hierzu zählen vor allem solche Werte, die regelmäßig ausgelesen werden sollen, wie beispielsweise die Spannungen, Ströme, Statuswerte oder Temperaturen.

d) Funktionen zum Speichern der Parameter in der Datenbank

Für die Speicherung der ausgelesenen Daten in der Datenbank sind in allen Schnittstellenklassen nahezu die gleichen Funktionen implementiert:

```
void logFloat (char command[40], int channel, float value);
void logString (char command[40], int channel, char value[8]);
void logInt (char command[40], int channel, int value);
void logChange (char command[40], int channel);
void logCommand (char command[40]);
void logError (char command[40], int channel, char value[8], int
send_mail);
```

Jede dieser Funktionen öffnet über PQconnectdb eine Verbindung zur Datenbank, speichert den übergebenen Befehl (command), die Kanalnummer (channel) und den Wert (value) in der passenden Datentabelle sowie in der Tabelle AKTUELL und schließt die Verbindung wieder, wie hier für die Funktion logFloat der MPOD-Crate-Klasse exemplarisch gezeigt:

```
1 void MPOD_new::logFloat (char command[40], int channel, float value){
    char query[500];
\mathbf{2}
    int error=12;
3
4
    memset(query,0,sizeof(query));
5
6
    PGconn * conn;
    conn=sql_connect();
7
8
9
    sprintf(query,"INSERT INTO %s VALUES ((SELECT max(event) FROM events),
         nextval('%s'),NULL,NOW(),%s,%d,NULL,%f)", TABLE_MPOD,SEQ_MPOD,
        command, channel, value);
    WriteSQL(conn,query,&error);
10
11
    bzero(query,500);
12
    sprintf(query,"UPDATE aktuell SET param3=%f, last_operation_time=NOW()
13
        , event_nr=(SELECT max(event) FROM events) WHERE device='%s' AND
        command=%s AND param1=%d",value,TABLE_MPOD,command,channel);
    WriteSQL(conn,query,&error);
14
15
```

16 sql_disconnect(conn);
17 }

Über die Funktion logError können Einträge in der Tabelle ERROR_LIST angelegt und mit dem Übergabewert send_mail das Versenden einer Email mit der passenden Fehlermeldung ausgelöst werden.

e) FAST-Funktionen

Für eine schnelle Auslese sind in allen Klassen mehrere FAST-Funktionen implementiert. Im Gegensatz zu den normalen Auslesefunktionen werden hier die aktuellen Daten (value) mit den zuvor ausgelesenen Werten (OLDgetVoltage[i]) verglichen, wie anhand der FASTgetVoltage-Funktion für die schnelle Auslese der MPOD-Crate-Spannungen gezeigt ist:

```
void MPOD_new::FASTgetVoltage (int channel, int i){
    int changed = 0, a;
\mathbf{2}
3
    float value;
    char temp[40];
4
\mathbf{5}
    sprintf(temp, "outputVoltage.%d",channel);
6
    a = getFloat(temp,value);
7
8
    if (OLDgetVoltage[i] != (int) roundf(value*100)) { changed = 1; }
9
    if (a!=-1) OLDgetVoltage[i] = (int) roundf(value*100);
10
11
    if ((a!=-1) && WRITE_LOG) FASTlogFloat("'GetVoltage'", channel, value,
12
        changed);
    if (WRITE_ERG) printf("ausgelesener Wert (%s)?: %f\n",temp,value);
13
14 }
```

Stimmen die Werte im Rahmen der festgelegten Genauigkeit überein, wird der neue Wert über die FASTlog...-Funktionen lediglich in der Tabelle AKTUELL gespeichert. Die Genauigkeiten für die Spannungen und Ströme am MPOD-Crate sind beispielsweise auf 10 mV und 1 nA definiert. Nur bei einer Abweichung wird der Wert zusätzlich in der zugehörigen Datentabelle abgelegt und somit dauerhaft gespeichert. Neben einer Zeitersparnis beim Schreiben durch weniger Datenbankzugriffe führt dies vor allem zu einer langsamer anwachsenden Tabellengröße und hierdurch zu langsamer ansteigenden Zugriffszeiten.

5.3 Web-Oberfläche

Für die Darstellung der SlowControl-Daten und die Eingabe neuer Parameter kann wie beim CBELSA/TAPS-Experiment eine Web-Oberfläche verwendet werden. Die Slow-Control-Webseiten sind auf den jeweiligen Servern abgelegt und plattformunabhängig über einen Webbrowser unter [122] beziehungsweise [123] zu erreichen.

Die zur Umsetzung verwendete Open-Source-Skriptsprache PHP zeichnet sich durch eine umfangreiche Datenbankunterstützung und die Möglichkeit zur Gestaltung dynamischer Webseiten aus, bei der der Quelltext auf dem Webserver interpretiert und lediglich

Abbildung 5.2: Die Startseite der SlowControl-Web-Oberfläche für die TestBench.

die Ausgabe dieses PHP-Interpreters an den Browser geschickt wird. Die Darstellung der Messwerte in Form von Graphen lässt sich mit JPGraph, einer PHP-Bibliothek zur Erstellung von Diagrammen, realisieren.

Auf der in Abbildung 5.2 gezeigten Startseite der Web-Oberfläche für die TestBench befinden sich die Links zu den Abfragen der aktuellen und der alten Werte jeder einzelnen Hardware-Komponenten, zum Logbuch, zu den noch auszuführenden Aktionen in der Queue-Tabelle und zu einer allgemeinen Übersichtsseite. Die Seiten zur Änderung von Parametern oder allgemeinen SlowControl-Einstellungen sind nur für registrierte Benutzer nach einem Login zugänglich.

Eine ausführliche Beschreibung aller Unterseiten und Funktionen der Web-Oberfläche ist in Anhang C.1 zu finden.

5.4 Graphische Benutzeroberfläche (SlowControl-GUI)

Während der ersten Tests stellte sich die verwendete PHP-Web-Oberfläche als zu langsam und zu unhandlich für die Steuerung der TPCs heraus. Gerade beim Hoch- und Herunterfahren der Spannungen ist eine Kontrolle der Parameter in Echtzeit notwendig, um schnell auf eventuelle Abweichungen der Messwerte und Störungen reagieren zu können und somit Schäden an den Detektoren vorzubeugen.

Daher wurde zusätzlich zur Web-Oberfläche eine graphische Benutzeroberfläche (GUI) für die SlowControl entwickelt, die alle Messwerte aus der Datenbank liest, übersichtlich und in Echtzeit darstellt und Änderungen an den Parametern in die QUEUE-Tabelle der Datenbank schreibt.

Die SlowControl-Benutzeroberfläche ist in Qt realisiert, einer C++-Klassenbibliothek zur plattformübergreifenden Programmierung graphischer Benutzeroberflächen [124], in

							resulting Potentials	5	T Ramp Automatic	in
Fields Drift Field Last Strip Field Transfer Field 2 Collection Field	360 00 V/cm 290.70 V/cm 3750.00 V/cm 3750.00 V/cn 3750.00 V/cn	Vol 	tages Settings 1 Settings 400.00 V = 365.00 V = 320.00 V =	load latest Settin Dati Last Stop OBM1 OBM2 CERS Fads	gs auto D Drift - G Last Strip - G GEM 1 - G GEM 2 - G GEM 3 - I	Distances EM 1 727 80 mm EM 1 350 mm EM 2 200 mm EM 3 2.00 mm Pads 4.00 mm	Calculate Drift Last Strip GEM 1 bottom GEM 2 top GEM 2 bottom GEM 3 bottom	Potentials 0 00 V 1 0 00	Scale Factors GEM Stack Drift Field start Ramp Ramp Speed (Drift) Tinp Limit (top) (bottom) (Drift + LS)	0.0 % = 0.0 % = stop Ramp 2.00 V/s = 15.00 V/s = 0.0800 mA = 0.4000 mA = 0.2400 mA =
35 3 2 2 5			E ¹⁵			Current 156-02 156-02 86-06 26-06 46-06 56-06 56-06 56-06 56-06			GEM1 top GEM2 top GEM3 top	GEM1 bottom GEM2 bottom GEM3 bottom
05115 05110 05110 20:19	³⁹ 20:21:19 ₂₀ Time [h:n):22:59 20:24:39 1: s]	voltage	20:19:39 _{20:2} 1: Time [19 _{20:22:59} 20:24:3 h:m:s]	Current (mA) (mA) (mA) (mA) (mA) (mA) (mA) (mA)	20:19:3920:21:1921	0:22:5920:24:39	-Database 'si succesfully co -Latest ramp from file. Beep o Databas	owtpc" snnected settings loaded
0-1 0-1 20:19 Channel Status Drift	139 20:21:19 20 Time [h:n Voltage [V] 0	1:2 ^{2:59} 20:24:39 n: s] Meas. Voltage [V] 3:29183	max. Current [mA]	20:19:39 20:21: Time [Meas Current ! [mA] 0.000001	19 20; 22: 59 20: 24:3 h:m:s] Error Ramp Speed tatus [V/6] -13	1256-05 356-05 356-05 1256-05 126-05	20:19:3920:21:192 20:19:3920:21:192 20:19:3920:21:192 All Chann Set common Voltage	0:22:59 _{20:24:39}	Database 'si succesfully co "Latest ramp from file. Database Database Daemor 18.01.21	innected settings loaded
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	139 20:21:19 20 Time [h:n Voltage [V] 0 0 0 0 0 0	0.22.59 20.24.39 n:s] Meas Voltage [V] 0.932201 0.124522 0 1.4904	max Current [mA] 0.24 0.24 0.24 0.08 0.4	20:19:39 20:21: Time [Meas.Current] [mA] 5 0.00001 0.00001 0.000001 0.000001	19 20:22:59 20:24:3 h:m:s] Error Ramp Speed [V/6] 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	a remaining Ramp Time [s]	20:19:3920:21:192 20:19:3920:21:192 20:19:3920:21:192 All Chann Set common Voltage Set mans Corrent Set Ramp Speed	0.22.59 _{20.24} 39 0.22.59 _{20.24} 39 0.22.59 _{20.24} 39 eels 0.00 小 5.00 Vi 雪 5.00 Vi 雪	-Database "si succesfully co tatest ramp from file Database Database Database Database Database Database Saturna 16.01.20 Exit this Single	awtpc* innected settings loaded nabled F re Stop Restart 112 16:43:30 : Programm Channel

Abbildung 5.3: Registerkarte 'TPC - HV' zur Steuerung und Überwachung der Spannungen, Ströme und Rampgeschwindigkeiten der GEM-TPC.

welcher viele der gewünschten Funktionen wie Datenbankkommunikation, Eingabefelder oder Interaktionen über Schaltflächen bereits integriert sind. Auf den SlowControl-Servern ist die Linux-Variante Qt/X11 in der Version 4.7.2 installiert, welche unter der LGPL⁵⁰ verfügbar ist.

Analog zu den beiden Hauptprogrammen des SlowControl-Daemon (Kapitel 5.2) mussten auch zwei Benutzeroberflächen erstellt und jeweils an die Hardware der GEM-TPC und der TestBench angepasst werden. Um alle Funktionen und Parameter übersichtlich und lesbar darstellen zu können, sind die Benutzeroberflächen in mehrere Registerkarten unterteilt, welche in Anhang C.2 und Anhang C.3 umfassend beschrieben sind. Die SlowControl-GUI für die GEM-TPC besteht aus insgesamt sechs Registerkarten: Die Einstellungen und Werte der TPC sind der Übersichtlichkeit halber auf drei Registerkarten aufgeteilt. Auf der ersten Registerkarte, dargestellt in Abbildung 5.3, lassen sich die einzelnen Spannungen und Ströme an der GEM-TPC berechnen und setzen sowie die gemessenen Werte über Graphen und Textfelder kontrollieren. Zudem besteht die Möglichkeit, die Hochspannungseinstellungen abzuspeichern oder zu laden. Die zweite Registerkarten zeigt für jeden der acht Hochspannungskanäle der TPC die gemessenen Spannungen und Ströme in einem separaten Graphen. Auf der dritten Registerkarte lassen sich die Hochspannungskanäle individuell anpassen. Die ausgelesenen Werte des Unichillers, der Temperatur- und der Gassensoren werden gemeinsam auf einer Registerkarte angezeigt. Der Inhalt des elektronischen Logbuchs kann auf der entsprechenden Registerkarte angezeigt und bearbeitet werden. Auf der letzten Registerkarte lassen sich alle Werte, die von der SlowControl in der Datenbank abgespeichert worden sind, graphisch und tabellarisch darstellen.

⁵⁰LGPL - GNU Lesser General Public License [125]

Die SlowControl-GUI für die TestBench umfasst neben den drei Registerkarten für die Test-TPC und den beiden Registerkarten für das Logbuch und die alten SlowControl-Werte drei weitere Registerkarten. Diese dienen zur Betrachtung und Steuerung der restlichen Hochspannungskanäle, der Niederspannungen sowie der Temperaturen und der Werte des Gassystems.

5.5 Run-Datenbank

Für eine Analyse der Daten, welche mit der GEM-TPC im Inneren des FOPI-Spektrometers aufgenommen wurden, müssen der Analyse-Software mehrere Parameter vorgegeben werden. Neben der Geometrie des Detektors und der Ausleseebene sind dies beispielsweise die Stärke der elektrischen Felder, die Gaszusammensetzung oder die Driftgeschwindigkeit. Da es auch für die Erstellung eines Parametersatzes für die Simulation der Driftgeschwindigkeit sinnvoll ist, die tatsächlichen Messwerte der SlowControl zu verwenden, wurde eine Run-Datenbank angelegt. In dieser sind die benötigten Parameter und weitere Informationen für jeden einzelnen Run gespeichert. Alle Werte lassen sich über eine graphische Benutzeroberfläche eingeben, bearbeiten und als Tabelle oder Graph abrufen.

5.5.1 Datenbank

Die Run-Datenbank ist als zusätzliche Tabelle (**rundb**) innerhalb der SlowControl-Datenbank realisiert.

Zur eindeutigen Identifizierung müssen für jeden der eingetragenen Runs eine Run-Nummer (run nr) und der Name der gespeicherten Datendatei (filename) in der Tabelle abgelegt sein. Die Spalte run type gibt Auskunft darüber, ob die Daten im Rahmen einer Strahlzeit (Physics), mit kosmischer Strahlung (Cosmic), zur Kalibrierung der GEM-TPC (Krypton) oder der Elektronik (Pedestal) oder lediglich zu Testzwecken aufgezeichnet wurden. Die Auslese der GEM-TPC kann dabei durch den Teilchenstrahl (Beam), die Szintillationszähler (Barrel) oder zufällig (Random) ausgelöst worden sein, was als Triggereinstellung in der Spalte trigger festgehalten ist. Die Einstellungen der ADCs, zu denen beispielsweise die Abtastrate, der Auslesemodus, die Anzahl ausgelesener Samples oder die Position des Zeitfensters gehören, sind ebenfalls relevant für die Analyse der Daten. Die aus der Datenbank für die Ausleseelektronik extrahierten Hexadezimal-Werte sind daher in der Spalte $t2k_setting$ abgespeichert. Die Position des Zeitfensters ist zusätzlich als Dezimalzahl in der Spalte time_window abgelegt. Aus den Datendateien lassen sich der Zeitstempel des ersten und letzten Ereignisses (start time, end time) und die Anzahl vorhandener Events (events) extrahieren, so dass diese in der Run-Datenbank ebenso zusammengetragen werden können, wie die Konzentration der verschiedenen Gase (gas_n, gas_ar, gas_ne, gas_co2 in %) und die Magnetfeldstärke (*magnet* in T). Aus den Werten der SlowControl lassen sich zudem für jeden einzelnen Run die Skalierungsfaktoren für die Drift- und die GEM-Spannungen (scale drift, scale gems in %) sowie die Mittelwerte der gemessenen Spannungen (mean drift, mean laststrip, mean gem1top, usw. in V), Temperaturen (mean_temp_gasin, mean_temp_1, mean_temp_2, usw. in °C), Drücke (pressure_in,

relect all	F show run type, trigger F show ev F show T2K settings F show ga F show start+end time F show mi		show gases show magnet	F show scales F show F show voltages F show et F show temperatures F sho		x pressures IF show R w drift velocity IF errors select none go to run w fields			go to run_nr	Filename TunC_4101
tun nr T	Filename	Run Type	Trigger	T2K settings	Time Window	Start Time	Stop Time	Events	Gas (N) [%]*	Run Type Cosmic
120	runC_4120	Cosmic	Barrel	0x1000=0x2	480	11/18/11 10:02 AM	11/18/11 10:23 AM	125473	0	T2K settings DE=0x61 0x100F=0x0E
119	runC_4119	Cosmic	Barrel	0x1000=0x2	480	11/18/11 9.41 AM	11/18/11 10:02 AM	125853	0	Time Window 480
18	runC_4118	Cosmic	Barrel	0x1000=0x2	480	11/18/11 9:20 AM	11/18/11 9:41 AM	125760	0	Start Time 2011-11-18 03:24 🛨
117	runC_4117	Cosmic	Barrel	0x1000=0x2	480	11/18/11 8:58 AM	11/18/11 9:20 AM	125379	0	End Time 2011-11-18 03:42
116	runC_4116	Cosmic	Barrel	0x1000=0x2	480	11/18/11 8:37 AM	11/18/11 8:58 AM	125511	0	Events 100000 =
115	runC_4115	Cosmic	Barrel	0x1000=0x2	480	11/18/11 8:16 AM	11/18/11 8 37 AM	125810	0	Arrage 0.00 %
114	runC_4114	Cosmic	Barrel	0x1000=0x2	490	11/18/11 7:55 AM	11/18/11 8:16 AM	124951	0	Gases Neon: 90.00 % #
113	runC_4113	Cosmic	Barrel	0x1000=0x2	480	11/18/11 7:33 AM	11/18/11 7 55 AM	127853	0	CO 2 10.00 % 🛱
112	runC_4112	Cosmic	Barrel	0x1000=0x2	480	11/18/11 7:12 AM	11/18/11 7:33 AM	128672	0	Magnetic Field 0.60 T 🛨
111	runC_4111	Cosmic	Barrel	0x1000=0x2	480	11/18/11 6:50 AM	11/18/11 7 12 AM	128040	0	Scale Factor Drift 89 90 % 🚍
10	runC_4110	Cosmic	Barrel	0x1000=0x2	480	11/18/11 6:29 AM	11/18/11 6:50 AM	126730	0	Scale Factor GEMs 71.60 % 🛨
109	runC_4109	Cosmic	Barrel	0x1000=0x2	480	11/18/11 6:07 AM	11/18/11 6:29 AM	127146	0	save NEW entry save changes
108	runC_4108	Cosmic	Barrel	0x1000=0x2	480	11/18/11 5:46 AM	11/18/11 6:07 AM	126680	0	save ist to me delete entry
107	runC_4107	Cosmic	Barrel	0x1000=0x2	480	11/18/11 5 25 AM	11/18/11 5.46 AM	125656	0	Voltages temperatures
106	runC_4106	Cosmic	Barrel	0x1000=0x2	490	11/18/11 5:03 AM	11/18/11 5:25 AM	126077	0	pressure all for this run
105	runC_4105	Cosmic	Barrel	0x1000=0x2	480	11/18/11 4:42 AM	11/18/11 5:03 AM	124721	0	Calculate Scale values: run
104	runC_4104	Cosmic	Barrel	0x1000=0x2	480	11/18/11 4:22 AM	11/18/11 4:42 AM	122905	0	Calculate Drift Velocity run
103	runC_4103	Cosmic	Barrel	0x1000=0x2	480	11/18/11 4:01 AM	11/18/11 4 22 AM	119445	0	Drift : 26453.8 V
102	runC_4102	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:42 AM	11/18/11 4:01 AM	114899	0	GEM1 top : 2929.69 V
101	runC_4101	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:24 AM	11/18/11 3:42 AM	107844	0	GEM2 top : 2104.57 V GEM2 bottom : 1841.76 V
100	runC_4100	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:07 AM	11/18/11 3:24 AM	98615	0	GEM3 top : 1304.63 V
990	runC_4099	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:00 AM	11/18/11 3 07 AM	44029	0	Tener Con NL 275 4C

Abbildung 5.4: Registerkarte 'RunDB' der graphischen Benutzeroberfläche der Run-Datenbank.

 $pressure_out$) in bar), die Stärke der elektrischen Felder ($drift_field$, $last_strip_field$, $trans_field_1$, in V/cm) und die Standardabweichung als Fehler dieser Werte ($sigma_drift$, $sigma_laststrip$, usw.) berechnen.

Wie in Kapitel 7.2 erläutert wird, ist es zur Berechnung der Driftgeschwindigkeit notwendig, die Lage der Kanten im Zeitspektrum zu bestimmen. Diese Werte sind ebenso in der Run-Datenbank gesammelt (*edge_pads*, *edge_end*) wie die ermittelten Driftgeschwindigkeiten (*drift_velocity* in cm/µs) sowie die zugehörigen Fehler (*sigma_pads*, *sigma_end*, *sigma_velocity*).

Aus den gemessenen Drift- beziehungsweise Last-Strip-Spannungen sowie den entsprechenden Strömen können über

$$R_{Drift} = \frac{U_{Drift} - U_{LastStrip}}{I_{Drift}}$$
$$R_{LastStrip} = \frac{U_{LastStrip}}{I_{Drift} + I_{LastStrip}}$$

die vom Feldkäfig gebildeten Widerstände berechnet werden $(r_drift, r_last_strip$ in M Ω). Diese sind zwar für eine Analyse der Daten nicht notwendig, können aber auf eine eventuelle Beschädigung des Detektors hinweisen.

Eine Erweiterung der Run-Datenbank um beispielsweise die Verstärkungsfaktoren der GEM-Folien aus der Kryptoneichung ist leicht möglich und wird in nächster Zeit erfolgen.

5.5.2 Graphische Benutzeroberfläche

Für die Run-Datenbank wurde ebenfalls eine graphische Benutzeroberfläche entwickelt, welche technisch auf der SlowControl-GUI basiert und in fünf Registerkarten unterteilt ist. Auf der ersten Registerkarte sind die in der Run-Datenbank gespeicherten Werte als Tabelle (siehe Abbildung 5.4) dargestellt. Über Schaltflächen lassen sich die Mittelwerte der benötigten SlowControl-Parameter für die einzelnen Runs bilden, auf die eingestellten Skalierungsfaktoren und elektrischen Felder zurückrechnen oder die Driftgeschwindigkeiten berechnen. Auf der zweiten Registerkarte können die gespeicherten Werte in einem Graphen angezeigt und miteinander verglichen werden. Die weiteren Registerkarten zeigen den Inhalt des Logbuchs, die Hardware-Fehler aus der Datenbanktabelle **error_list** und die alten SlowControl-Werte. Alle Funktionen der Benutzeroberfläche sind in Anhang C.4 erläutert.

Ein Programm das nicht getestet wurde, arbeitet nicht.

(Bjarne Stroustrup)

6 Leistungsfähigkeit der SlowControl

Sowohl die GEM-TPC als auch die Detektoren auf der TestBench wurden mit der im Rahmen dieser Arbeit aufgebauten SlowControl bei mehreren Strahlzeiten und Testmessungen über einen längeren Zeitraum betrieben. Insbesondere die Echtzeitüberwachung der Spannungen und Ströme leisteten dabei zusammen mit der einfachen Bedienbarkeit und Fehlersicherheit der SlowControl-GUI einen wichtigen Beitrag zum stabilen und sicheren Betrieb der Detektoren.

Für alle SlowControl-Komponenten ist es möglich, die wichtigsten Parameter und Statuswerte mit einer Rate von 1 - 2 Hz auszulesen und mit der SlowControl-GUI in Echtzeit darzustellen. Mit einer vergleichbaren, LabVIEW-basierten Benutzeroberfläche für die GEM-TPC konnten bei zu Vergleichszwecken durchgeführten Tests weder diese maximale Ausleserate noch die gute Bedienbarkeit der SlowControl-GUI erreicht werden. Inzwischen ist die SlowControl-Software mit den notwendigen Modifikationen daher auch bei den Testmessungen für die Umrüstung der ALICE-TPC auf eine Verstärkung mit GEM-Folien [126, 127] sowie bei Messungen mit einer kleinen Driftkammer mit einem GEM-Stack aus vier GEM-Folien an der Universität Frankfurt [128] erfolgreich im Einsatz.

Die wichtigsten, von der SlowControl überwachten Parameter sind in Tabelle 6.1 mit ihrer maximal möglichen Messgenauigkeit und deren Stabilität aufgelistet. Während des normalen Betriebs werden lediglich die Werte der Hochspannungsmodule mit der maximalen Rate ausgelesen. Bei den weiteren Sensoren ist diese Echtzeitüberwachung nicht notwendig, so dass in der Tabelle zusätzlich die tatsächliche Häufigkeit angegeben ist, mit der die Parameter während des normalen Betriebs abgefragt werden.

Neben einem stabilen Betrieb der Detektoren ist die erreichte Stabilität der Hochspannungen, Temperaturen und Drücke sowie deren Genauigkeit auch für die Simulation der Driftgeschwindigkeiten von großer Bedeutung. Hierüber lässt sich, wie in Kapitel 3.5 ausgeführt wird, eine Aussage über die Abweichung der Simulationsergebnisse von der tatsächlichen Driftgeschwindigkeit und deren Verwendbarkeit treffen.

6.1 Hochspannung

Für die Spannungen konnten Messgenauigkeiten von $12 \,\mathrm{mV}$ mit den Modulen in den beiden MPOD-Crates beziehungsweise $150 \,\mathrm{mV}$ mit dem $30 \,\mathrm{kV}$ -Modul für die Driftspannung an der GEM-TPC erreicht werden. Diese Werte liegen deutlich unter den vom Hersteller spezifizierten Werten. Selbiges gilt auch für die Langzeitstabilität, bei der mit $50 \,\mathrm{mV}$

			Mess-	Langzeit-	
Gerät	Parameter	Messbereich	genauigkeit	stabilität	Auslese
Module im	Spannung	0 - 6/8 kV	$12\mathrm{mV}$	$50\mathrm{mV}$	alle 1 s
MPOD-Crate	Strom	0 - 1 mA	$2\mathrm{nA}$	$30\mathrm{nA}$	alle $1\mathrm{s}$
HPn 300	Spannung	0 - 30 kV	$150\mathrm{mV}$	$1,5\mathrm{V}$	alle 1 s
	Strom	0 - 10 mA	$20\mathrm{nA}$	$200\mathrm{nA}$	alle $1\mathrm{s}$
Unichiller	Temperatur	0-150 °C	0,1 °C	0,2 °C	alle $20\mathrm{s}$
ASF 1400	Gasfluss	0 - 30 l/h	$25\mathrm{ml/h}$	$100\mathrm{ml/h}$	alle $20\mathrm{s}$
	Temperatur	$0-70^{\circ}\mathrm{C}$	$0,5^{\circ}\mathrm{C}$	$1^{\circ}\mathrm{C}$	alle $20\mathrm{s}$
M5100	Druck	$0-3,5\mathrm{bar}$	$50\mathrm{mbar}$	$50\mathrm{mbar}$	alle $20\mathrm{s}$
I ² C Sensoren	Temperatur	0-250 °C	$0,2^{\circ}\mathrm{C}$	1 °C	alle $10\mathrm{s}$
MKS 647b	Gasfluss	0 - 24 l/h	$10\mathrm{ml/h}$	$20\mathrm{ml/h}$	alle $20\mathrm{s}$
SPS	Spannung	-10 - 10 V	$3\mathrm{mV}$	$13\mathrm{mV}$	alle $20\mathrm{s}$
	Strom	$4 - 20 \mathrm{mA}$	$1\mu A$	$15\mu\mathrm{A}$	alle $20\mathrm{s}$
	Temperatur	$-50 - 150 ^{\circ}\text{C}$	$0,1^{\circ}\mathrm{C}$	$1^{\circ}\mathrm{C}$	alle $20\mathrm{s}$
Hameg 4040	Spannung	0-32 V	$1\mathrm{mV}$	$1\mathrm{mV}$	alle $10{\rm s}$
	Strom	0 - 10 A	$100\mu\mathrm{A}$	$2\mathrm{mA}$	alle $10\mathrm{s}$

Tabelle 6.1: Die wichtigsten, von der SlowControl überwachten Parameter mit ihrem Messbereich, Messgenauigkeit, Stabilität und Ausleserate durch den Daemon. Die Stabilität hängt dabei - insbesondere bei den Temperaturen - von den äußeren Bedingungen ab.

(MPOD-Crates) und 1,5 V (30 kV-Modul) um einen Faktor zwei bessere Werte gegenüber der erwarteten Stabilität von 100 mV beziehungsweise 3 V erreicht wurden. Dies ist in Abbildung 6.1 exemplarisch anhand der gemessenen Spannungen an der Driftkathode (links) und der Oberseite der ersten GEM-Folie (rechts) über einen Zeitraum von vier Tagen während einer Strahlzeit im Juni 2011 dargestellt.

Mit der Messgenauigkeit des 30 kV-Moduls ergibt sich eine Unsicherheit im Driftfeld von 0,002 V/cm über die gesamte Länge der GEM-TPC, was einer sehr geringen Änderung der Driftgeschwindigkeit in ArCO₂ (90:10) von maximal 0,0007% entspricht. In NeCO₂ (90:10) beträgt der Fehler maximal 0,0006%. Auch bei Berücksichtigung der Stabilität von 1,5 V ist die Unsicherheit mit maximal 0,007% (in ArCO₂ (90:10)) beziehungsweise 0,006% (in NeCO₂ (90:10)) so gering, dass die simulierten Driftgeschwindigkeiten bei bekannten Spannungen den tatsächlichen Werten entsprechen.

Die Driftspannung der Test-TPC wird über ein Modul im MPOD-Crate zur Verfügung gestellt, so dass sich auch hier vernachlässigbar kleine Abweichungen von der simulierten Driftgeschwindigkeit von maximal 0,004% ergeben.

6.2 Temperatur

Die Temperaturen auf der Ausleseebene der GEM-TPC wurden mit der erwarteten Genauigkeit von 0,2 °C gemessen, während die Gasflusssensoren am Media-Flansch jedoch statt der vorgegebenen Auflösung von 0,1 °C lediglich Werte mit einer Genauigkeit von 0,5 °C lieferten. Mit Hilfe der Sensoren an der Test-TPC wurde mit 0,15 °C eine bessere

Abbildung 6.1: Langzeitstabilität der gemessenen Spannung an der Driftkathode (links) und der Oberseite der ersten GEM-Folie (rechts) über einen Zeitraum von vier Tagen.

Genauigkeit erreicht, als anhand der Spezifikationen erwartet werden konnte.

Für die Langzeitstabilität der Temperatur lässt sich kein einheitlicher Wert angeben, da diese in hohem Maße von den Bedingungen außerhalb der Zeitprojektionskammern abhängt, wie Abbildung 6.2 für einen Temperatursensor auf der Ausleseebene der GEM-TPC zeigt. Während bei der Strahlzeit im Juni 2011 (links) beispielsweise die Temperatur auf unter 1 °C, für die Dauer der einzelnen Runs sogar auf unter 0,4 °C, stabil war, stieg die Temperatur bei den Messungen im November 2011 (rechts) wegen eines Defekts am Unichiller von anfangs 22,5 °C bis auf 33 °C an. Die Temperaturstabilität während der Runs konnte jedoch auch hier bei unter 0,4 °C gehalten werden, für die sich eine Änderung in der Driftgeschwindigkeit von unter 0,15 % ergibt. Bei der Test-TPC liegen die Temperaturstabilität und die hiermit verbundene Ungenauigkeit bei der Driftgeschwindigkeit in der gleichen Größenordnung.

6.3 Druck

Mit den beiden Drucksensoren am Gaseinlass und am Gasauslass der GEM-TPC lässt sich lediglich eine Auflösung von 50 mbar erreichen. Die gute Langzeitstabilität beider

Abbildung 6.2: Gemessene Temperatur auf der Ausleseebene der GEM-TPC mit Kühlung im Juni 2011 (links) und ohne Kühlung im November 2011 (rechts).

Abbildung 6.3: Gemessener Druck am Gaseinlass (links) und am Gasauslass (rechts) der GEM-TPC im Juni 2011.

Sensoren wird dementsprechend stark von der Messgenauigkeit überlagert, wie Abbildung 6.3 veranschaulicht. Für eine Druckänderung in dieser Größenordnung liegt die Änderung der Driftgeschwindigkeit jedoch bei über 5%, so dass die simulierten Werte nur bedingt für die Rekonstruktion der z-Komponente verwendet werden können. Am Gasauslass wird zudem ein um 100 mbar höherer Druck gemessen, der durch Staudruck am Auslass oder einen systematischen Versatz bei der Spannungsausgabe des Sensors zustande kommen kann und in einer weiteren Unsicherheit für die simulierte Driftgeschwindigkeit resultiert.

Durch den fehlenden Drucksensor an der Test-TPC kann hier keine verlässliche Aussage getroffen werden. Um den Fehler der Simulationsergebnisse dennoch abschätzen zu können, wird ein Fehler in der gleichen Größenordnung wie bei der GEM-TPC angenommen.

6.4 Konzentration der Driftgase

Die Konzentration der Gase in den beiden Zeitprojektionskammern ist ebenfalls ein relevanter Parameter für die Simulation der Driftgeschwindigkeiten. Sie kann jedoch noch nicht mit der SlowControl überwacht werden, wie in den Abschnitten 4.1.3 und 4.2.4 erläutert wurde. Die Konzentrationsschwankungen in den vorgemischten Gasen lagen nach Herstellerangaben bei maximal $\pm 0,1$ %, was einer Änderung der Driftgeschwindigkeit von maximal 1,5 % entspricht. Für die GEM-TPC wurde ArCO₂ mit dem geschlossenen Gassystem gemischt und bereitgestellt und die Zusammensetzung mit einem Massenspektrometer stichprobenartig überwacht. Die Genauigkeit der vorhandenen Konzentrationsmessungen lag hier ebenfalls im Bereich von $\pm 0,1$ % [70].

6.5 Einfluss auf die Verwendbarkeit der Simulationsergebnisse

Aus den Messgenauigkeiten und der Stabilität der für die Simulationen in Kapitel 3.5 betrachteten Parameter ist ersichtlich, dass der Gesamtfehler der simulierten Driftgeschwindigkeiten deutlich durch den Fehler der Druckmessung dominiert wird. Auch die
Ungenauigkeiten durch Abweichungen in der Konzentration der Detektorgase tragen erkennbar zum Gesamtfehler bei, welcher für $ArCO_2$ (90:10) bei einem Driftfeld von 100% und Standardbedingungen nach Gleichung 3.1 bei

$$\Delta v_{\text{drift}} = \sqrt{0,004^2 + 0,024^2 + 1,625^2 + 0,31^2} \frac{\text{mm}}{\mu\text{s}}$$
$$= 1,654 \frac{\text{mm}}{\mu\text{s}} \quad \left(= 5,77 \% \text{ von } 28,66 \frac{\text{mm}}{\mu\text{s}}\right)$$

liegt. Für NeCO₂ (90:10) bei den gleichen Einstellungen ergibt sich ein Fehler von

$$\begin{aligned} \Delta v_{\rm drift} &= \sqrt{0,0029^2 + 0,016^2 + 1,225^2 + 0,192^2} \ \frac{\rm mm}{\mu s} \\ &= 1,240 \ \frac{\rm mm}{\mu s} \quad \left(= 5,21 \ \% \ \rm von \ 23,83 \ \frac{\rm mm}{\mu s} \right) \ . \end{aligned}$$

Dabei unterscheiden sich die Werte für die GEM-TPC und die Test-TPC, abgesehen von der fehlenden Druckmessung an der Test-TPC, nur minimal. Durch den großen Fehler der simulierten Werte ergibt sich auch für die rekonstruierte z-Koordinate ein Fehler, der die Größenordnung der gewünschten Ortsauflösung von wenigen mm übersteigt. Für einen ersten Anhaltspunkt und eine erste Rekonstruktion der aufgezeichneten Daten sind die Simulationsergebnisse somit zwar verwendbar, für eine präzisere Rekonstruktion der z-Koordinate ist es jedoch notwendig, die Driftgeschwindigkeit aus den Daten zu bestimmen. Die Bestimmung der Driftgeschwindigkeit aus den Daten wird in Kapitel 7 insbesondere für die Messungen mit der GEM-TPC erläutert. _____

Das, wobei unsere Berechnungen versagen, nennen wir Zufall.

(Albert Einstein)

7 Bestimmung der Driftgeschwindigkeit

Wie in Kapitel 6 ausgeführt wurde, ist es für eine möglichst genaue Bestimmung der z-Koordinate notwendig, die tatsächliche Driftgeschwindigkeit der Primärelektronen aus den aufgezeichneten Daten zu extrahieren. Aus den Datendateien wird hierzu ein Zeitspektrum der nachgewiesenen Spurpunkte rekonstruiert (siehe Abschnitt 7.1) und die Zeit bestimmt, welche die Primärelektronen für eine definierte Driftstrecke benötigen. Die Driftstrecke ist im einfachsten Fall durch die maximale Strecke zwischen der Kathodenendkappe und der ersten GEM-Folie der Zeitprojektionskammer gegeben. In diesem Fall sind im Zeitspektrum zwei deutliche Kanten zu erkennen (siehe Abbildung 7.1), aus deren Abstand sich die benötigte Driftzeit berechnen lässt. Diese Methode, wie sie in Abschnitt 7.2.2 genauer beschrieben wird, ist jedoch nur auf einen Teil der mit der GEM-TPC aufgezeichneten Daten anwendbar. Ist beispielsweise das Driftfeld zu niedrig eingestellt oder das Zeitfenster des Triggers nicht optimal gewählt, kann aufgrund der Architektur der verwendeten Ausleseelektronik nur eine oder keine der beiden Kanten im Zeitspektrum identifiziert werden. Diese Schwierigkeit lässt sich für einige Datendateien durch die Wahl einer anderen, definierten Driftstrecke und die Extraktion der passenden Driftzeit umgehen (siehe Abschnitt 7.2.3).

Eine weitere Methode zur Bestimmung der Driftgeschwindigkeit bestünde in der Vermessung definierter Spuren in der Zeitprojektionskammer, deren z-Position durch externe Detektoren eindeutig bestimmt ist. Für die GEM-TPC kann diese Methode jedoch nicht angewendet werden, da die Auflösung der umgebenden FOPI-Detektoren mit 5 cm in z-Richtung deutlich zu groß ist, um verlässliche Werte für die Driftgeschwindigkeit zu erhalten.

Für alle Daten, bei denen nicht auf ein physikalisches Ereignis getriggert wurde, ist hingegen keine dieser Methoden anwendbar. Dies gilt insbesondere für die Daten der Kalibration mit 83m Kr, bei der ein zufälliger Trigger verwendet wurde und daher keine Bestimmung der Driftgeschwindigkeit durchgeführt werden kann.

7.1 Rekonstruktion der Daten

Jedes Pad auf der Ausleseebene erzeugt ein eigenes Signal, welches durch die Front-End-Karten kontinuierlich mit einer einstellbaren Abtastrate SR abgefragt und als sogenanntes $sample^{51}$ im Analog-Ring-Speicher der T2K/AFTER-Chips zwischengespeichert wird. Ein sample hat damit eine durch die Abtastrate SR festgelegte Dauer.

⁵¹sample (engl.) - Beispiel, Muster, Probe

Abbildung 7.1: Bestimmung der Driftgeschwindigkeit aus den Daten: Im einfachsten Fall können die Kathodenendkappe und die erste GEM-Folie als klare Kanten im Zeitspektrum identifiziert und aus deren Abstand die Driftzeit bestimmt werden. Die 511 samples entsprechen für den dargestellten Run einer maximale Auslesezeit von 32,86 µs.

Durch die Architektur der verwendeten Analog-Ring-Speicher können pro Kanal jeweils nur 511 zeitlich aufeinander folgende *samples* gespeichert werden, bevor die erste Speicherzelle mit einem neuen Wert überschrieben wird. Hierdurch ergibt sich ein Auslesefenster, welches auf eine zeitliche Länge von 511/SR beschränkt ist und sich durch die Angabe einer Verzögerung (siehe Abbildung 7.2) verschieben lässt. Ausgelöst durch ein Triggersignal werden die 511 aktuellen *samples* durch den angeschlossenen ADC digitalisiert und nach Abzug eines festgelegten, als Pedestal⁵² bezeichneten Untergrundes und einer Null-Wert-Unterdrückung in der Datendatei abgespeichert.

Abbildung 7.2: Die 511 Speicherzellen im Analog-Ring-Speicher werden kontinuierlich mit neuen Daten überschrieben. Ausgelöst durch ein Triggersignal werden die aktuellen *samples* (rote Markierung) durch den ADC ausgelesen und digitalisiert.

Für die Rekonstruktion und Analyse dieser Rohdaten wird das in C++ implementierte Softwarepaket "fopiroot" verwendet, welches auf dem FairRoot-Paket [129] und dem zugrunde liegenden ROOT-Framework⁵³ [130] basiert. Die als eigenständige Funktionen programmierten Rekonstruktions- und Analyseschritte (Tasks⁵⁴) lassen sich über die

⁵²pedestal (engl.) - Sockel, Standfuß

⁵³framework (engl.) - Rahmenstruktur, Programmiergerüst

⁵⁴task (engl.) - Aufgabe, Funktion

Eingabe von Parametern justieren und bei der Verarbeitung der Daten je nach Bedarf zu- oder abschalten.

In einem ersten Rekonstruktionsschritt werden die einzelnen ADC-samples in den Rohdaten mit Hilfe eines PSA⁵⁵-Algorithmus zu sogenannten Pad-Treffern zusammengefasst (TpcPSATask), welche die totale, integrierte Signalhöhe, die eindeutige Identifikationsnummer des getroffenen Pads (Pad-ID) und die Position im Auslesefenster als Zeitstempel beinhalten [131]. Anhand der Pad-ID und des Zeitstempels werden die Pad-Treffer anschließend auf ein dreidimensionales Koordinatensystem abgebildet und in kartesischen (x, y, z) sowie Zylinderkoordinaten (R, ϕ, z) gespeichert. Bereits für diesen Schritt ist die Angabe einer Driftgeschwindigkeit notwendig, die für die erste Rekonstruktion der Daten aus einer Simulation stammen muss.

Zeitlich und räumlich zusammenhängende Pad-Treffer werden danach zu Clustern zusammengefasst (TpcClusterFinderTask), denen die aufsummierte Amplitude der einzelnen Pad-Treffer, deren gewichteter Schwerpunkt als Position des Clusters im dreidimensionalen Raum und ein kovarianter Ellipsoid als räumliche Ausdehnung zugewiesen wird. Durch die Cluster-Bildung wird die Genauigkeit der Positionsbestimmung verbessert, die Datenmenge weiter reduziert und Untergrundereignisse herausgefiltert.

Im nächsten Rekonstruktionsschritt werden die gefundenen Cluster nach ihrer z-Koordinate, ihrer radialen Position R oder ihrem Winkel ϕ sortiert, über einen Spurfinde-Algorithmus zu kleinen Spurstücken zusammengefasst und auf eine Riemann-Sphäre abgebildet (TpcRiemannTrackingTask, [132]). Die Abbildung auf eine Riemann-Sphäre ist vor allem für die Rekonstruktion nicht-linearer Teilchenspuren im Magnetfeld notwendig. Die Spurstücke werden anschließend zu vollständigen Spuren verbunden (TpcTrack-InitTask), und diese mit Hilfe eines Kalman-Filters aus dem GENFIT-Framework parametrisiert (TpcKalmanTask, [133]). Eine ausführlichere Beschreibung der gesamten Spurrekonstruktion findet sich in [70] oder [97].

Als weitere (Analyse-)Schritte können anschließend beispielsweise die Spuren in der GEM-TPC mit denjenigen in den FOPI-Detektoren zusammengeführt, die Residuen der Spuren als Maß für die Ortsauflösung bestimmt, der spezifische Energieverlust extrahiert oder die Bestimmung der Driftgeschwindigkeit durchgeführt werden.

7.2 Bestimmung der Driftgeschwindigkeit aus den Daten

Zur Bestimmung der Driftgeschwindigkeit wird aus den rekonstruierten Daten ein Zeitspektrum für jeden Run erstellt. Hierzu werden die als Zeitstempel gespeicherten Positionen der einzelnen Pad-Treffer im Auslesefenster des ADCs, im Weiteren als sample-Nummer bezeichnet, in ein Histogramm eingetragen. Das Auslesefenster entspricht der Größe des Ring-Speichers, so dass im Zeitspektrum nur sample-Nummern zwischen 0 und 510 enthalten sein können. Über die Abtastrate ist die Dauer eines samples auf 1/SR festgelegt. Die Abstände, welche in allen Zeitspektren als Differenz von sample-Nummern angegeben werden, lassen sich daher für die Bestimmung der Driftgeschwindigkeit in Zeiten umrechnen.

 $^{^{55}\}mathrm{PSA}$ - Pulse Shape Analysis (engl.) - Pulsform analyse

7.2.1 Selektion der Einträge

Um nur physikalisch sinnvolle Einträge zu verwenden, lassen sich mit der für die Bestimmung der Driftgeschwindigkeit erstellten Funktion TpcDriftVelocityTask mehrere Schnitte auf die Daten anwenden:

• Cluster-Zugehörigkeit: Im ersten Schnitt wird die Zugehörigkeit der Pad-Treffer zu einem Cluster gefordert, so dass Untergrund- und Rauschereignisse deutlich reduziert werden.

Für eine noch präzisere Selektion kann zusätzlich die Zugehörigkeit zu einer rekonstruierten Spur verlangt werden.

- Cluster-Größe und Gesamtamplitude: Der Cluster wird danach auf eine minimale Größe (aMinSize), die der Anzahl enthaltener Pad-Treffer entspricht, und eine minimale Gesamtamplitude (aMinAmp) überprüft. Diese beiden Schnitte sind notwendig, da auch einzelne Pad-Treffer oder zufällig benachbarte Untergrundereignisse als Cluster identifiziert werden können.
- Cluster-Position: Um sicher zu stellen, dass der Schwerpunkt der Cluster innerhalb des Gasvolumens rekonstruiert wurde, wird auf eine minimal und maximal erlaubte radiale Position *R* geschnitten (aMinR, aMaxR). Mit diesem Schnitt lassen sich zudem Cluster herausfiltern, die sehr nah am Feldkäfig entstanden sind und daher nicht eindeutig nachweisbar sind.

Bei der Analyse aller Daten wurden die im Folgenden aufgeführten Werte für die Schnitte verwendet:

Cluster-Eigenschaft	Variable	Wert
Größe	aMinSize	$> 2\mathrm{Pad}\mathrm{-Treffer}$
$\operatorname{Gesamtamplitude}$	aMinAmp	$> 50\mathrm{ADC-Kan\"ale}$
radiala Desition	aMinR	$>57\mathrm{mm}$
Taulale T USHIOII	aMaxR	$< 148\mathrm{mm}$

Der Effekt der durchgeführten Schnitte wird in Abbildung 7.3 exemplarisch für einen Run mit starkem Untergrund dargestellt. Die verwendeten Daten wurden mit der GEM-TPC mit kosmischer Strahlung bei einem Driftfeld von 360 V/cm und ArCO_2 (90:10) als Driftgas aufgenommen. Im Zeitspektrum nach Anwendung aller Schnitte (blau) sind hier deutlich die Kathodenendkappe und die erste GEM-Folie als Kanten zu erkennen, während diese im Zeitspektrum aller einzelnen Pad-Treffer (rot), insbesondere für die erste GEM-Folie, kaum vom Untergrund zu unterscheiden sind.

7.2.2 Bestimmung über die gesamte Länge der GEM-TPC

War das Driftfeld, und somit auch die Driftgeschwindigkeit, hoch genug und die Verzögerung nach dem Triggerzeitpunkt richtig eingestellt, lässt sich im Zeitspektrum sowohl der Anfang (erste GEM-Folie) als auch das Ende der Kammer (Kathodenendkappe) beobachten, wie in Abbildung 7.1 gezeigt ist. Die minimale Driftgeschwindigkeit, bei der dies noch möglich ist, kann aus der maximalen Driftstrecke und der maximal möglichen Auslesezeit bestimmt werden. Für die GEM-TPC liegt dieser Wert bei $v_{\text{drift,minimal}} =$

Abbildung 7.3: Zeitspektrum mit (blau) und ohne (rot) durchgeführte Schnitte. Die Daten wurden mit der GEM-TPC mit kosmischer Strahlung bei einem Driftfeld von 360 V/cm und ArCO₂ (90:10) als Driftgas aufgenommen.

22,59 mm/µs, was einem minimalen Driftfeld für ArCO₂ (90:10) unter Standardbedingungen von 83 % $E_{\rm drift,\,max}$ (298,8 V/cm) und für NeCO₂ (90:10) von 95 % $E_{\rm drift,\,max}$ (342,0 V/cm) entspricht. Bei der Test-TPC sind durch die deutlich kürzere Driftstrecke von 76,9 mm immer beide Kanten im Zeitspektrum zu identifizieren. Hier liegt die minimale Driftgeschwindigkeit bei lediglich $v_{\rm drift,minimal} = 2,34$ mm/µs und entspricht damit einem Driftfeld von 10 % $E_{\rm drift,\,max}$ (36,0 V/cm) für ArCO₂ (90:10) und NeCO₂ (90:10) beziehungsweise 30 % $E_{\rm drift,\,max}$ (108,0 V/cm) für ArCO₂ (70:30).

Um die zeitliche Position der ersten GEM-Folie beziehungsweise der Kathodenendkappe zu finden, werden mit der Fehlerfunktion

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 (7.1)

und der komplementären Fehlerfunktion

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$
 (7.2)

zwei Stufenfunktionen der Form

$$y_{\text{GEM-Folie}} = a_0 \cdot \operatorname{erf}(\frac{x - a_1}{a_2}) + a_3$$
 (7.3)

und

$$y_{\text{Kathode}} = a_0 \cdot \operatorname{erfc}(\frac{x - a_1}{a_2}) + a_3 \tag{7.4}$$

an das geschnittene Zeitspektrum angepasst. Die Position der Kanten ist durch den jeweiligen Wendepunkt der Funktionen und somit durch den Parameter a_1 gegeben. Die weiteren Parameter geben Auskunft über die Steigung (a_2) , die Höhe (a_0) und den Versatz (a_3) der Funktionen. Für eine automatisierte Anpassung der Stufenfunktionen ist es für alle Parameter notwendig, Startwerte in der richtigen Größenordnung anzugeben. Diese Startwerte lassen sich aus dem Mittelwert aller Einträge im Bereich der Kante

Abbildung 7.4: Gesamtes Zeitspektrum für Run 3706 (links) mit angepassten Stufenfunktionen zur Bestimmung der Position der ersten GEM-Folie (recht oben) und der Kathodenendkappe (rechts unten). Die Daten wurden mit der GEM-TPC mit kosmischer Strahlung bei einem Driftfeld von 309,6 V/cm und ArCO_2 (90:10) als Driftgas aufgenommen.

generieren. Diese Konstanten sind in Abbildung 7.4 zusammen mit den beiden Stufenfunktionen für einen mit der GEM-TPC und kosmischer Strahlung bei einem Driftfeld von 309.6 V/cm und ArCO₂ (90:10) als Driftgas aufgenommen Run dargestellt.

Mit dem Abstand der beiden Kanten, der Ausleserate SR der Front-End-Elektronik und der bekannten Driftstrecke kann nun die Driftgeschwindigkeit über

$$v_{drift} = \frac{l \cdot SR}{(t_{\text{Kathode}} - t_{\text{GEM-Folie}})}$$
(7.5)

berechnet werden, wobei l die Driftstrecke, t_{Kathode} die Position der hinteren und $t_{\text{GEM-Folie}}$ die Position der vorderen Kante im Zeitspektrum bezeichnen. Die Driftstrecke ist durch die maximal mögliche Driftstrecke innerhalb der Zeitprojektionskammer mit $l = (727, 8 \pm 2, 0)$ mm gegeben. Die Abtastrate wird durch einen, in der Datenbank der Ausleseelektronik abgespeicherten Divisor aus der maximal möglichen Abtastrate von $SR_{max} = 77,76$ MHz berechnet.

Für den in Abbildung 7.4 gezeigten Run mit der Nummer 3706 ergibt sich daher mit Hilfe der Position der beiden Kanten von $t_{\text{GEM-Folie}} = 5.34 \pm 1.00$ und $t_{\text{Kathode}} = 499.05 \pm 1.00$ sowie einer Ausleserate von $SR = SR_{max}/5 = (15.55 \pm 0.10)$ MHz eine rekonstruierte Driftgeschwindigkeit von

$$v_{drift} = (22,926 \pm 0,164) \, \mathrm{mm/\mu s}$$
 .

Für die Fehler in der Position der Kanten ist eine obere Abschätzung angegeben, die mit $\pm 1,00$ sample gerade einer falsch zugeordneten Speicherzelle im Analog-Ring-Speicher entspricht. Die Positionen aller Kanten sind in der Run-Datenbank abgespeichert.

Abbildung 7.5: Zeitspektrum für Run 3062 mit angepassten Stufenfunktionen zur Bestimmung der Position der ersten GEM-Folie und der Kathodenendkappe sowie angepassten Parabeln für die Position des Blei- und des Kohlenstofftargets. Die Daten wurden mit der GEM-TPC mit einem π^- -Strahl bei einem Driftfeld von 302,4 V/cm und ArCO₂ (90:10) als Driftgas aufgenommen.

7.2.3 Alternative Bestimmung über die Targetposition

Die GEM-TPC konnte aufgrund von Problemen mit dem Feldkäfig während einer der Strahlzeiten nur mit einem Driftfeld von 65 % $E_{\rm drift,\,max}$ (234 V/cm) betrieben werden, so dass lediglich ein Teilstück der Zeitprojektionskammer entlang der z-Achse ausgelesen werden konnte und nur eine der beiden Kanten im Zeitspektrum zu erkennen ist. Da gerade die Daten dieser Strahlzeit von großer Bedeutung für das physikalische Programm des FOPI-Experiments sind, musste ein anderer Weg gefunden werden, um die Driftgeschwindigkeit aus den Daten zu extrahieren.

Bei dieser Strahlzeit im Juni 2011 wurden Daten mit einem π^- -Strahl genommen, welcher zunächst auf ein Blei- und anschließend auf ein Kohlenstofftarget trifft. Im Verlauf der Strahlzeit wurden die beiden Targets nach und nach durch einzelne Kupfer-, Kohlenstoff- und Bleitargets ersetzt. Durch den Aufbau des FOPI-Experiments mit einem fest installierten Target ist die Teilchenrate aufgrund des Lorentzboosts in Vorwärtsrichtung deutlich erhöht. Durch die räumliche Ausdehnung der Targets in x- und y-Richtung lässt sich die Position der Targets im Zeitspektrum durch ein Minimum in der Zählrate identifizieren (siehe Abbildung 7.5). Da die Position der Targets im Koordinatensystem des FOPI-Experiments auf ± 2 mm genau bekannt ist, kann somit zwischen der Kathodenendkappe und den Targets eine Driftstrecke definiert werden, die sich zur Bestimmung der Driftgeschwindigkeit eignet.

In einem ersten Schritt musste hierzu die genaue Position der Kathodenendkappe

im FOPI-Koordinatensystem bestimmt werden. Bei fünf Runs zu Beginn der Juni-Strahlzeit mit den Run-Nummern 3058-3062 war das Driftfeld mit 302,4 V/cm hoch genug eingestellt, um zunächst die Driftgeschwindigkeit über die Position der Kathodenendkappe und der ersten GEM-Folie im Zeitspektrum berechnen zu können. Wie in Abbildung 7.5 dargestellt ist, konnte neben den beiden Kanten auch die Position des Blei- sowie des Kohlenstofftargets im Zeitspektrum durch das Anpassen einer Parabel ermittelt werden. In der verwendeten Scheitelpunktform

$$y_{\text{Target}} = a_0 \cdot (x - a_1)^2 + a_2$$
 (7.6)

der Parabel gibt der Parameter a_1 die gewünschte Position, a_2 den Versatz entlang der y-Achse und a_0 die Stauchung an. Eine Parabel beschreibt zwar nicht immer den exakten Verlauf der Zeitspektren an der Stelle des Targets, eignet sich jedoch sehr gut zur Bestimmung der Position der Minima in der Zählrate.

Aus der Targetposition, der Ausleserate und den zuvor berechneten Driftgeschwindigkeiten kann die Länge der Driftstrecke zwischen den Targets und der Kathodenendkappe über

$$l_{\text{Target}} = \frac{(t_{\text{Kathode}} - t_{\text{Target}}) \cdot v_{drift}}{SR}$$
(7.7)

bestimmt werden.

Für das Bleitarget, welches während der fünf untersuchten Runs im FOPI-Koordinatensystem bei $Z_{\text{Bleitarget}} = (-400 \pm 2) \text{ mm}$ angebracht war, ergibt sich ein Mittelwert von

 $l_{\text{Bleitarget}} = (454, 27 \pm 0, 20) \,\text{mm}$,

wodurch sich die Position der Kathodenendkappe im FOPI-Koordinatensystem zu

$$Z_{\text{Kathodenendkappe}} = (54,27 \pm 2,01) \,\text{mm}$$

festlegen lässt.

Das Kohlenstofftarget hat im Gegensatz zum Blei- und Kupfertarget mit 10 mm eine nicht vernachlässigbare Ausdehnung entlang der z-Achse. Während die Position im FOPI-Koordinatensystem mit $Z_{\text{Kohlenstofftarget}} = (-220 \pm 2) \text{ mm}$ für den Rand des Targets angegeben ist, wird die Zählrate für eine Position innerhalb des Targets minimal. Dadurch ergibt sich aus dem Mittelwert der rekonstruierten Driftstrecken von

 $l_{\text{Kohlenstofftarget}} = (282,79 \pm 3,85) \,\text{mm}$

eine abweichende Z-Koordinate für die Kathodenendkappe:

$$Z_{\text{Kathodenendkappe, Kohlenstoff}} = (62,79 \pm 4,34) \,\text{mm}$$

Dieser Wert entspricht nicht der tatsächlichen Position der Kathodenendkappe, berücksichtigt jedoch die Ausdehnung des Kohlenstofftargets und muss daher für alle Runs mit dem Kohlenstofftarget verwendet werden.

Bei einem Großteil der Runs der π^- -Strahlzeit war lediglich ein Target an der Position $Z_{\text{Targets}} = (-200 \pm 2) \text{ mm}$ installiert, so dass sich für das Blei- und Kupfertarget eine Driftstrecke von

$$l_{\rm Pb-,Cu-Target} = (254,27 \pm 2,01) \,\mathrm{mm}$$

Abbildung 7.6: Zeitspektrum für Run 3572 mit angepasster Stufenfunktion zur Bestimmung der Position der Kathodenendkappe sowie angepasster Parabel für die Position des Kupfertargets. Die Daten wurden mit der GEM-TPC mit einem π^- -Strahl bei einem Driftfeld von 234 V/cm und ArCO₂ (90:10) als Driftgas aufgenommen.

und von

$$l_{\rm C-Target} = (262, 79 \pm 4, 34) \,\rm mm$$

für das Kohlenstofftarget ergibt. Die anschließende Bestimmung der Driftgeschwindigkeit für alle Runs mit dem zu niedrigen Driftfeld erfolgt mit den nun bekannten Driftstrecken aus dem zeitlichen Abstand der Targets zur Kathodenendkappe. Dieser wird, wie in Abbildung 7.6 für den Run mit der Nummer 3572 dargestellt ist, über das Anpassen einer Parabel an die Targetposition beziehungsweise einer Stufenfunktion an die Kante der Kathodenendkappe im Zeitspektrum ermittelt. Für den dargestellten Run ergibt sich mit

$$v_{drift} = \frac{l_{\rm Pb-/Cu-/C-Target} \cdot SR}{(t_{\rm Kathode} - t_{\rm Target})}$$
(7.8)

aus $t_{\text{Kupferarget}} = 213,29 \pm 1,00 \text{ und } t_{\text{Kathode}} = 492,93 \pm 1,00 \text{ somit eine Driftgeschwindigkeit von}$

$$v_{drift} = (14, 141 \pm 0, 160) \,\mathrm{mm/\mu s}$$

Während für die Fehler in der Position und der Ausleserate hier die gleichen oberen Abschätzungen vorgenommen wurden, wie bei der Bestimmung der Driftgeschwindigkeit über die gesamte Länge der GEM-TPC, ist der Fehler auf die Driftstrecke erwartungsgemäß größer. Trotzdem ergibt sich für die berechneten Driftgeschwindigkeiten eine deutlich geringere Unsicherheit als dies aufgrund der Messungenauigkeiten bei den simulierten Werten der Fall ist.

Abbildung 7.7: Aus den Daten der GEM-TPC rekonstruierte Driftgeschwindigkeiten, aufgetragen gegen die Nummer des zugehörigen Runs. Die Anzahl an Ereignissen in den Runs und die jeweilige Startzeit sind in Anhang E aufgelistet.

7.3 Diskussion der Ergebnisse

Von den insgesamt 2429 mit der GEM-TPC aufgezeichneten Runs konnte bei 914 Runs die Driftgeschwindigkeit aus dem Zeitspektrum bestimmt werden. Alle rekonstruierten Driftgeschwindigkeiten sind in Abbildung 7.7 gegen die entsprechende Run-Nummer aufgetragen und tabellarisch in Anhang E aufgelistet. Für die einzelnen Testmessungen und Strahlzeiten sind zudem die verwendeten Driftgase und Driftfelder aufgeführt. Darüber hinaus ist zu entnehmen, ob mit einem Teilchenstrahl (655 Runs) oder kosmischer Strahlung (259 Runs) gemessen wurde. In der Tabelle sind außerdem die Anzahl der Ereignisse in den jeweiligen Datendateien sowie die Dauer der Runs angegeben.

Die vorhandenen Lücken ergeben sich vor allem durch die Kalibrationsmessungen mit 83m Kr (397 Runs), durch sogenannte Pedestal-Runs zur Untergrundbestimmung der ADCs (310 Runs) oder anderweitige Testmessungen (197 Runs) sowie durch Runs mit zu geringen Driftfeldern oder zu geringer Statistik (611 Runs). Für die Runs mit den Nummern 4010 bis 4219 konnten beispielsweise keine Driftgeschwindigkeiten bestimmt werden, da mit dem eingestellten Driftfeld von 90 % $E_{drift, max}$ bei einer Messung mit NeCO₂ (90:10) maximal eine der beiden Kanten im Zeitspektrum identifizierbar ist und sich durch die gleichmäßige Verteilung von Ereignissen über die gesamte Länge der GEM-TPC, bedingt durch die Messung mit kosmischer Strahlung, keine weitere definierte Driftstrecke ergibt.

Ein Vergleich mit den simulierten Werten zeigt in Anbetracht der in Kapitel 6 ausgeführten Messungenauigkeiten eine gute Übereinstimmung. Bei den meisten Runs liegen

Abbildung 7.8: Für die π^- -Strahlzeit im Juni 2011 rekonstruierte Driftgeschwindigkeiten, aufgetragen gegen die Nummer des zugehörigen Runs. Die verhältnismäßig großen Fehler ergeben sich vor allem aus dem Fehler der Driftstrecke $l_{\rm Pb-/Cu-/C-Target}$.

die mit Hilfe der Parameter aus der Run-Datenbank simulierten und die berechneten Driftgeschwindigkeiten weniger als 1,0 % auseinander. Bedingt durch Messungenauigkeiten oder fehlende Messwerte ergeben sich für einige Runs jedoch auch größere Abweichungen. Für den Run mit der Nummer 3062 beispielsweise, welcher zur Bestimmung der Targetpositionen verwendet wurde, ist die simulierte Driftgeschwindigkeit mit $v_{\text{drift Magboltz}} = (23,30 \pm 0,04) \text{ mm/}\mu\text{s}$ identisch mit den berechneten Werten von $v_{\text{drift Daten}} = (23,30 \pm 0,12) \text{ mm/}\mu\text{s}$. Bei Run 4630 hingegen weichen die simulierte ($v_{\text{drift Magboltz}} = (23,10 \pm 0,17) \text{ mm/}\mu\text{s}$) und die berechnete Driftgeschwindigkeit ($v_{\text{drift Daten}} = (22,73 \pm 0,12) \text{ mm/}\mu\text{s}$) um 1,6 % voneinander ab.

7.3.1 Stabilität der Driftgeschwindigkeit

Die rekonstruierten Driftgeschwindigkeiten streuen über die Dauer der unterschiedlichen Messperioden in der Größenordnung der berechneten Fehler von 1,5 %. Wie zuvor bereits diskutiert, hängt die Stabilität der Driftgeschwindigkeit jedoch von äußeren Faktoren ab. Wechselnde Hochspannungseinstellungen, beispielsweise während der Testmessungen im April und Mai 2011, oder eine stark schwankende Anzahl an Ereignissen in den Runs haben größere Änderungen der Driftgeschwindigkeit zur Folge. Letzteres zeigt sich zum Beispiel bei den in Abbildung 7.8 dargestellten Messungen mit dem Kohlenstofftarget

Abbildung 7.9: Verlauf der rekonstruierten Driftgeschwindigkeit (rot) und der gemessenen Temperatur (grün) über einen Zeitraum von 28 Stunden. Der Fehler der Driftgeschwindigkeit wurde aus Gründen der Übersichtlichkeit weggelassen.

während der π^- -Strahlzeit im Juni 2011. Für zusammenhängende Runs über kürzere Zeiträume konnten auch deutlich stabilere Driftgeschwindigkeiten mit Variationen von unter 1,0 % erreicht werden, wie Abbildung 7.8 für die Messungen mit dem Blei- und Kupfertarget zu entnehmen ist.

7.3.2 Temperaturabhängigkeit

Wie anhand der Simulationen zu erwarten ist, lässt sich ein direkter Zusammenhang zwischen der Temperatur und der rekonstruierten Driftgeschwindigkeit feststellen.

Besonders deutlich ist dies in Abbildung 7.9 dargestellt. Hier sind der Verlauf der rekonstruierten Driftgeschwindigkeit und derjenige der gemessenen Temperatur auf der Ausleseebene über einen Zeitraum von 28 Stunden während der π^- -Strahlzeit im Juni 2011 gemeinsam aufgetragen. Das Absinken der Temperatur während der Nacht und der Anstieg am Tag werden erkennbar auf die Driftgeschwindigkeit übertragen, welche bei sonst gleich bleibenden Einstellungen dem Temperaturverlauf exakt folgt.

Ein weiteres Beispiel für die Temperaturabhängigkeit der Driftgeschwindigkeit zeigt Abbildung 7.10. Die Temperaturerhöhung zwischen den dargestellten Messungen an drei aufeinanderfolgenden Tagen Ende Oktober 2012 ist hier ebenfalls in der Erhöhung der Driftgeschwindigkeit wiederzufinden.

In beiden Beispielen fällt die Änderung der Driftgeschwindigkeit jedoch stärker aus, als von der Simulation vorhergesagt. Dies liegt vor allem daran, dass hier die Temperaturen auf der Ausleseebene betrachtet werden. Deren Änderung fällt durch die Kühlung der Ausleseelektronik weniger stark aus als für die Temperaturen im Inneren der TPC.

Abbildung 7.10: Verlauf der rekonstruierten Driftgeschwindigkeit (rot) und der gemessenen Temperatur (grün) für Messungen an drei aufeinander folgenden Tagen Ende Oktober 2012. Die Messdauer an den einzelnen Tagen betrug jeweils ca. drei Stunden.

Die Werte der Sensoren auf dem Feldkäfig zeigen zudem für die dargestellten Runs eine Temperaturzunahme entlang der z-Achse in einer Größenordnung von 2°C. Neben der Temperaturänderung können auch weitere äußere Einflüsse zu einer Änderung der Driftgeschwindigkeit beitragen.

7.3.3 Positionsabhängigkeit

Um eine mögliche Abhängigkeit der Driftgeschwindigkeit von der x- und y-Position der Teilchenspuren innerhalb der GEM-TPC auszuschließen, wurden die Einträge im Zeitspektrum zusätzlich über den Winkel ϕ auf die Zugehörigkeiten zu einzelnen Winkelabschnitten und auf die radiale Position R der rekonstruierten Cluster gefiltert.

Abhängigkeit vom Winkel ϕ : Für die verschiedenen Winkelabschnitte mit einer untersuchten Breite von 15° konnten innerhalb der einzelnen Runs keine Unterschiede für die Lage der Kanten im Zeitspektrum festgestellt werden. Die Driftgeschwindigkeit ist somit symmetrisch in ϕ .

Abhängigkeit von der radialen Position *R*: Bei der Darstellung des Zeitspektrums in Abhängigkeit von der radialen Position der Cluster sind hingegen Unregelmäßigkeiten für große Driftzeiten und kleine Radien zu erkennen. Wie Abbildung 7.11 am Beispiel von Run 3572 zeigt, ist die Zählrate in diesem Bereich deutlich geringer als erwartet und weicht von einer gleichmäßigen, rechteckigen Verteilung ab. Dieser Effekt wird durch

Abbildung 7.11: Logarithmisch dargestellte Häufigkeit der Driftzeit in Abhängigkeit von der radialen Position der rekonstruierten Cluster für Run 3572 (π^{-} -Strahl, Kupfertarget, 234 V/cm, ArCO₂ (90:10)).

Verzerrungen des elektrischen Feldes hervorgerufen, die an dieser Stelle durch den Übergang des inneren Feldkäfigs zur Kathodenendkappe entstehen. Am äußeren Feldkäfig ist dies ebenfalls in abgeschwächter Form zu beobachten. Obwohl ein Einfluss auf die Lage der Kante im Zeitspektrum (siehe Abbildung 7.6) und somit auf die Bestimmung der Driftgeschwindigkeit nicht nachgewiesen werden konnte, werden die Feldverzerrungen zur Zeit ausführlich durch das Detektorlabor der GSI untersucht.

Abhängigkeit von der Position auf der *z*-**Achse**: Das Verhalten der Driftgeschwindigkeit entlang der *z*-Achse konnte bisher nicht zufriedenstellend untersucht werden. Für diese Messungen ist eine externe Referenz notwendig, um mit hoher Präzision auf Ereignisse mit einer definierten *z*-Position filtern zu können. Die Ortsauflösung der FOPI-Detektoren ist hierfür allerdings nicht ausreichend, so dass weitere Studien, beispielsweise mit Hilfe der Detektoren auf der TestBench, notwendig sind.

7.3.4 Abhängigkeit von Druck und Gaszusammensetzung

Wie aufgrund der Messgenauigkeit der Drucksensoren zu erwarten war, lässt der gemessene Druck am Gasein- und Gasauslass der GEM-TPC keinen Rückschluss auf die

Abbildung 7.12: Verlauf der rekonstruierten Driftgeschwindigkeit (rot) und der gemessenen Drücke am Gasein- (grün) und Gasauslass (blau) der GEM-TPC.

Abhängigkeit der Driftgeschwindigkeit vom Druck zu. In Abbildung 7.12 sind beispielhaft die Mittelwerte der gemessenen Drücke über den Zeitraum des jeweiligen Runs zusammen mit der entsprechenden Driftgeschwindigkeit dargestellt. Während bei der Driftgeschwindigkeit ein klarer Verlauf zu erkennen ist, schwanken die Messwerte der Drucksensoren lediglich von Run zu Run in einer Größenordnung von 15 mbar, ohne erkennbare Korrelation mit der Driftgeschwindigkeit.

Auch über die Abhängigkeit der Driftgeschwindigkeit von der genauen Gaszusammensetzung kann keine Aussage getroffen werden, da für die Argon-, Neon- beziehungsweise Kohlenstoffdioxidkonzentration bisher nur wenige exakte Messwerte zur Verfügung stehen.

7.4 Weitere Analysen der Daten

Die Bestimmung der Driftgeschwindigkeit aus den Daten der Test-TPC und weiterführende Analysen aller aufgezeichneten Daten werden im Rahmen der GEM-TPC und der FOPI-Kollaboration durchgeführt.

Die weiteren Analysen umfassen beispielsweise die Untersuchung des Auflösungsvermögens der GEM-TPC. Wie in Abbildung 7.13 gezeigt und in [70, 127] ausgeführt ist, konnte für die x- und y-Koordinaten mit kosmischer Strahlung, ArCO_2 (90:10) als Driftgas und einem Driftfeld von 360 V/cm eine Ortsauflösung von $\approx 230 \,\mu\text{m}$ für kurze Driftstrecken bestimmt und die Erwartungen an den Detektor somit voll erfüllt werden. Für die Auflösungsbestimmung wurden die Residuen der rekonstruierten Spuren

Abbildung 7.13: Aus den Residuen bestimmtes Auflösungsvermögen der x- und y-Koordinate in der GEM-TPC in Abhängigkeit von der Driftstrecke [127]. Die roten Punkte geben dabei das Sigma der schmaleren Gauß-Verteilung, die schwarzen Punkte den gewichteten Mittelwert der beiden Gauß-Verteilungen und die gestrichelte Linie die simulierte, transversale Diffusion für einzelne Elektronen an.

in jeweils 10 cm breiten Abschnitten der Driftstrecke zusammengefasst und zwei gewichtete Gauß-Funktionen an diese Verteilung angepasst. Das Sigma der schmaleren Gauß-Verteilung (rote Punkte) sowie der gewichtete Mittelwert beider Gauß-Verteilungen (schwarze Punkte) geben dann in guter Näherung die erreichte Auflösung wieder.

Ein wichtiger Aspekt bei der Rekonstruktion und Analyse der Daten stellt die Anbindung der Spuren in der GEM-TPC an die detektierten Spuren in den Detektoren des FOPI-Experimentes dar. Wie Abbildung 7.14 für ein durch einen ²²Ne-Strahl an einem Al-Target hervorgerufenes Ereignis zeigt, funktioniert diese Spuranpassung ohne Berücksichtigung der z-Koordinate zuverlässig für 99 % aller Spuren [131]. Durch die Verwendung der rekonstruierten Driftgeschwindigkeiten sind hier noch weitere Verbesserungen zu erwarten.

Neben der erreichten Verbesserung der Impulsauflösung der FOPI-Detektoren um 30 % konnte durch die Verwendung der GEM-TPC erwartungsgemäß auch die Genauigkeit in der Bestimmung der Position rekonstruierter Vertices deutlich gesteigert werden. Abbildung 7.15 zeigt die erzielte Auflösung von besser als 10 mm aus der gemeinsamen Verwendung von CDC- und GEM-TPC-Daten anhand der Verteilung der z-Koordinate für die Wechselwirkung eines π -Strahls mit einem 10 mm dicken Kohlenstofftarget. Die Daten wurden mit ArCO₂ (90:10) als Driftgas und einem Driftfeld von 234 V/cm aufgenommen. Bei alleiniger Verwendung der CDC-Daten lässt sich lediglich eine Auflösung von $\mathcal{O}(10 \text{ cm})$ erreichen.

Eine erste Analyse des spezifischen Energieverlustes dE/dx geladener Teilchen in der GEM-TPC und der daraus resultierenden Fähigkeit zur Identifizierung dieser Teilchen

Abbildung 7.14: x-y-Projektion eines angepassten Ereignisses in der GEM-TPC (innere Ringe, blaue Punkte) und der CDC (äußere Ringe, grüne Punkte) mit den rekonstruierten Teilchenspuren (blaue Linien).

ist in [131] ausführlich dargestellt. Für eine Zeitprojektionskammer dieser Größenordnung mit GEM-Folien zur Verstärkung sind diese, in Abbildung 7.16 gezeigten Ergebnisse bisher einzigartig. Mit Hilfe der durchgeführten Energiekalibration der einzelnen Auslesekanäle (siehe Kapitel 2.7) konnte eine den Erwartungen entsprechende dE/dx-Auflösung von 14-17% erreicht werden. Mit weiteren Verbesserungen in der Analyse und durch die Verwendung der tatsächlichen Driftgeschwindigkeit lassen sich auch die in etablierten Zeitprojektionskammern, wie der ALICE TPC, erreichten dE/dx-Auflösungen von unter 10,5% realisieren.

Abbildung 7.15: Verteilung der z-Koordinate rekonstruierter Vertices aus der Wechselwirkung eines π -Strahls mit einem 10 mm dicken Kohlenstofftarget unter Verwendung der CDC-Daten alleine (rot) und in Verbindung mit den Daten der GEM-TPC (blau) [127].

Abbildung 7.16: Spezifischer Energieverlust dE/dx geladener Teilchen in der GEM-TPC in Abhängigkeit vom ihrem Impuls bei einem Magnetfeld von 0,6 T und ArCO₂ (90:10) als Driftgas [131].

Inmitten der Schwierigkeiten liegt die Möglichkeit.

(Albert Einstein)

8 Zusammenfassung und Ausblick

Als wichtiger Schritt in Richtung eines vollständigen Experiments wird der bestehende Innendetektor des CBELSA/TAPS-Experiments in den kommenden Jahren durch eine Zeitprojektionskammer mit GEM-Folien zur Ladungsverstärkung ersetzt. Dieser Spurdetektor ermöglicht unter anderem eine bessere Winkelauflösung von unter 0,1°, die Bestimmung der Teilchenart aus dem spezifischem Energieverlust, die Messung geladener Reaktionskanäle für bereits untersuchte Reaktionen sowie den Nachweis geladener Reaktionen, die mit dem Crystal-Barrel-Detektor bisher nicht nachgewiesen werden konnten.

Neben einer kleinen Test-TPC auf einer TestBench mit mehreren Detektoren zur externen Spurdefinition wurde eine erste GEM-TPC mit den Abmessungen für das CB-ELSA/TAPS-Experiment gebaut und als Spurdetektor im Inneren des FOPI-Experiments an der GSI in Betrieb genommen.

Zur Steuerung und Überwachung der beiden Zeitprojektionskammern sowie der weiteren Detektoren auf der TestBench wurde die dafür notwendige Hard- und Software im Rahmen dieser Arbeit entwickelt, gebaut und während mehrerer Testmessungen und Strahlzeiten an ELSA, am CERN und an der GSI erfolgreich eingesetzt.

Viele Hardwarekomponenten mussten für diese SlowControl neu konstruiert werden, beispielsweise das Gassystem für die TestBench und insbesondere die Auslese der meisten Sensoren. Die Kommunikation zwischen den Hardwarekomponenten und der Datenbank erfolgt einheitlich über Ethernet und wird über einen speziell entwickelten Daemon gesteuert. In der Datenbank als zentraler Komponente der SlowControl sind die auszuführenden Befehle, die ausgelesenen Daten und Einstellungen aller Subdetektoren, das elektronische Logbuch und eine Run-Datenbank gespeichert.

Zur Darstellung und Kontrolle aller Parameter und Messwerte und zur Eingabe neuer Parameter stehen eine PHP-Web-Oberfläche und eine graphische Benutzeroberfläche zur Verfügung. Während sich die PHP-Web-Oberfläche vor allem durch ihre Plattformunabhängigkeit auszeichnet, lassen sich die Parameter und Statuswerte mit der Qt-basierten SlowControl-GUI entsprechend ihrer maximalen Ausleserate von 1-2Hz in Echtzeit darzustellen. Zusätzlich bietet die SlowControl-GUI eine hohe Benutzerfreundlichkeit, hohe Fehlersicherheit beim Umgang mit den Hochspannungen an den TPCs und die Möglichkeit, Einstellungen abzuspeichern oder zu laden. Aufgrund dieser Eigenschaften wird die SlowControl-Software bereits bei anderen Projekten, wie den Testmessungen für die Umrüstung der ALICE-TPC auf eine Verstärkung mit GEM-Folien oder den Messungen an einem GEM-Stack aus vier Folien an der Universität Frankfurt, erfolgreich eingesetzt. Während der Strahlzeiten und Testmessungen konnte für die Spannungen und Ströme eine Messgenauigkeit besser als $0,0005 \% V_{max}$ beziehungsweise $0,0002 \% A_{max}$ und eine gute Langzeitstabilität von unter $0,005 \% V_{max}$ beziehungsweise $0,003 \% A_{max}$ gewährleistet werden. Die Messgenauigkeiten der Temperatursensoren entsprach ebenso den Erwartungen wie die Werte des Gassystems für die TestBench, des Unichillers, der SPS oder der Niederspannungsversorgung und deren Langzeitstabilitäten. Lediglich bei der Druckmessung an der GEM-TPC sind Verbesserungen zwingend nötig, da die bauartbedingte Auflösung mit 50 mbar deutlich zu schlecht ist. Weiterhin ist die Integration der Werte des geschlossenen Gassystems für die GEM-TPC und der Temperatursensoren auf dem Feldkäfig in die SlowControl derzeit ebenso in Bearbeitung, wie eine Umsetzung der SlowControl-GUI als Applikation für Smartphones und Tablets.

Eine konstante Überwachung der Parameter ist nicht nur für einen stabilen Betrieb der Detektoren notwendig. Für eine präzise Rekonstruktion der Teilchenspuren ist neben einer guten Auflösung in x- und y-Richtung die genaue Kenntnis der Driftgeschwindigkeit zur Bestimmung der z-Komponente von großer Bedeutung. Wie die Ergebnisse der im Rahmen dieser Arbeit durchgeführten Simulationen zur Driftgeschwindigkeit und deren Abhängigkeit von der Driftspannung, dem Druck, der Gaszusammensetzung und der Temperatur zeigen, ist die Messung und Überwachung dieser Parameter für eine sinnvolle Verwendung der simulierten Driftgeschwindigkeit unumgänglich.

Für eine präzisere Rekonstruktion der z-Koordinate war es jedoch erforderlich, die Driftgeschwindigkeit zusätzlich aus den mit der GEM-TPC aufgezeichneten Daten zu bestimmen. Hierzu wurde die benötigte Driftzeit für eine definierte Strecke aus dem Zeitspektrum über die Position der Kathodenendkappe sowie der ersten GEM-Folie beziehungsweise den Targets extrahiert. Die berechneten Werte sind in guter Übereinstimmung mit den simulierten Driftgeschwindigkeiten, weisen jedoch einen deutlich geringeren Fehler auf. Hierdurch können die bisher durchgeführten und noch ausstehenden Analysen der GEM-TPC- und FOPI-Daten weiter verbessert werden.

A Platinendesign

Pt100-Ausleseplatine

Abbildung A.1: Schaltplan der Pt100-Ausleseplatine

Abbildung A.2: Design der Pt100-Ausleseplatine

Dual-XPort-Platine

Abbildung A.3: Design der Dual-XPort-Platine

Abbildung A.4: Schaltplan der Dual-XPort-Platine

B Kalibrationstabellen

Kanalnr.	Steigung $m \pm \Delta m \; [\Omega/{ m ADC-Kanal}]$	Achsenabschnitt $b \pm \Delta b [\Omega]$
1	$0,076747 \pm 0,000222$	$-2,511092 \pm 0,389005$
2	$0,076784\pm0,000217$	$-2,\!141894 \pm 0,\!378107$
3	$0,076441\pm0,000269$	$-2,724105 \pm 0,473684$
4	$0,077048 \pm 0,000216$	$-4,040114 \pm 0,380777$
5	$0,076751\pm0,000202$	$-2,934317 \pm 0,354460$
6	0.076903 ± 0.000217	$-4,146090 \pm 0,383493$
7	0.076524 ± 0.000223	$-1,238453 \pm 0,388246$
8	0.076870 ± 0.000176	$-3,274450 \pm 0,309581$
9	0.076779 ± 0.000211	$-2,367490 \pm 0,367641$
10	$0,076751\pm0,000260$	$-4,183783 \pm 0,457227$
11	$0,077046\pm0,000212$	$-2,743225\pm0,368993$
12	$0,076869 \pm 0,000229$	$-4,745763 \pm 0,403679$
13	0.076903 ± 0.000218	$-2,\!659269 \pm 0,\!380533$
14	$0,076795\pm0,000214$	$-2,040073 \pm 0,373002$
15	0.076857 ± 0.000233	$-2,886953 \pm 0,407628$
16	$0,077016\pm0,000149$	$-1,\!781456\pm0,\!258419$

Kalibrierung der Pt100-Ausleseplatinen

Tabelle B.1: Kalibrierung der ersten Pt100-Ausleseplatine. Über die Beziehung $R = m \cdot x + b$ lassen sich die gemessenen ADC-Werte (x) in Widerstandswerte (R) umrechnen.

Kanalnr.	Steigung $m \pm \Delta m \; [\Omega/{ m ADC-Kanal}]$	Achsenabschnitt $b \pm \Delta b [\Omega]$
1	$0,076370\pm0,000204$	$-3,366167 \pm 0,360458$
2	$0,076485\pm0,000223$	$-3,174985 \pm 0,392760$
3	$0,076468\pm0,000215$	$-2,921522\pm0,379374$
4	$0,076544\pm0,000211$	$-3,268056\pm0,370888$
5	$0,076668\pm0,000222$	$-3,\!632042\pm0,\!391645$
6	$0,076452\pm0,000208$	$-2,\!434883 \pm 0,\!364975$
7	$0,076409\pm0,000121$	$-1,924656 \pm 0,211009$
8	$0,076182\pm0,000243$	$-1,786424 \pm 0,426580$
9	0.076367 ± 0.000223	$-2,786837 \pm 0,392502$
10	vorgesehen für eine direkte	Spannungsmessung
11	0.076130 ± 0.000216	$-2,\!509236\pm0,\!380679$
12	vorgesehen für eine direkte	Spannungsmessung
13	$0,076291\pm0,000228$	$-2,973635 \pm 0,402398$
14	$0,076558\pm0,000213$	$-3,\!102816\pm0,\!374940$
15	0.076571 ± 0.000134	$-3,946511\pm0,237149$
16	$0,076447 \pm 0,000255$	$-3,438807\pm0,449764$

Tabelle B.2: Kalibrierung der zweiten Pt100-Ausleseplatine. Über die Beziehung $R = m \cdot x + b$ lassen sich die gemessenen ADC-Werte (x) in Widerstandswerte (R) umrechnen.

C Benutzerhandbücher

Die folgenden Abschnitte geben eine detaillierte Beschreibung aller Funktionen auf den Unterseiten der Web-Oberfläche (Abschnitt C.1) sowie auf den Registerkarten der graphischen Benutzeroberflächen für die GEM-TPC (Abschnitt C.2), die TestBench (Abschnitt C.3) und die Run-Datenbank (Abschnitt C.4) und sollen als Benutzerhandbuch dienen.

C.1 Web-Oberfläche

Abbildung C.1: Die Startseite der SlowControl-Web-Oberfläche für die TestBench.

Auf der in Abbildung C.1 gezeigten Startseite der Web-Oberfläche für die TestBench befinden sich die Links zu den Abfragen der aktuellen und der alten Werte jeder einzelnen Hardware-Komponenten, zum Logbuch, zu den noch auszuführenden Aktionen in der Queue-Tabelle und zu einer allgemeinen Übersichtsseite. Die Seiten zur Änderung von Parametern oder allgemeinen SlowControl-Einstellungen sind nur für registrierte Benutzer nach einem Login zugänglich. Im Menü auf der linken Seite gibt es zusätzlich die Möglichkeit, zwischen Deutsch und Englisch als Sprache für die Web-Oberfläche zu wählen.

Abfrage - aktuell

Die zuletzt ausgelesenen Werte der überwachten Komponenten werden bei einem Aufruf der entsprechenden "aktuellen" Abfrage-Seiten aus der Tabelle AKTUELL gelesen und nach Kanalnummer sortiert als Tabelle dargestellt. Wie in Abbildung C.2 für die

e - aktuell	MPO	D HV+LV:						1	Neu laden an	Neu auslesen	Voreins
POD HV/LV meg LV S sfluss	Kanal	Auslese: 2013-0 Name	Status	5:3 An	9 Aus	Spannung	gem. Terminal-Sp.	Strom	gem. Strom	Kill?	
e - alt	101	TPC Last Strip	٠	۲	ä	2756.98 V	2757 V	0.035000 mA	0.024936 mA		
OD HV/LV	102	TPC Skirt		۲	0	2741.85 V	2741.9 V	0.035000 mA	0.000000 mA		
S	103	TPC GEM 1 top		۲	Ô.	2701.35 V	2701.4 V	0.035000 mA	0.000000 mA		
snuss	104	TPC GEM 1 bottom		۲	0	2377.35 V	2377.4 V	0.035000 mA	0.000000 mA		
lungen	105	TPC GEM 2 top		۲	0	1769.85 V	1769.9 V	0.005000 mA	0.000000 mA		
Status	106	TPC GEM 2 bottom	٠	۲	Ō.	1474.2 V	1474.2 V	0.005000 mA	0.000000 mA		
	107	TPC GEM 3 top	٠	۲	0	865.7 V	866.7 V	0.005000 mA	0.000000 mA		
	108	TPC GEM 3 bottom	٠	۲	0	607.5 V	607.5 V	0.005000 mA	0.000000 mA		
	201	LV Silicon Strips 1	٠	0	۲	0 V	0 V	0.005000 mA	0.000001 mA		
	202	LV Silicon Strips 2		0	۲	0 V	0 V	0.005000 mA	0.000001 mA		
	203	LV Silicon Strips 3	٠	0	۲	0 V	0 V	0.005000 mA	0.000001 mA	•	
	204	LV Silicon Strips 4	٠	0	۲	0 V	0 V	0.005000 mA	0.000001 mA		
	205	empty		0	۲	0 V	٥v	0.005000 mA	0.000001 mA	•	
	206	empty		ò	۲	0 V	٥v	0.005000 mA	0.000001 mA		
	207	empty		0	۲	0 V	ov	0.005000 mA	0.000001 mA		
	208	emoty		0		0 V	0.4	0.005000 mA	0.000001 mA		

Abbildung C.2: Anzeige der zuletzt ausgelesenen Werte des MPOD-Crates.

Werte des MPOD-Crates zu sehen, enthält die Tabelle neben den Kanalnummern und den gemessenen Werten auch die dazugehörigen Sollwerte, die in der entsprechenden Datentabelle gespeicherten Alias-Namen sowie die Information darüber, ob der Kanal an- oder ausgeschaltet ist. Liegt für einen Kanal eine Fehlermeldung vor oder ist dieser nicht eingeschaltet, so wird dies anhand einer farbigen Statusmeldung deutlich gemacht und eine kurze Fehlererläuterung gegeben.

Standardmäßig wird die Seite alle 20s automatisch neu geladen, um die angezeigten Werte auf dem aktuellsten Stand zu halten. Diese Funktion kann über die Schaltfläche 'Neu laden aus/an' ausgestellt werden. Die Schaltfläche 'Neu auslesen' veranlasst den Daemon außerhalb des normalen Auslesezyklus die Parameter der Hardware abzufragen. Die 'Noreinstellungen'-Schaltfläche ist mit der passenden Änderungsseite verknüpft.

Je nach abgefragter Hardware lassen sich einige Parameter auch direkt in der Tabelle ändern und diese Änderungen über den Button 'weiter' in die Queue-Tabelle eintragen. Mit 'Fehler zurücksetzen' beim MPOD-Crate und dem Durchführen eines 'Powercycle' bei der SPS sind weitere direkte Aktionen über die passenden Schaltflächen möglich. Für diese Änderungen muss der Benutzer jedoch eingeloggt sein.

Abfrage - alte Werte

Um einzelne Kanäle über einen längeren Zeitraum beobachten oder miteinander vergleichen zu können, lassen sich über diese Seiten alle gespeicherten Werte eines bestimmten Zeitraums ausgeben. Hierzu besteht die Möglichkeit über Kontrollkästchen die gewünschten Kanäle und über ein Pull-Down-Menü den gewünschten Parameter

Slov	vcontrol - Gasfluss - ältere Werte	1		Slowcontrol - SPS-Werte
Nene Abfrage - sktuett Sepanougen 2 - Hanneg LV 2 - Hanneg LV 2 - Sta 2 - Star 2 - S	Welcher Zeitraum? 2013 © 402 © 12 ° 0 hs 2013 © 102 ° 12 ° 0 Anreige: alsis in einer Diagram © Auswahl der Kanile: Pipe Channel 1 Pipe Channel 1		Here and a second secon	

Abbildung C.3: Darstellung alter Abfragewerte: Webseite zur Auswahl von Zeitraum, Darstellungsart, Kanälen und des Parameters (links) und Graph mit dem zeitlichen Verlauf von drei abgefragten Temperaturen an der TestBench (rechts).

auszuwählen. Die Ausgabe erfolgt nach Benutzerwunsch als Textdatei, als Tabelle, kanalweise in einzelnen Graphen oder als gemeinsamer Graph für alle Kanäle, wie in Abbildung C.3 für drei Temperaturen an der TestBench gezeigt.

Änderungen

Home Abfrage - aktuell	Gasi	F low: Auslese: 2013-	02-07 :	13:5	3			Neu lad	en 📘 Neu ausle:	CB-ELSA	Abfra	ge
> MPOD HV/LV > Hamed LV	Kanal	Name	Statu	An	Aus	Messbereich	Sollwert	Gaskorrekturfaktor	Obere	Untere	Offse	at
> SPS > Gasfluss	5	Flow Channel 5 (TPC)	•	۲	0	* 500 sccm / 30 l/h * •	3,99 I/h	100 %	19.98 l/h	0.99 l/h	0	1
Abfrage - alt	6	Flow Channel 6 (GEM)	٠	۲	0	* 200 sccm / 12 l/h * -	1.99 l/h	100 %	10 l/h	0.6 l/h	0	1
> SPS > SPS > Gasfluss Einstellungen > MPOD HV/LV > Hameg LV > SPS > Gasfluss > Allgemein Logbuch Queue Status Übersicht Angemeidet als: kaiser	Fehler	zurücksetzen - Neu	istart Mi	KS M	odul	* aktueller Wert *	GCFs: Art Net	N2 -> 100.0 % CO2 (70:30) -> 113.7 % CO2 (90:10) -> 132.6 % CO2 (90:10) -> 132.8 %				

Abbildung C.4: Webseite zur Änderung der Parameter am Gassystem der TestBench.

Über die Änderungsseiten können verschiedene Parameter der jeweils gewählten Hardwarekomponente geändert werden. Um unberechtigte Zugriffe zu verhindern, sind diese Seiten nur registrierten und eingeloggten Benutzern zugänglich. Die Autorisierung wird beim Aufruf der Seite über einen beim Einloggen angelegten Cookie erfragt. Sollte dieser nicht vorhanden sein, wird der Benutzer zunächst zur Login-Seite umgeleitet.

Abbildung C.4 zeigt beispielhaft die Änderungsseite für die Gasflussregler der Test-Bench, bei denen sich der Messbereich, der Sollwert, der Gaskorrekturfaktor, die obere und untere Fehlergrenze sowie der An-/Aus-Zustand ändern lassen. Die zuletzt ausgelesenen Werte werden in editierbaren Feldern angezeigt und können über Schaltflächen neu aus der Datenbank geladen ('Neu laden') oder neu an der Hardware abgefragt ('Neu auslesen') werden. Ein weiterer Button ('aktuelle Abfrage') führt zur passenden Abfrage-Seite der Hardwarekomponente.

Modifiziert der Benutzer einen oder mehrere der angezeigten Werte wird die Schaltfläche 'weiter' zum Senden der neuen Werte freigeschaltet. Zur Sicherheit werden alle Änderungen auf der folgenden Seite aufgelistet und müssen nochmals bestätigt werden, bevor sie endgültig in die Queue-Tabelle eingetragen werden.

Allgemeine Einstellungen

Unter den allgemeinen Einstellungen (siehe Abbildung C.5) kann im ersten Abschnitt der Status der einzelnen Hardwarekomponenten im Daemon beobachtet und geändert werden. Der Abfragestatus zeigt für jede Komponente an, ob die letzte Abfrage innerhalb der eingestellten Auslesezeit erfolgt ist und gibt somit Auskunft über die Aktivität des Daemon. Der Button 'letzte Werte' führt zur entsprechenden Abfrage-Seite. Weiterhin ist für jede Komponente angezeigt, ob die Auslese in der HARDWARE-Tabelle aktiviert ist. Dieser Status im Daemon kann über die Schaltfläche 'Aktivieren' beziehungsweise 'Deaktivieren' modifiziert werden. Um die Änderung wirksam werden zu lassen, ist ein Neustart des Daemon erforderlich, welcher nach einer kurzen Wartezeit automatisch stattfindet.

Neben einem manuellen Neustart oder dem Ausschalten des Daemon kann im nächsten Abschnitt auch die Zeit eines Abfragezyklus eingestellt werden. Die aktuelle Abfragezeit wird hier ebenso angezeigt wie die zuletzt erzeugte Eventnummer. Über entsprechende Schaltflächen lassen sich die SPS und das MPOD-Crate ein- beziehungsweise ausschalten.

Die Datenbank muss von Zeit zu Zeit von ungültig gewordenen Speicherbereichen, also gelöschten Tabelleneinträgen, bereinigt werden. Der entsprechende VACUUM-Befehl wird im Regelfall von PostgreSQL automatisch ausgeführt, kann über die Schaltflächen 'go for it' jedoch auch manuell durchgeführt werden. Der Befehl ANALYZE aktualisiert die für eine Datenbankabfrage notwendigen Statistiken über den belegten Speicherplatz und die Gesamtzahl der Einträge in den Tabellen und ist dadurch in der Lage die Geschwindigkeit von Abfragen in einem gewissen Rahmen zu erhöhen.

Der vorletzte Abschnitt der allgemeinen Einstellungen erlaubt die Bearbeitung der in den Datentabellen abgespeicherten Alias-Namen: Nach der Auswahl einer Datentabelle aus dem Pull-Down-Menü werden die vorhandenen Alias-Namen aus der Tabelle gelesen und können auf der neu geöffneten Webseite geändert oder durch weitere Kanäle ergänzt werden.

Das Anlegen neuer Benutzer im letzten Abschnitt erfolgt ebenfalls auf einer eigenen Seite durch Eingabe eines Benutzernamens, eines Passworts und der Vergabe von Zugangsrechten mit Hilfe von Kontrollkästchen.

Logbuch

Auf der Logbuch-Startseite (siehe Abbildung C.6) lassen sich neue Logbucheinträge anlegen. Werden dabei nur die gelben Felder für den Namen und den Text ausgefüllt, so wird der Eintrag als Kommentar behandelt, andernfalls als ein Run-Eintrag mit voreingestellten Werten für nicht ausgefüllte Felder.

Für Änderungen an einem alten Eintrag muss dieser über ein Pull-Down-Menü ausgewählt und auf einer neuen Seite berichtigt werden.

Für die Abfrage alter Logbucheinträge kann ein Zeitraum eingestellt und zwischen der Darstellung aller oder gefiltert nach Kommentar- oder Run-Einträgen gewählt werden. Die Ausgabe erfolgt auf einer neuen Seite in Form einer Tabelle oder über den letzten Eintrag auf der Logbuch-Startseite als Textdatei.

Zusätzlich sind die Einträge der LOG-Tabelle und die gespeicherten Fehler in der Tabelle ERROR_LIST aus einem bestimmten oder dem gesamten vorhandenen Zeitraum abrufund als Tabelle darstellbar.

Abbildung C.6: Startseite des elektronischen Logbuchs.

Übersicht

Die Übersichtsseite (Abbildung C.7) gibt eine kurze Zusammenfassung aller wichtigen Status- und Abfragewerte und wird alle 20s aktualisiert.

Auf der linken Seite befinden sich die Statusanzeigen des Daemon (SlowTPC), der einzelnen Komponenten (mit einer Schaltfläche, um zu den Abfrage-Seiten zu gelangen) und eine Anzeige, die Auskunft darüber gibt, ob die Hochspannung am MPOD-Crate angeschaltet ist. Ebenso ist hier der letzte Eintrag des Logbuchs dargestellt.

Auf der rechten Hälfte sind für alle angeschlossenen Kanäle die wichtigsten Abfragewerte zusammen mit dem Alias-Namen aufgelistet. Darüber hinaus wird farblich angezeigt, ob die Werte im Bereich der eingestellten Sollwerte liegen.

		Slow	control - Über	sicht	CB-I	ELSA	the second
	Status:			Letzte Werte:			
Home	Slow TOC - O			G	emessener Wert		
Abfrage - aktueli	SIGWIPS .			Current LV TPC - D-pos (V1 IN)	4.6	v	•
> MPOD HV/LV				Current IV TPC - D-neg (V2 IN)	0.6	v	Ξ.
> Hameg LV	SlowTPC-Da	mon Statu	15:	concinent fre oneg(veni)	0.0	÷.	Ξ.
> Gasfluss	A	bfragestatu	s Status im Damon	Current LV TPC - A-pos (V3 IN)	3.1	v	•
	GasElow	Letzte We	te O	Current LV TPC - A-neg (V4 IN)	0.1	۷	۹.
> MPOD HV/LV	CDC	Latate Die		-			-
> Hameg LV	SPS .	Letzte we	te	Current 1 IN (Oxygen content TPC)	-0.18	ppm	•
> SPS Gasfluss	MPOD	Letzte We	rte 🗳	Current 2 IN (Water content TPC)	0.000000	A	
- ousinuss	HAMEG	Letzte We	rte 🕒				-
instellungen				Temperature 1 (TPC 1)	14.601340	°C	
> Hameg LV	Hochspannu	ing - State	is:	Temperature 2 (TPC 2)	14.788840	°C	•
> SPS				Temperature 2 (at CDE)			-
> Allgemein	HV MPC	D	(HV DN)	temperature 3 (at 5+3)	-327.242003	-	2
	Lonbuch - L	atator Elat	tradit.	Temperature 4 (at ADCs)	16.577681	°C	•
ogbuch Dueue Status	Logbuch - Lo	etzter Eini	trag:		1.0		~
bersicht	Log nr	Eventor	Zeit	LV TPC - D-pos (C1 OUT)	5.2	v	•
	905	69395	2013-02-08 12:46:43.476165+01	LV TPC - D-neg (C2 OUT)	4.5	۷	
ngemeldet als:	Name Roman Schmitt	Run Nr	Startzeit	LV TPC - A-pos (C3 OUT)	5.2	۷	
aiser	Run Type	Trigger	# Spills	LV TPC - A-neg (C4 OUT)	4.5	v	
ogout	krypton	random 50H	12 0				
		Ko	mmentar	TPC Drift	3760.1	v	•
	Krypton run w	ith reg0-0x8	(120fC, 200ns peaking time).	amphi			-
	drift/diffusion	n comparable	to big prototype.	empty	u u		-
				HV GEM 1	0.2	v	•
				HV GEM 2	0.9	۷	
				Trigger Scintillator 1	0.4	v	
				Trigger Scintillator 2	0.5	v	
				The second second second	0.5		-
				Trigger Scintillator 3	0	V	

Abbildung C.7: Übersichtsseite mit allen SlowControl-Werten.

C.2 Graphische Benutzeroberfläche für die GEM-TPC

Die SlowControl-GUI für die GEM-TPC besteht aus insgesamt sechs Registerkarten: Die Einstellungen und Werte der TPC sind der Übersichtlichkeit halber auf drei Registerkarten aufgeteilt, alle zugrunde liegenden Funktionen jedoch in einer einzelnen Klasse definiert. Die weiteren Registerkarten zeigen Werte der Temperatur- und Gassensoren, das Logbuch sowie eine Übersicht über die alten, in der Datenbank gespeicherten Werte. Ihre Funktionalität erhalten sie jeweils über eigene Klassendeklarationen. Konstante Werte, wie die Anmeldeinformationen für die Datenbank, Zeitkonstanten oder die Zuordnung der Kanalnummern der einzelnen Spannungen an der TPC, werden über eine separate Datei (SlowControl_const.h) definiert und können während der Programmlaufzeit nicht geändert werden.

Die Verbindung zur Datenbank wird beim Programmstart geöffnet und über die gesamte Programmlaufzeit aufrecht erhalten. Hierdurch können verschiedene Programmteile auf diese Verbindung zurückgreifen, ohne sich gegenseitig zu blockieren. Darüber hinaus wird eine höhere Auslesegeschwindigkeit erreicht, als wenn die Verbindung für jeden Lese- oder Schreibvorgang neu aufgebaut würde.

Die regelmäßige Abfrage der Parameter aus der Datenbank wird über zwei Zeitgeber vom Typ QTimer realisiert (timer_read_hv und timer_read_sensors). Beim Programmstart werden diese initialisiert und gestartet. Zusätzlich sind drei weitere Zeitgeber implementiert, über die regelmäßige Überprüfungen initiiert werden, die Auskunft darüber geben, ob der Daemon nach wie vor ausgeführt wird (timerDaemon()), es neue aufgezeichnete Datendateien gibt (checkNewRun()) und wieviel Zeit die einzelnen TPC-Kanäle beim Hoch- beziehungsweise Herunterfahren der Spannungen noch benötigen (timerRamp()).

Startoptionen

Die GUI für die GEM-TPC lässt sich mit verschiedenen Optionen starten:

- -h: Es werden nur die möglichen Startoptionen angezeigt, ohne die GUI zu starten.
- -c: 'change-TPC-HV-anyway'-Option

Bei jedem Programmstart wird überprüft, ob bereits eine oder mehrere Instanzen der SlowControl-GUI gestartet wurden. Ist dies der Fall, wird die Steuerung der TPC-Hochspannungen bei der neu gestarteten Instanz aus Sicherheitsgründen blockiert, um das gleichzeitige Senden entgegengesetzter Befehle durch zwei verschiedene Instanzen zu verhindern. Das Betrachten der Werte ist jedoch weiterhin möglich. Um im Notfall dennoch Änderungen vornehmen zu können, kann das Programm mit dieser Option gestartet werden.

- -l: 'auto-logbook-entry'-Option Diese Option ermöglicht das Benutzen des 'Auto-save'-Kontrollkästchens auf der Logbuch-Registerkarte (siehe entsprechender Abschnitt).
- -a: 'only-ancient-values'-Option Mit dieser Option werden alle Zeitgeber gestoppt und die Registerkarten f
 ür die

ttings							resulting Potentials		Ramp Automatic	n
Fields		Vol	Itages	load latest Settin	ngs auto	Distances	Calculate F	Potentials	Scale Factors GEM Stack	0.0%
onit Field	360.00 V/cm	save	e Settings	- Doh	F Doll -	GEM 1 227.80 mm	Drift	0.00 V H	Drift Field	0.0%
et Strip Field	200 70 V/cm	load	d Settings	- Last Spip	- Lact Strin	GEN 1 350 mm	Last Strip	0.00 V 🖻	N N	100
a subtrain 1	\$2V.1V 4750	GEM 1	400.00 V 🛨	- 0841	-	operat and man	GEM 1 top	0.00 V 🛨	start Ramp	stop Han
insfer Field 1	3750.00 V/cm				GEM 1 -	GEM 2 2.00 mm	GEM 1 bottom	0.00 V 🛨	Ramp Speed	2.00 V/s
and at Field 2	2750.00 1//20	GEM 2	365.00 V 🛨	- GEM 2	CEN 2.	200 g L 200 mm	GEM 2 top	0.00 V 🛨	(Drift)	15.00 V/s
nates new z	3750.00 With	GEM 3	320 00 V 7	GEME	-	GEM al 200 mm	GEM 2 bottom	0.00 V 🛨	Trip Limit (top)	0.0800 mA
lection Field	3750.00 V/cm				GEM 3	- Pads 4.00 mm	GEM 3 top	0.00 V	(bottom)	0.4000 mA
				Finds	_	and the second	GEM 3 bottom	0.00 V 🛨	(Drift + LS)	0.2400 mA
			1			- C 06-00 3			and the second	and the second sec
25 2 15 1 0 5 20:19	³⁹ 20:21:19 ₂₀):22 ⁻⁵⁹ 20:24:39	voltage [V]	20:19 ⁻³⁹ 20:21:	19 _{20:22:59} 20:24	60 Current	20:19:39,20:21:19,20	22-5920-24-39	GEM3 top GEM3 top Cotabase 'si succesfully of Latest ramp from file Beep Databas	GEM3 bottor owtpc' onnected settings loade
25 15 1 05 0 20.19	³⁹ 20:21:1921 Time [h:n):22 ⁻⁵⁹ 20:24:39	voltage I	20:19:39 20:21: Time [¹⁹ 20:2 ^{2:59} 20:2 ⁴ h:m:s]	Current Cu Imaa) [[[]] Current Cu []] [] [] [] [] [] [] [] [] [20:19:3920.21:1920	22:59 _{20:24:39}	GEM3 top GEM3 top Contabase 'si succesfully ci Latest ramp from file Beep Databas Daemor	GEM3 botto owtpc' onnected settings loade
25 2 15 1 0 5 0 20.19 20.19	²³⁹ 20:21:19 ₂₁ Time [h:n	0:22:59 20:24:35 n:s] Meas Voltage	max Current	20:19:39 20:21: Time [Meas. Current	19 20:22:59 20:24 h:m:s] Error Ramp Spe	Current Curren	20:19:39 ₂₀ :21:19 ₂₀ 20:19:39 ₂₀ :21:19 ₂₀ 20:19:39 ₂₀ :21:19 ₂₀ All Chann	.22:5920:24:39 .22:5920:24:39 .22:5920:24:39 els	GEM3 top GEM3 top Cotabase 'si succesfully co datest ramp from file Beep o Database Database Daemor	GEM3 botto owtpc' onnected settings loade anabled F se Stop Restart
225 2 15 15 05 0 20:19 20:19 Channel Status	239 _{20:21:19} ₂₀ Time [h:n Voltage [V] 0	0:22:59 20:24:35 n: 5] Meas Voltage [V] 3:29183	max Current [mA]	20:19:39 20:21: Time [Meas Current [mA] 5 0.000001	19 20:22:59 20:24 (h:m:s] Error Ramp Spe tatus (V/s)	Current Curren	20:19:39_20:21:19_20 20:19:39_20:21:19_20 20:19:39_20:21:19_20 All Chann Set common Voltage.		GEM3 top Otabase 'si succestilly ci datest ramp from file Database Database Database Database Database Database Database	GEM3 botto owtpc* sonnected settings loade mabled 17 se <u>Stop</u> Restart D12 16-43 30
25 2 15 0 5 0 20.19 20.19 Channel Status tatstrap	²³⁹ 20:21:19 ₂₀ Time [h:n Voltage <u>IVI</u> <u>0</u>	0:22:59 20:24:35 n: 5] Meas Voltage [V] 3:29183 0:932201	max Current [mA] 0.24	20:19:39 20:21: Time [Meas. Current [ma] 5 0.000001 0.000001	19 20:22:59 20:24 [h:m:s] Error Ramp Spe tatus [V/s]	Current Curren	20:19:39_20:21:19_20 20:19:39_20:21:19_20 20:19:39_20:21:19_20 All Chann Set common Voltage		GEM3 top GEM3 top Cotabase 's' successfully ci -tatest ramp from file Beep Databas Beemon 18 01.24 Exit this	GEM3 botto ownected settings loade mabled P set <u>Stop</u> Restart D12 16-43 30 Programm
25 2 15 0 5 0 20 19 20 19 20 19 Channel Stabus rift a Stop Miltop	139 20:21:19 20 Time [h:n Voltage <u>IVI</u> 0 0 0	0.92.59 0.72.59 0.72.59 0.72.59 0.932201 0.124522	Trax Current [mAl 0.24 0.08	20:19-39-20:21: Time [Meas. Current [mA] 5 0.000001 0.000001 0.000001	19 20: 22:59 20: 24 [h:m:s] Error Ramp Spe tatus [V/s]	Comparing Compar	20:19:39_20:21:19_20 20:19:39_20:21:19_20 20:19:39_20:21:19_20 All Cham Set common Woltage Set max: Current Set max: Current	-,22:59 ₂₀ ,24:39 -,22:59 ₂₀ ,24:39 els 0.00 ∨ ± 5.00 V/5 ±	GEM3 top Octabase 'si uccestally ci datest ramp from file Database Database Isolo 12 Exit this Single	GEM3 botto owtpc' sonnected settings loade mabled P se Stop Restart D12 16-43 30 Frogramm
25 2 15 15 1 20.19 Channel Status at Strap 4 1 bottom	139 20:21:19 21 Time [h:n Voltage 1V1 0 0 0 0 0	0:22:59 20:24:35 n:s] [V] 3:29183 0:932201 0:124522 0	max. Current [mA] 0.24 0.24 0.24 0.24 0.24 0.24	20:19-39 20:21- Time [Meas. Current ImA] 0.000001 0.000001 0.000001 0.000001	19 20: 22:59 20: 24 [h:m:s] Error Ramp Spe Itatus (V/s)	ed remaining Ramp Time [1]	20:19:39_20:21:19_20 20:19:39_20:21:19_20 20:19:39_20:21:19_20 All Chann Set common Voltage Set max Current Set Ramp Speed Overviolate Limit		GEM3 top Outabase 'sl Succesfully or Latest ramp from file Database 16 01 24 Exit this Single	GEM3 botto owtpc: somected settings loads anabled (7 se <u>Stop</u> Restart 2012 16:43:30 : Programm Channel
2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	Voltage 1V1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.22:59 20:24:35 n:s] Meas Voltage [V] 3.29183 0.932201 0.124522 0.145041 0.44041	max Current [mA] 0.24 0.24 0.24 0.08 0.4	20:19:39 20:21: 20:19:39 20:21: Time [Meas: Current [mA] 5 0:000011 0:000010 0:000001 0:000001	19 20:22:59 20:24 [h:m:s] Error Ramp Spe Natus [V/8]	Construction of the second sec	20:19:39_20:21:19_20 20:19:39_20:21:19_20 All Chann Set common Voltage Set Mamp Speed Covervoltage Limit Covervoltage Limit	22:59 _{20:2} 4:39 .22:59 _{20:2} 4:39 els 0.00V = 5.00 V/5 5.00 V/5 1.000 mA = 5.00 V/5 1.000 mA = 5.000 V/5 1.0000 mA = 5.000 V/5 1.0000 mA = 5.000 V/5 1.0000 mA = 5.000 V/5 1.0000 mA = 5.0000 mA = 5.00000 mA = 5.0000 mA = 5.0000 mA = 5.00000 mA = 5.00000 mA = 5.000000000000000000000000000000000000	GRM3 top Octabase 'si Successful you from file Database Database Database 18 01.2 Exit this Single Set Current	GEM3 botto owtpc' settings loade settings loade restart 2012 16:43:00 channel 0 00000 m
23 2 15 15 05 0 20.19 20.19 Channel Status reft 5 Status M 1 top M 1 bottom M 2 top M 2 bottom M 2 top	Voltage	0:22:59 20:24:36 n:s] Meas Voltage [V] 0:124522 0:0124522 0:149041 0:149971	max Current [mA] 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	20:19-39 20:21: Time Meas. Current [mA] = 0.000001 0.000001 0.000001 0.000001 0.000001	19 20: 22:59 20: 24 (h:m:s] Error Ramp Spe Ratus [V/4]	Comparing Compar	20:19:39_20:21:19_20 20:19:39_20:21:19_20 20:19:39_20:21:19_20 All Cham Set common Woltage Set max: Current Set Ramp Speed Civervoltage Limit Civervoltage Limit		GRM3 top Outabase 'sl succesfully or Latest rate Database Database Database Database Database Solt zi Exit this Single Set Current Set Voltage	GEM3 botto owtpc' somected settings load settings load Restart 512 16:43:30 Programm Channel 0 0000 mk

Abbildung C.8: Registerkarte 'TPC - HV' zur Steuerung und Überwachung der Spannungen, Ströme und Rampgeschwindigkeiten der GEM-TPC.

TPC und die weiteren Sensoren vollständig deaktiviert. Hierdurch werden keine aktuellen Parameter aus der Datenbank abgefragt und es sind lediglich das Logbuch und die alten Werte zugänglich.

TPC - Hochspannungseinstellungen

Über die Registerkarte 'TPC - HV' (Abbildung C.8) lassen sich die Spannungen, Ströme und Rampgeschwindigkeiten für die GEM-Folien und die Driftkathode überwachen und steuern.

Im oberen Drittel, rot markiert in Abbildung C.8, können die Stärke der elektrischen Felder (Fields, in Volt/Zentimeter), die Spannung zwischen Ober- und Unterseite der drei GEM-Folien (Voltages, in Volt) und die Abstände innerhalb der TPC (Distances, in Millimeter) sowie jeweils ein Skalierungsfaktor (Scale Factors, in %) für die GEMund die Driftspannungen über numerische Eingabefelder vom Typ QDoubleSpinBox angegeben werden. Über die Schaltflächen 'save Settings' und 'load Settings' ist es möglich, diese Werte zusammen mit den eingestellten Rampgeschwindigkeiten und maximalen Strömen (zu finden im Abschnitt Ramp Automatation) in einer Textdatei mit der Endung '.tpcset' zu speichern oder aus solch einer Datei zu laden. Somit lässt sich schnell zwischen verschiedenen Feldeinstellungen für die TPC wechseln.

Durch Drücken der 'Calculate-Potentials'-Schaltfläche oder automatisch bei jeder Änderung der eingestellten Werte werden die resultierenden Spannungen für die entsprechenden Kanäle des MPOD-Crates berechnet und im Abschnitt resulting Potentials für jeden Kanal angezeigt. Die Berechnung erfolgt über

$U_{GEM3\ bottom}$	=	$D_{Pad-GEM3} \cdot I$	F_{Coll}	$ection \cdot SF_{GEMs}$
$U_{GEM3 \ top}$	=	$U_{GEM3 \ bottom}$	+	$U_{GEM3} \cdot SF_{GEMs}$
$U_{GEM2 \ bottom}$	=	$U_{GEM3 \ top}$	+	$D_{GEM3-GEM2} \cdot F_{Tranfer\ 1} \cdot SF_{GEMs}$
$U_{GEM2 \ top}$	=	$U_{GEM2 \ bottom}$	+	$U_{GEM2} \cdot SF_{GEMs}$
$U_{GEM1\ bottom}$	=	$U_{GEM2 \ top}$	+	$D_{GEM2-GEM1} \cdot F_{Tranfer\ 2} \cdot SF_{GEMs}$
$U_{GEM1 \ top}$	=	$U_{GEM1 \ bottom}$	+	$U_{GEM1} \cdot SF_{GEMs}$
$U_{Last \ Strip}$	=	$U_{GEM1 \ top}$	+	$D_{GEM1-LS} \cdot F_{Last \ Strip} \cdot SF_{Drift}$
U_{Drift}	=	$U_{Last \ Strip}$	+	$(D_{GEM1-DRIFT} - D_{GEM1-LS}) \cdot F_{Drift} \cdot SF_{Drift}$.

Hierbei bezeichnet U die Spannung, F die Stärke des elektrischen Feldes, D den Abstand, beispielsweise zwischen zwei Folien, und SF den Skalierungsfaktor. Diese zu setzenden Spannungen sind bei Bedarf noch veränderbar, bevor sie mit Hilfe der Schaltfläche 'start Ramp' aus den Eingabefeldern ausgelesen und zusammen mit den eingestellten Rampgeschwindigkeiten und maximalen Strömen in die QUEUE-Tabelle geschrieben werden. Alle Kanäle werden zeitgleich eingeschaltet, die akustische Warnung bei Fehlern über das Kontrollkästchen 'Beep enabled' aktiviert und die verwendeten Werte in der Datei latestTPCSettings.tpcset abgespeichert. Diese zuletzt gesetzten Werte können somit auch in anderen Instanzen der SlowControl-GUI übernommen werden. Dies geschieht entweder manuell über die Schaltfläche 'load latest Settings' oder automatisch, sofern das Kontrollkästchen 'auto' neben dieser Schaltfläche gesetzt ist. Die Schaltfläche 'stop Ramp' schreibt die aktuell gemessenen Spannungen als Sollwert für jeden Kanal in die QUEUE-Tabelle. Hierdurch wird ein Hoch- beziehungsweise Herunterfahren der Spannungen unterbrochen, ohne dass die Kanäle ganz ausgeschaltet werden. Ob das MPOD-Crate gegenwärtig die Spannungen hoch oder herunter fährt, wird über eine gelbe LED zwischen dem beiden 'Ramp'-Schaltflächen signalisiert.

Die gemessenen Drift- und die Last-Strip-Spannungen der letzten 15 Minuten werden im linken der beiden größeren Graphen in der Mitte der Registerkarte dargestellt, die sechs Spannungen an den GEM-Folien im unmittelbar daneben liegenden Graphen. In den beiden kleineren Graphen sind die entsprechenden Ströme aufgetragen. Die Legende am rechten Rand gibt Auskunft darüber, welche Kurve welchem Kanal zugeordnet ist. Bei allen Graphen wird die Skalierung der *y*-Achse automatisch an die jeweils größten und kleinsten aufgetragenen Werte angepasst. Die *x*-Achsen sind auf die Darstellung der zugehörigen Uhrzeit (hh::mm::s) formatiert.

In dem Textfeld im Abschnitt rechts neben den Graphen werden alle vorgenommenen Änderungen, aufgetretenen Fehler oder sonstigen Informationen, welche die TPC betreffen, seit dem Start dieser SlowControl-GUI-Instanz aufgelistet. Darunter befindet sich das Kontrollkästchen 'Beep enabled', mit dem sich die akustische Warnung durch einen Systemton beim Auftreten eines Fehlers aktivieren lässt. Über zwei LEDs wird zudem darüber informiert, ob die Verbindung zur Datenbank besteht und ob der Daemon innerhalb der letzten Sekunden Werte in der Datenbank aktualisiert hat und folglich noch ausgeführt wird. Datum und Uhrzeit der letzten Aktualisierung werden als Text angezeigt. Über die Schaltflächen 'Stop' und 'Restart' ist es möglich, den Daemon zu beenden oder neu zu starten. Der Button 'Exit this Programm' beendet die GUI.

Im unteren Drittel der Registerkarte sind die Sollspannungen (Voltage), die gemessenen Spannungen (Meas. Voltage), die maximalen Ströme (max. Current), die gemessenen
Ströme (Meas. Current) und die eingestellten Rampgeschwindigkeiten für alle TPC-Kanäle wiedergegeben. Beim Rampen der Spannungen wird die verbleibende Zeit bis zum Erreichen der Sollspannung in der Spalte remaining Ramp Time angezeigt, positiv beim Hoch- und negativ beim Herunterfahren. Die LEDs in der ersten Spalte (Channel Status) illustrieren in grün, ob der zugehörige Kanal angeschaltet und fehlerfrei ist. Die kleinere der beiden LEDs in der Spalte Error Status gibt Auskunft darüber, ob die KILL-Option für diesen Kanal angeschaltet ist und dieser somit bei einem zu hohen Strom hardwareseitig direkt abgeschaltet wird, ohne die Spannung langsam herunter zu fahren (siehe Abschnitt 4.1.1). Ein solcher Trip wird durch die linke, größere LED in dieser Spalte angezeigt.

Zur Sicherheit lassen sich nach einem Trip die betroffenen Kanäle nicht direkt wieder anschalten. Die Fehler müssen zunächst über den Button 'Error Reset' im Abschnitt All Channels zurückgesetzt werden.

Um einen Trip zu vermeiden, können eine Überspannungs- und eine Überstromschutzfunktion über entsprechende Kontrollkästchen aktiviert und angepasst werden. Die Überspannungsschutzfunktion ('Overvoltage Limit') soll insbesondere die GEM-Folien vor nicht beabsichtigten Spannungserhöhungen schützen. Hierzu wird für jeden Kanal der Mittelwert der jeweils 20 letzten Messwerte berechnet. Ist dessen Abweichung vom Sollwert zu groß, wird eine Fehlermeldung ausgegeben und alle Spannungen mit der eingestellten Rampgeschwindigkeit heruntergefahren. Die erlaubte Toleranz der Abweichung lässt sich über das Eingabefeld als Prozentanteil der Sollspannung angeben.

Die Überstromschutzfunktion ('Overcurrent Limit') berechnet zwei Mittelwerte und vergleicht diese miteinander: Ist der Mittelwert der letzten zehn Messwerte größer als der mit dem im Eingabefeld angegebenen Faktor multiplizierte Mittelwert 20 Sekunden zuvor, werden alle Kanäle ausgeschaltet und eine Fehlermeldung ausgegeben.

Während des Rampens und bei Spannungen unter 100 V können beide Funktionen zwar aktiviert werden, eine Betrachtung der Mittelwerte und deren Abweichung vom Sollwert würde jedoch keine brauchbaren Ergebnisse bringen und wird daher nicht durchgeführt.

Die weiteren Eingabefelder im Abschnitt All Channels ermöglichen die Einstellung eines gemeinsamen Wertes für die Spannungen ('Set common Voltage'), die Ströme ('Set max. Current') oder die Rampgeschwindigkeiten ('Set Ramp Speed') bei allen Kanälen. Über die Schaltflächen 'On' und 'Off' ist es möglich, alle Kanäle gleichzeitig an- oder auszuschalten. Diese Parameter lassen sich im Abschnitt Single Channel oder auf der Registerkarte 'TPC - Special Ops' auch für jeden Kanal separat setzen. Die Rampgeschwindigkeit kann nur für die Driftspannung separat eingestellt werden, da für alle restlichen Kanäle dasselbe ISEC-Hochspannungsmodul verwendet wird und dieses bauartbedingt nur eine Rampgeschwindigkeit für alle Kanäle zulässt.

TPC - Graphen

Die 16 Graphen auf der Registerkarte 'TPC – Graphs' (Abbildung C.9) zeigen für jeden der acht Hochspannungskanäle der TPC die gemessenen Spannungen und Ströme in einem separaten Graphen. Die y-Achsen der Graphen werden automatisch skaliert, so dass kleine Änderungen an den Spannungen oder Strömen im Verlauf der dargestellten 15 Minuten leichter zu erkennen sind.

Abbildung C.9: Die Registerkarte 'TPC - Graphs' zeigt den Verlauf der acht gemessenen Spannungen (rot) und Ströme (grün) an der GEM-TPC für die letzten 15 Minuten.

TPC - Spezielle Funktionen

Auf der Registerkarte 'TPC - Special Ops' (Abbildung C.10) besteht die Möglichkeit, die Spannungen und Ströme für alle TPC-Kanäle separat einzustellen und diese einzeln an- oder auszuschalten. Die angezeigten Mess- und Sollwerte sowie die LED-Zustände sind identisch zu den Werten auf der Registerkarte 'TPC - HV'. Um die Einstellung neuer Werte zu erleichtern, sind die Sollwerte mit Hilfe des Buttons 'refresh values' in die Eingabefelder übertragbar.

Die einzelnen Einstellungen lassen sich über die Schaltflächen 'save Settings' als Textdatei mit der Endung .tpcscs abspeichern und mit 'load Settings' aus einer solchen Datei in die Eingabefelder laden.

Die verwendeten GEM-Folien sind auf einer Seite in acht Segmente unterteilt, so dass eine GEM-Folie auch bei beschädigten Sektoren benutzbar bleibt. Hierzu müssen jedoch die Spannungen an der Oberseite dieser GEM-Folie an die aufgrund der Beschädigung veränderten Widerstände angepasst werden. Diese Anpassung kann im Abschnitt 'Dead Sectors Count' durchgeführt werden, indem für die entsprechende GEM-Folie ein zusätzlicher Faktor gesetzt wird. Dieser Faktor fließt bei aktivierten Kontrollkästchen mit in die Berechnung der Spannungen $U_{GEM1 \ top}$, $U_{GEM2 \ top}$ beziehungsweise $U_{GEM3 \ top}$ ein und lässt sich über

$$Faktor = \frac{10 M\Omega + R_{GEM}}{(n+1) \cdot 10 M\Omega + R_{GEM}}$$

berechnen. n gibt die Anzahl der defekten Sektoren und R_{GEM} den Widerstand der defekten GEM-Folie an. Diese Funktion sollte jedoch nur mit größter Vorsicht verwen-

ange chenner.	Setting Ch	s annel s	itatus	Voltage Set	Point [V]	1	leas. Voltage	max. Current =	Trip Limit [mA]		Meas. Current	Error		Ramp Speed (V/s)
Drift	-	On On	Off	010	0.00 V 크	set [614778	0.24	0 2400 mA 🛨	set	[mA] 0.000003	Status	-50	50.00 V/s 🛨 set
ast Strip		On	off	0	0.00 V 🛨	set	0.932201	1	1.0000 mA 🛨	set	0.000013		60	
SEM 1 top	-	On	Off	0	0.00 V 📥	set	0.123408	1	1 0000 mA 🛨	set	0.000001		60	It is not possible for the
SEM 1 bottom		On	Off	0	0.00 V 📥	set [0	1	1.0000 mA 🛨	set	0.000041		60	ramp speed sepeartly
SEM 2 top		On	Off	0	0.00 V 🖻	set	1 4 9 0 4 1	1	1 0000 mA 🚍	set	0.000001		60	one value for all channels is allowed
EM 2 bottom	-	On	Off	0	0.00 V 🛨	set	0.161474	1	1.0000 mA 🛨	set	0.000001		60	channels is allowed.
EM 3 top		On	Off	0	0.00 V 🛨	set	0	1	1.0000 mA 🛨	set	0.000030		60	60.00 V/s ±
SEM 3 bottom		On	off	0	0.00 V 🛨	set	1.72015	1	1.0000 mA 🛨	set	0.000019		60	set
GEM 2 F additional fact	has de or: [has de	ead set	ctor(s) 512 -	-Thp Time	ne for all chann	els [ms] Set								
Calculate fact	or as r x) / (2	estista *10 + oken G	nce ratio: x) EM sector										Databas	ie 😑

Abbildung C.10: Auf der Registerkarte 'TPC - Special Ops' können spezielle Einstellungen für die TPC-Hochspannungen vorgenommen werden.

det werden, da die GEM-Folien durch falsche Spannungen vollständig zerstört werden könnten.

Wie in Kapitel 4.1.1 beschrieben, können die beiden Hochspannungsmodule über einen Interlock-Anschluss miteinander verbunden werden, damit bei einem Trip eine gemeinsame Notfallabschaltung stattfindet. Ist diese Interlock-Verbindung getrennt, sollte dies im Abschnitt 'Interlock Divided' angegeben werden. Im Falle eines Trips einer der Spannungen an den GEM-Folien wird die Driftspannung bei aktiviertem Kontrollkästchen auf einen unkritischen Wert heruntergefahren, jedoch nicht komplett ausgeschaltet. Dieser unkritische Wert kann über das Eingabefeld definiert werden und ergibt sich aus der angegebenen Prozentzahl und der Drift-Sollspannung.

Die Zeit, die zwischen dem Feststellen eines zu hohen Stroms und der hardwareseitigen Notabschaltung der Spannungen liegen soll, kann im Abschnitt 'Trip Time' eingestellt werden. Sie sollte jedoch nur in begründeten Fällen von 0ms verschieden sein, um weitere Beschädigungen zu vermeiden.

Das Textfeld im Abschnitt auf der rechten Seite zeigt die gleichen Nachrichten an, wie das Textfeld auf der 'TPC - HV'-Registerkarte. Die LEDs darunter geben Auskunft über den Verbindungsstatus zur Datenbank, den Status des Daemons und den Status des MPOD-Crates. Über die Schaltfläche neben der MPOD-Crate-Anzeige kann das gesamte Crate aus- beziehungsweise angeschaltet werden. Zur Sicherheit muss diese Aktion in einem Pop-up-Fenster nochmals bestätigt werden.

2823 2718 0 2718 0 2713 2713	
test resistors 27 42 0 31 -0 33 0 27 42 2 (Values in *C) 28 16 27 28 16 27 59 28 08 28 08	54 56 57 57 57 57 57 57 57 57 57 57
	Database 'slowtpc' succesfully connected Daemon
	27.42 2 (Values in *C) 27. 28.16 28.08 27.59 28.08

Abbildung C.11: Die Einstellungen des Unichillers können auf der Registerkarte 'Sensors' vorgenommen werden (links oben). Zudem sind hier die Temperaturen auf Ausleseebene (rechts oben) und die Werte der Sensoren auf dem Media-Flansch (links unten) dargestellt.

Weitere Sensoren

Die ausgelesenen Werte des Unichillers sind auf der Registerkarte 'Sensors' im Abschnitt 'Unichiller' oben links angezeigt. Der Status wird anhand einer LED und einer genaueren Beschreibung im Textfeld darunter wiedergegeben. Mit der Schaltfläche 'Set new SetPoint' kann der im Eingabefeld eingestellte Wert als neuer Sollwert (Temperature SetPoint) gesetzt werden. Die beiden anderen Buttons ('Turn ON', 'Turn OFF') schalten die Temperierfunktion des Geräts an beziehungsweise aus. Die Temperatur im Gerät (Temperature Intern) und der Ist-Wert am Messfühler

(Temperature Extern) werden zudem als Graph dargestellt. Über die Beschriftung in der Legende kann gesteuert werden, welcher der Graphen angezeigt wird.

Im Abschnitt rechts oben werden die zwölf auf der Ausleseebene gemessenen Temperaturen in einem gemeinsamen Graphen und entsprechend der Position der Temperaturfühler auf der Ausleseebene wiedergegeben. Die zugehörigen LEDs weisen in rot auf eine zu hohe (> 40 °C) oder zu niedrige (< 15 °C) Temperatur hin. Im Graphen kann die Darstellung der einzelnen Temperaturfühler über die Legende gesteuert werden. Links unten, im Abschnitt Sensors Media Flange, werden die Werte der Sensoren auf dem Media-Flansch ausgegeben. Über die LEDs wird auf eine zu große Diskrepanz zwischen den zusammengehörigen IN- und OUT-Werten hingewiesen.

Das Textfeld auf der rechten Seite zeigt die für die auf dieser Registerkarte dargestellten Sensoren vorgenommenen Änderungen, aufgetretenen Fehler oder sonstigen Informationen. Die Kontrollkästchen unterhalb der LEDs für die Datenbankverbindung und den

Event nr	Log nr	Name	Comment	Run nr	Start time	Run type	Trigge			-		
1020	1830	Auto Logging	Krypton IBF!!!!	4597	11/10/12 8:02 PM	Krypton	Random -	Run n	0	-	clear	
1019	1828	Auto Logging	Krypton IBF!!!!	4596	11/10/12 7:55 PM	Krypton	Random	Start tin	ne: 2013-03-15	17:22	Г Веер	
1019	1826	Auto Logging	Krypton IBF	4595	11/10/12 7 37 PM	Krypton	Bandom	Run tvc	ie		Physics	*
1018	1825	Auto Logging	Krypton 84%	4594	11/10/12 7:37 PM	Krypton	Random					-
1017	1924	Auto Logging	Krypton 84%	4593	11/10/12 7:30 PM	Krypton	Random	Trigge			Beam	1
1017	1823	Auto Logging	Krypton 84%	4592	11/10/12 7:23 PM	Krypton	Random	# Spill	5:			
1016	1822	Auto Logging	Krypton 84%	4591	11/10/12 7:14 PM	Krypton	Random	Comme	nt :			-
1016	1820	Auto Logging	Krypton 84%	4590	11/10/12 6:10 PM	Krypton	Random					
51012	1819	Auto Logging	deuteron 84	4589	11/10/12 6:10 PM	Physics	Beam					
1011	1818	Auto Logging	deuteron 84	4588	11/10/12 5:53 PM	Physics	Beam					
1009	1817	Auto Logging	deuteron 84	4587	11/10/12 5:31 PM	Physics	Beam					
51009	1816	Auto Logging	deuteron 84	4587	11/10/12 5:31 PM	Physics	Beam	E Avio	Save logoons or	oj sesercien o	opaown opaoin	
51009	1814	Auto Logging	deuteron 84	4586	11/10/12 5:18 PM	Physics	Beam	delete	entry 1	A NEW ANTO	save cha	nges
1009	1813	Auto Logging	deuteron 84	4585	11/10/12 5:18 PM	Physics	Beam			re recer enay		-
1008	1811	Auto Logging	deuteron 84	4584	11/10/12 5:07 PM	Physics	Beam	Errors				
1007	1810	Auto Logging	deuteron 84	4583	11/10/12 4 51 PM	Physics	Beam	Nr T	Time	Device	Command	L-
	1809	Auto Logging	deuteron 94	4583	11/10/12 4:51 PM	Physics	Beam	4005	11/20/12 4:05 PM	MPOD	SystemStatus	0
1007	1808	Auto Logging	deuteron 84	4582	11/10/12 4:42 PM	Physics	Beam	4004	11/10/12 9:04 PM	MPOD (GUI)	OverVoltage	30
1007		Auto Logging	deuteron 84	4581	11/10/12 4:35 PM	Physics	Beam	4003	11/10/12 9:04 PM	MPOD (GUI)	OverVoltage	4(
1007 1006	1806		E a construction of the second s	4580	11/10/12 4:31 PM	Physics	Beam.	4002	11/10/12 7:48 PM	MPOD (GUI)	OverVoltage	30
51007 51006 51006 51005	1806 1805	Auto Logging	deuteron 84	4,00				4001	11/10/12 7 43 PM	MPOD (GUI)	OverVoltage	31
\$1007 \$1006 \$1006 \$1005 \$1005	1806 1805 1804	Auto Logging Auto Logging	deuteron 84 deuteron 84	4579	11/10/12 4 24 PM	Physics	Beam			Int 00 1000	overvollage	-
1007 1006 2006 1005 1005	1806 1805 1804 1802	Auto Logging Auto Logging Auto Logging	deuteron 84 deuteron 84 deuteron 84	4579 4578	11/10/12 4 24 PM 11/10/12 4 15 PM	Physics Physics	Beam Beam	4000	11/10/12 2:36 PM	MPOD (GUI)	ÖverVoltage	4(

Abbildung C.12: Auf der 'Logbook'-Registerkarte können neue Einträge zum Logbuch hinzugefügt (rechts) sowie alte Logbuch-Einträge (links) und vom Daemon erkannte Fehler (rechts unten) untersucht werden.

Daemon geben darüber Auskunft, ob die Auslese der einzelnen Hardware-Komponenten in der Tabelle HARDWARE aktiviert ist. Eine Änderung des Zustandes der Kontrollkästchen wird direkt in die Datenbank geschrieben, ohne jedoch den Daemon neu zu starten. Der Neustart muss manuell über die Schaltfläche **Restart** durchgeführt werden, damit die Änderungen wirksam werden.

Logbuch

Der Inhalt des elektronischen Logbuchs in der Datenbanktabelle LOGBOOK wird auf der Registerkarte 'Logbook' in einem QTableView ausgegeben. Diese Objektklasse bietet die Möglichkeit, eine Datenbanktabelle direkt mit einem erweiterten Textfeld zu verknüpfen, so dass alle gewünschten Spalten und Zeilen als editierbare Tabelle angezeigt werden. Die Sortierung erfolgt beim Programmstart absteigend nach der Spalte Event Nr, kann jedoch über die Überschrift der Spalten geändert werden.

Mit den Schaltflächen unterhalb des Textfeldes können die Einträge gefiltert werden. Über den Button 'show only runs' werden alle Kommentar-Einträge und über 'show only comments' alle Run-Einträge ausgeblendet. Mit der Schaltfläche 'search' werden nur solche Einträge angezeigt, bei denen die im Textfeld eingegebene Zeichenkette in der Comment-Spalte vorkommt. Mit dem Button 'show all entries' werden die Filterungen aufgehoben und alle Einträge wieder angezeigt.

Eine Ausgabe der Einträge des Logbuchs als Textdatei ist über die Registerkarte 'Ancient Values' möglich.

Mit den Eingabefeldern auf der rechten Seite können neue Logbucheinträge erstellt und

Abbildung C.13: Registerkarte 'Ancient Values' zum Anzeigen der in der Datenbank gespeicherten Werte.

über die Schaltfäche 'save NEW entry' gespeichert werden. Durch das Anwählen einer Tabellenzeile im Textfeld wird deren Inhalt in den zugehörigen Eingabefeldern angezeigt und es können Änderungen vorgenommen ('save changes') oder der Eintrag aus dem Logbuch gelöscht ('delete entry') werden. Der Button 'clear' löscht den Inhalt aller Eingabefelder.

Wurde die SlowControl-GUI mit der Option -1 gestartet, lässt sich das Kontrollkästchen 'Auto save ...' zur automatischen Erzeugung eines neuen Logbucheintrags aktivieren. In regelmäßigen Abständen wird dann geprüft, ob die Nummer der zur Zeit weggeschriebenen Datendatei größer ist als die zuletzt gespeicherte Run-Nummer im Logbuch. Ist dies der Fall, wird ein neuer Logbucheintrag angelegt, der die Werte für Run-Typ und Trigger aus den Pull-down-Menüs, den Kommentar des vorherigen Eintrags und die aktuelle Uhrzeit als Startzeit übernimmt.

Die QTableView rechts unten ist mit der Tabelle ERROR_LIST verknüpft und zeigt die vom Daemon erkannten Fehler. Zusätzliche Informationen zu einem Fehler lassen sich in einem Pop-up-Fenster anzeigen, indem die entsprechende Zeile in der Tabelle ausgewählt wird.

Alte Werte

Alle Werte, die von der SlowControl in der Datenbank abgespeichert worden sind, lassen sich über die Registerkarte 'Ancient Values' (Abbildung C.13) auslesen und sowohl graphisch als auch tabellarisch darstellen. Hierzu ist es zunächst notwendig, die Einheit auszuwählen, von welcher die Werte angezeigt werden sollen. Im Aufklappmenü 'Device' stehen die Möglichkeiten 'MPOD (TPC HV)', 'Unichiller (Cooling)',

Abbildung C.14: Mit Hilfe der SlowControl-GUI erzeugte Ausgabe der an der TPC gemessenen Spannungen in einem gemeinsamen Graphen.

'Backplane Temperature Sensors', 'Sensors Media Flange' und 'Logbook' zur Auswahl.

Danach werden in der Datenbank automatisch die dazugehörigen Auslesewerte und -kanäle ermittelt und in den beiden Aufklappmenüs 'Command' und 'Channels' angezeigt. Weiterhin lässt sich mit 'Begin' und 'End' der Zeitraum eingrenzen, aus dem die Daten ausgegeben werden sollen.

Mit der Schaltfläche 'get desired values' werden die gewählten Werte aus der Datenbank gelesen und als Tabelle und Graph dargestellt. Die in der Tabelle ausgegebenen Werte (Ereignisnummer, Auslesezeit, Befehl, Kanalnummer und Messwert) lassen sich über die Schaltfläche 'save table to file' als Textdatei abspeichern.

Der Graph auf der rechten Seite der Registerkarte zeigt die ausgelesenen Messwerte, aufgetragen gegen die Auslesezeit. Mit der Maus kann ein gewählter Bereich des Graphen vergrößert werden. Ein Rechtsklick macht einen Vergrößerungsschritt wieder rückgängig.

In vielen Fällen ist es nützlich, die Messwerte verschiedener Kanäle direkt miteinander vergleichen zu können. Mit der Schaltfläche 'add channel to graph' werden hierzu die Messwerte für die aktuell eingestellten Parameter (Befehl, Kanal, Start- und Endzeitpunkt) dem Graphen hinzugefügt (siehe Abbildung C.14) und diese zuletzt hinzugefügten Werte in der Tabelle angezeigt. Der aktuell angezeigte Graph kann mit der Schaltfläche 'save graph to file' über ein neues Fenster in den Formaten PDF oder PS abgespeichert werden.

Settings		a series and a series of the s	an area I and					resulting Potentials		Ramp Automation	
Fields		Vo	Itages	load Settings	save Set	tings Dis	tances	Calculate P	otentials	Scale Factors GEM Stack	50.0 % #
Drift Field	250,00 V/c	m 🚍		Didt	1	Drift - GEM	1 77.00 m	m 코 Drift Last Strip	0,00 V 크 0.00 V 크	Drift Field	50.0 % 랖
Last Strip Field	250.00 V/c	m ±		- Cont	-	Last Strip - Sk	irt 1.10 m	m 🛨 Skirt	0.00 V 🛨	start Ramp	stop Ramp
Transfer Field 1	3730.00 V/c	M H GEM 1	400,00 V ±	GEM 2	-	Skirt - GEN	1 2.00 m	GEM 1 top	0.00 V +	Ramp Speed	10.00 V/s 🛨
Transfer Field 2	1730.00 V/c	GEM 2	365.00 V 🕂	GEM 2	-	GEM 1 - GEN	2.00 m	m de GEM 2 top	0.00 V 1	(Doft)	10.00 V/s 🛨
and a second second	3730.00 4/0	GEM 3	320.00 V -	CORNER .	-	GEM 2 - GEN	13 2.00 m	m 🛨 GEM 2 bottom	0.00 V 📥	Trip Limit (top)	0.0050 mA 🛨
Collection Field	3730.00 V/c		320.00 V .T		-	GEM 3 - Pa	15 2.00 m	m = GEM 3 top	0.00 V 📩	(bottom)	0.0050 mA 🚖
1	3130,00 1/0			- Etads	-			GEM 3 bottom	0.00 V 🗄	(Drift + LS)	0.0350 mA 🚖
02 0.15 0.15 0.05 0.05 0.05 0.05 0.05 0.05	1 _{13;37;3113;}	39:1113:40:51	Voltage [V 0 voltage [V 0 2 70 0 2 70 1 4 0 1 1 4 0 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	3:35:51 13:37:31 Time	13:39:1 [h:m:	1 _{13:40:51} s]	Current Curren [ma] [ma] 0000 0000 90400 000 000 0000 00400 000	13.35.51 13.37.31 13.39.1	1 _{13:40:51}	 Skrt GEM1 bottom GEM2 bottom Database 'slo succesfully cor -Latest ramp s from file Beep en 	GEM1 top GEM2 top GEM3 top GEM3 top mected ettings loaded
	Time [h	:m:sj						And And And			
Channel Status	Voltage	Meas. Voltage	max Current [mA]	Meas. Current [mA]	Error Status	Ramp Speed [V/s]	remaining Ramp Time [s]	All Channe	ls	Daemon	Stop
Channel Status Drift 🙀	Voltage [V] 2624	Meas Voltage [V] 0.090227	max Current [mA]	Meas, Current [mA] 0.000000	Error Status	Ramp Speed [V/s] 10	remaining Ramp Time [s]	All Channe	els 0.0 V 🚍	Daemon 12 09 201	Stop Restart
Channel Status Drift Chast Strip	Voltage [V] 2624 1700.25	Meas Voltage [V] 0.080227 0	max Current [mA] 0.035 0.035	Meas. Current [mA] 0.000000 0.000000	Error Status	Ramp Speed [V/s] 10 10	remaining Ramp Time [s]	All Channe Set common Voltage	els 0.0 V - A 0.0000 mA - A	Daemon 12 09 201 Exit this i	Stop Restart 12 13 42 24 Programm
Channel Status Drift Last Strip Skirt CEM 1 top	Voltage [V] 2624 1700.25 1686.5 1661.5	Meas Voltage [V] 0.080227 0 0.180022 0.277418	max Current [mA] 0.035 0.035 0.035	Meas. Current [mA] 0.000000 0.000000 0.000000 0.000000	Error Status	Ramp Speed [V/s] 10 10 10 10	remaining Tamp Time [s]	All Channe Set common Voltage	els 0.0 V 권 0.0000 mA 권 5.00 V/s 권	Daemon Daemon 12 09 201 Exit this	Stop Restart 12 13 42 24 Programm
Channel Status Drift G Last Strip GEM 1 bottom G GEM 1 bottom G	Voltage [V] 2624 1700.25 1686.5 1661.5 1461.5	Meas. Voltage [V] 0.0800227 0.180022 0.277418 0	max Current [mA] 0.035 0.035 0.035 0.005 0.005	Meas. Current [mA] 0.000000 0.000000 0.000000 0.000000 0.000000	Error Status	Ramp Speed [V/s] 10 10 10 10 10	remaining Ramp Time [s]	All Channe Set common Voltage Set max Current Set Ramp Speed	els 0.0 V 4 0.000 mA 4 5.00 V/s 4	Database Daemon 12 09 201 Exit this I Single C	Stop Restart 12 13 42 24 Programm
Channel Status Drift Last Strip Skirt GEM 1 top GEM 2 totom GEM 2 top	Voltage [V] 2624 1700.25 1686.5 1661.5 1461.5 1088.5	Meas. Voltage [V] 0.0800227 0.1800222 0.277418 0 0.460203	max Current [mA] 0.035 0.035 0.035 0.005 0.005 0.005	Meas Current [mA] 0.000000 0.000000 0.000000 0.000000 0.000000	Error Status	Ramp Speed [V/s] 10 10 10 10 10 10 10	remaining Ramp Time [s]	All Channe Set common Voltage Set max. Current Set Ramp Speed Ø OverVoltage Lime	els 0.0 V 4 0.0000 mA 4 5.00 V/s 4 5.00 % 4	Database Daemon 12 09 201 Exit this I Single C Set Current	Stop Restart 12 13 42 24 Programm Channel 0.0000 mA 4
Channel Status Drift Status Skirt GEM 1 top GEM 1 bottom GEM GEM 2 bottom GEM 2 bot	Time [h: voltage [V] 2624 1700.25 1666.5 1661.5 1661.5 1661.5 1088.5 906	Meas Voltage [V] 0.0800227 0.180022 0.277418 0 0.460203 0	max Current [mA] 0.035 0.035 0.005 0.005 0.005 0.005	Meas Current [mA] 0.000000 0.000000 0.000000 0.000000 0.000000	Error Status	Ramp Speed [V/s] 10 10 10 10 10 10 10	remaining Ramp Time (s)	All Channe Set common Voltage Set max. Current Set Ramp Speed 7 OverVoltage Limit OverCurrent Limit	els 0.0 V 석 0.0000 mA 석 5.00 V/s 석 5.0 % 석 1000 x 석	Daemon Daemon 12 09 201 Exit this I Single C Set Current	Stop Restart 12 13 42 24 Programm Channel 0.0000 mA
Channel Status Dnft Last Strip Skirt GEM 1 bottom GEM 2 bottom GEM 2 bottom GEM 3 top	Time [h: voltage [V] 2624 1700.25 1686.5 1681.5 1681.5 1088.5 906 533 322	Meas Voltage [V] 0.090227 0.180022 0.277418 0 0.460203 0 0 0	max Current [mA] 0.035 0.035 0.005 0.005 0.005 0.005 0.005	Meas. Current [mA] 0.000000 0.000000 0.000000 0.000000 0.000000	Error Status	Ramp Speed [V/s] 10 10 10 10 10 10 10 10	remaining Ramp Time (s)	All Channe Set common Voltage Set max. Current Set Ramp Speed OverVoltage Limit OverCurrent Limit On Off	0.0 V 점 0.0000 mA 점 5.00 V/s 점 5.0 % 점 1000 x 됨	Daemon 12 09 201 Exit this I Single C Set Current	Stop Restart 213:42:24 Programm Channel 0.0000 mA 4 0.0 V 4

Abbildung C.15: Registerkarte 'TPC - HV' zur Steuerung und Überwachung der Spannungen, Ströme und Rampgeschwindigkeiten der Test-TPC.

C.3 Graphische Benutzeroberfläche für die TestBench

Die graphische Oberfläche für die TestBench enthält ebenfalls drei Registerkarten für die Einstellungen und Werte der TPC, die aufgrund eines zusätzlichen Kanals in der Test-TPC leicht modifiziert sind. Über weitere Registerkarten lassen sich die Werte der restlichen Kanäle des MPOD-Crates, die Niederspannungen, die Temperaturen und das Gassystem betrachten und steuern. Die Registerkarten für das Logbuch und die alten, in der Datenbank gespeicherten Werte sind bis auf die Auto-save-Funktion identisch mit denjenigen der GUI für die GEM-TPC.

TPC - Hochspannungseinstellungen

Wie in Abbildung C.15 zu erkennen, ist die Registerkarte 'TPC - HV' für die Steuerung der Hochspannung an der Test-TPC nahezu identisch mit der entsprechenden Registerkarte für die GEM-TPC. Lediglich der zusätzliche Kanal für die Hochspannung am *Skirt* musste in die Berechnung, die Graphen und die Ausgabe der Werte integriert werden. Aus Platzgründen wird dieser Kanal auf der 'TPC - Graphs'-Registerkarte jedoch nicht angezeigt.

Aufgrund der geringen Driftspannung von maximal 8 kV ist es zur Zeit nicht vorgesehen, die Hochspannungsmodule für die Drift- und die GEM-Spannungen über einen Interlock-Anschluss zu verbinden, so dass der entsprechende Abschnitt auf der dritten Registerkarte ('TPC - Special Ops') deaktiviert ist und nicht verwendet werden kann. Gleiches gilt für den Abschnitt 'Dead Sectors Count', da die Unterseiten der

See East	tatus	Voltage Set Po	pint [V]		Meas. Voltage	max Current =	Trip Limit [mA]	м	eas. Current	Error		lamp Speed [V/s]
Lon / or	#]	old	new		[V]	old	new		[mA]	Status	old	new
_On-	011	2624	0.00 V ± _	set	0.079483	0.035	0.0000 mA 🗄	set	0.000000		10	
On	off	0	0.00 V 🛨 🔤	set	0	1	0.0000 mA 🛨	set	0.000000		10	It is not possible for th
On	Off	0	0.00 V 🚍	set	0.229648	1	0,0000 mA 🚔	set	0.000000		10	ISEG modules to set th ramp speed sepeart
On	0#	0	0.00 V 🛨	set	0.932234		0.0000 mA 🛨	set	0.000000		10	for each channel. Onl one value for all
On	Off	0	0.00 V 📥	set	0.229475	1	📥 Am 0000.0	set	0.000000		10	channels is allowed.
On	off	0	0.00 V ±	set	0.474286	1	0.0000 mA 🛨	set	0.000000		10	5.00 V/s ±
On	Off	0	0.00 V	set	0	1	0.0000 mA 🚔	set	0 000000		10	set
On	Off [0	0.00 V ±	set [0.813922		0.0000 mA 🚔	set	0.000000		10	
hannel S	tațus	Voltage Set P	pint [V]		Meas. Voltage	max Current =	Trip Limit [mA]	м	eas Current	Error	R	amp Speed [V/s]
		switch an schul		-		switch an sinc	on scrip us				The Seas	igs courses
[on / of	H]	old	new		[V]	old	new	-	[mA]	Status	old	new
On	011	0	0.00 V 🖻 _	set	0.009154		E Am 0000.0	set	0.000001		5	
On	Off	0	0.00 V ±	set	0.008717	1	0.0000 mA 🖽	set	0.000001		5	It is not possible for th
On	Off	0	0.00 V 🗄 🔤	set	0 010188	1	0.0000 mA 🗄	set	0.000001		5	ISEG modules to set t ramp speed sepeart
On	Öff	0	0.00 V -	set	0.01129	1	0.0000 mA 🛃	set	0.000001		5	for each channel. On one value for all
	0#11		0.00 V 4	set [0.008444	1	0.0000 mA 🛨	set	0.000001		5	channels is allowed
On	- Con	0	and a state of the	_								
On	off	0	0.00 V -	set	0.010671	1	0.0000 mA 📥	set	0.000001		5	5.00 V/s 🚔
On On On	off	0	0.00 V -	set [0.010671		0.0000 mA	set set	0.000001		5	5.00 V/s
	On On On On On On On On On On On On	on off [on off] on off]	on off 0 on off 0	00.0ff 0.00 v 2 00.0ff 0.00 v 2	Oh Off O 0.00 V ± set On Off 0 0.00 V ± set Switch all Scintillator Hvs ON	Ob Off O 0.00 V 23 set 0.229648 On Off 0 0.00 V 23 set 0.932234 On Off 0 0.00 V 23 set 0.932234 On Off 0 0.00 V 23 set 0.229475 On Off 0 0.00 V 23 set 0.474286 On Off 0 0.00 V 23 set 0.013922 switch all Scintillator HVs ON OFF hannel Status Voltage Set Point (V) Meas Voltage 0.000 V 23 set 0.009254 On Off 0 0.00 V 23 set 0.009254 On Off 0 0.00 V 23 set 0.001188	Ob Off 0 0.00 V 24 set 0.229648 1 On Off 0 0.00 V 24 set 0.932234 1 On Off 0 0.00 V 24 set 0.932234 1 On Off 0 0.00 V 24 set 0.229475 1 On Off 0 0.00 V 24 set 0.11 1 On Off 0 0.00 V 24 set 0.01922 1 On Off 0 0.00 V 24 set 0.01922 1 Switch all Scintillator MVs ON OFF switch all Scintillator MVs North off off Ion off 0 0.00 V 24 set 0.009154 1 max Current old off On Off 0 0.00 V 24 set 0.009154 1 On Off 0 0.00 V 24 set 0.00717 1 On 0 0.00 V 24	OR Off O 0.00 V ± 58E 0.229648 I 0.0000 mA OR Off O 0.00 V ± 58E 0.932234 I 0.0000 mA OR Off O 0.00 V ± set 0.932234 I 0.0000 mA OR Off O 0.00 V ± set 0.229475 I 0.0000 mA OR Off O 0.00 V ± set 0.229475 I 0.0000 mA OR Off O 0.00 V ± set 0.474286 I 0.0000 mA ON Off O 0.00 V ± set 0.813922 I 0.0000 mA ON Off Switch all Scintillator HVS ON OFF switch all Silicon Strip LVS Joned Status Voltage Set Point [V] Meas Voltage max Current = Trip Lint [mA] OA Off O 0.00 V ± Set 0.000717 I 0.0000 mA On Off O 0.00 V	Obs Off O 0.00 V 24 set 0.279648 1 0.0000 mA 24 set On Off O 0.00 V 24 set 0.932234 1 0.0000 mA 24 set On Off O 0.00 V 24 set 0.932234 1 0.0000 mA 24 set On Off O 0.00 V 24 set 0.229475 1 0.0000 mA 25 set On Off O 0.00 V 24 set 0.474286 1 0.0000 mA 25 set On Off O 0.00 V 25 set 0.011 0.0000 mA 25 set On Off O 0.00 V 25 set 0.01522 1 0.0000 mA 25 set switch all Scintillator MVs ON OFF switch all Slicen Strip U/S ON off Ion / off O 0.00 V 25 set 0.000174 max Current = Trip Limt (mA) M On Off O 0.00 V 25 se	Ob. Off 0 0.00 V 2 set 0.229648 1 0.0000 m 2 set 0.00000 On Off 0 0.00 V 2 set 0.32234 1 0.0000 m 2 set 0.00000 On Off 0 0.00 V 2 set 0.32234 1 0.0000 m 2 set 0.00000 On Off 0 0.00 V 2 set 0.229475 1 0.0000 m 2 set 0.00000 On Off 0 0.00 V 2 set 0.174286 1 0.0000 m 2 set 0.00000 On Off 0 0.00 V 2 set 0.013922 1 0.0000 m 2 set 0.000000 on Off 0 0.00 V 2 set 0.013922 1 0.00000 m 2 set 0.0000000 switch all Scintillator HVs ON OFF switch all silicon Strip LVs ON OFF nanel Status Votage Set Point [V] Meas Votage ored	Ob. Off 0 0.00 V Set 0.229648 1 0.0000 mA Set 0.00000 mA Set 0.000000 mA Set 0.00000 mA Set 0.000000 mA Set 0.0	Ob Off 0 0.00 v 2 set 0.229648 1 0.0000 mA 2 set 0.00000 mA 2 set 0.000000 mA 2 set 0.0000000 mA 2 set 0.000000 mA 2 set

Abbildung C.16: Registerkarte 'MPOD Crate' zur Steuerung und Überwachung des 8 kV- (oben) und des 500 V-Moduls (unten) im MPOD-Crate.

GEM-Folien in der Test-TPC nicht in Sektoren aufgeteilt sind und eine beschädigte Folie direkt ausgetauscht werden muss.

MPOD Crate

Im MPOD-Crate der TestBench sind neben dem 6 kV-Modul für die Spannungen an den GEM-Folien noch zwei weitere Module eingebaut, eines mit maximal -8 kV und eines für +500 V, deren insgesamt 16 Kanäle sich über die Registerkarte 'MPOD Crate' einstellen lassen. Ausgenommen ist hiervon lediglich der erste Kanal des 8 kV-Moduls, da dieser für die Driftspannung vorgesehen ist und nur von den TPC-Registerkarten aus gesteuert werden kann.

Wie auf der Registerkarte 'TPC - Special Ops' können die Spannungen, Ströme und An-/Aus-Einstellungen auf der Registerkarte 'MPOD Crate' für jeden Kanal separat vorgenommen und ausgelesen werden, wobei das 8 kV-Modul mit den Hochspannungen für die Szintillationszähler und die GEM-Detektoren im oberen und das 500 V-Modul mit den Spannungen für die Siliziumstreifendetektoren im unteren Abschnitt zu finden ist. Die Rampgeschwindigkeiten sind erneut nur für alle Kanäle eines Moduls gemeinsam setzbar.

Um die Szintillationszähler oder die Siliziumstreifendetektoren gemeinsam an- oder auszuschalten, können die zugehörigen 'ON'- und 'OFF'-Buttons zwischen den beiden Abschnitten verwendet werden. Mit der Schaltfläche 'save Settings' werden die Einstellungen aller 16 Kanäle über ein Pop-up-Fenster in einer Textdatei mit der Endung .mpodset abgespeichert und mit 'load Settings' aus einer solchen Datei in die Eingabefelder geladen. Die beiden Schaltflächen 'Error Reset' setzen eventuelle Fehler des zugehörigen Moduls zurück.

PC - HV TPC - C	Graphs TF	C - Special Ops	MPOD Cri	ate	Low Voltage	Gas+Temper	rature	Logbook	Ancient V	Values
HAMEG LV	0=10#	manningad		-	tat paint	nous rat a	nint			SPS (Currents, Voltages)
Channel 1		nieasureu 0	Voltage [V]	Status	45	0.00		set [1 1	Current in 1 140 ener 02 Current in 3 and extended and
EM analog neg	Dn Off	0	Current [A]	9	2	0.0000	A	set		Current in 2 0.001000 mA Current in 4 Inst installed mA
			Mairmon IMI	-	6.96			ON ON	OFF	careara 1 0001000 ma careara 1 not instanco ma
Manalog pos	or low l	0	Current [A]	0	3.0	0.000	-	set		
			Consent furt	1		1 0,0000		5.61		Voltage In 1 6.497 A (measuring: CURRENT LV TPC digital pos)
hannel 3	0	0	Voltage [V]	0	4.5	0.00	V ÷	set	1 1	Voltage In 2 0.799 A (measuring: CURRENT LV TPC digital neg)
EM digital neg	On Off	0	Current [A]	1	2	0.0000	A d	set		Voltage in 3 4 260 A (measuring CURRENT LV TPC analog pos)
hannel 4	0	0	Voltage [V]	0	5.5	0.00	V ÷	set ON	OFF	Voltage In 4 0.378 A (measuring: CURRENT LV TPC analog neo)
EM digital pos	On Off	0	Current [A]	4	75	0.0000	E A C	set	_	
refresh	1	all channels C	N I	all cl	hannels OFF	1	error rese	et		
				_				_		LV TPC digital pos Powercycle
E 9.0					E 0.0				_	Voltage Out 2 4 54 V S.00 V = set Voltage
E 0.4				E	0.4					LV TPC digital neg
8 0.2 TH				t	0.2 1				_	Voltage Out 3 5.18 V 5.00 V 🕂 set Voltage
B .0.2				E	-0.2 -					LV TPC analog pos Powercycle
S .0.4				Ű	-0.4					LV TPC analog neg
.0.5 I					E 8.0					
12:50	12 58 23.0	6 13 15 P3 23 7	31 43 40:0	L	12:5	0 17 58 23.06	母.15 円	23 23.31	13.40:01	7 - TPC IV Current
	Tim	e [h:m:s]				Tim	e [h:m	:s]		6-
Hameg U	V Voltage 1	Hameg LV Vo	itage 2		Hameg	LV Current 1	Hame	LV Curren	2	The Content
Hamed	V Voltage 3	Hamen LV Vo	tace 4		Hamed	LV Current 3	Hamer	LV Curren	-	E TPC LV Current
I coming a	. Tomaye s	i a consequences	ande a		- manual -	o contento j				TPC LV Current
		e							-	1 53-
Database slowco	ontroi succe	srully connected					Datab	ase		Ŭ ₂
							Daem	ion _	Stop	1-
							-	Re	start	
							12.09	2012 13:42	56	
							Exit	this Progra	mm 1	12:20:12:20:13:00:13:12:45:23:13:31:13:40:01
							E.M.S.	and they a		Time [h:m:s]

Abbildung C.17: Über die Registerkarte 'Low Voltage' lassen sich das HAMEG HMP4040-Labornetzgerät (links) und die Spannungen und Ströme an der SPS einstellen und überwachen.

In den beiden Graphen unten auf der Registerkarte können die anzuzeigenden Spannungen über die Beschriftung in der Legende an- und abgewählt werden. Der allgemeine Abschnitt rechts unten zeigt neben dem Textfeld für Informationen drei LEDs für den Status der Datenbank, des Daemons und des MPOD-Crates.

Niederspannung

Die Steuerung des HAMEG-Labornetzgeräts und die Überwachung und Einstellung der Spannungen und Ströme an der SPS erfolgt über die Registerkarte 'Low Voltage'. Im Abschnitt HAMEG LV (links) wird für jeden der vier Kanäle der aktuelle An-/Aus-Zustand über eine LED, die gemessenen Ströme und Spannungen sowie deren Sollwerte angezeigt. Eine weitere LED gibt Auskunft darüber, ob und welche Kanäle bei einem zu hohen Strom gleichzeitig abgeschaltet werden. Während über die Schaltflächen 'set' die in den Eingabefeldern eingestellten, neuen Sollwerte an die Hardware gesendet werden können, bietet die GUI zudem die Möglichkeit, die Kanäle einzeln ('On'/'Off'-Buttons links), paarweise ('ON'-/'OFF'-Buttons rechts) oder alle vier gleichzeitig ('all channels OFF') an- und auszuschalten.

Der Button '*refresh*' erfüllt, wie auf den Registerkarten für die MPOD-Crate-Einstellungen, die Funktion, die zuletzt ausgelesenen Sollwerte in die Eingabefelder zu übernehmen. Mit '*error reset*' werden mögliche Fehler im Labornetzgerät zurückgesetzt.

Die beiden Graphen unter den Schaltflächen zeigen die gemessenen Spannungen (links) und Ströme (rechts), wobei sich über die Legende steuern lässt, welche Kanäle dargestellt werden sollen.

Abbildung C.18: Der obere Abschnitt auf der Registerkarte 'Gas+Temperature' zeigt die Temperaturen an der TestBench. Im unteren Abschnitt können die Einstellungen des Gassystems vorgenommen und die ausgelesenen Werte betrachtet werden.

Der rechte Abschnitt (SPS (Currents, Voltages)) informiert über Werte, die sich aus den mit der SPS gemessenen Strömen und Spannungen ergeben. Der gemessene Strom des Sauerstoffsensors (Current In 1) wird beispielsweise direkt als Konzentration in 'ppm' ausgegeben, während die vier gemessenen Spannungen (Voltage In 1-4) in den IST-Strom der "EA-PS 3016-20B"-Labornetzgeräte umgerechnet werden. Diese Ströme werden zusätzlich im Graphen rechts unten dargestellt.

Die Sollspannungen an den Labornetzgeräten können über die Schaltflächen 'set Voltage' neben den zugehörigen Eingabefeldern eingestellt werden. Mit den 'Powercycle'-Buttons wird ein Neustart der angeschlossenen Auslesekarten erzwungen, indem die Sollspannung für einige Sekunden auf 0V und anschließend wieder auf den letzten Sollwert gesetzt wird.

Der allgemeine Abschnitt links unten zeigt, wie bei den anderen Registerkarten, ein Textfeld für Informationen und den Status der Datenbank und des Daemon als LED.

Gassystem und Temperaturen

Die an der Test-TPC und der Ausleseelektronik mit Hilfe der SPS aktuell gemessenen Temperaturen sind auf der Registerkarte 'Gas+Temperature' im Abschnitt SPS (Temperature) abgebildet. Der zugehörige Graph zeigt die Werte der zurückliegenden 60 Minuten.

Im Abschnitt MKS (Gasflow) können der Gasfluss (Flow), der Betriebszustand ('ON', 'OFF'), der Messbereich (Range), der Gaskorrekturfaktor (GCF) und die obere und untere Warngrenze (Upper Limit, Lower Limit) für die beiden Kanäle des Gassystems

betrachtet und über die entsprechenden Eingabefelder und Schaltflächen ('Set Flow' beziehungsweise 'set') verändert werden. Die Änderung des Messbereichs der Gasflusssensoren ist normalerweise deaktiviert, da dieser von der eingebauten Hardware abhängt und somit während einer Datennahme nicht geändert werden sollte. Die Textfelder unter den Warngrenzen geben den Offset der Messung, den Status des jeweiligen Sensors und den gesetzten Sollwert (Set P.) wieder. Die Gasflüsse der letzten Stunde werden zudem graphisch dargestellt.

Der allgemeine Abschnitt auf der rechten Seite besteht auch hier aus einem Textfeld für die vorgenommenen Änderungen, aufgetretenen Fehler oder sonstigen Informationen sowie dem Status der Datenbank und dem des Daemon. Zusätzlich befinden sich hier vier Kontrollkästchen, über die sich der Auslesestatus der einzelnen Hardwarekomponenten in der HARDWARE-Tabelle einstellen lässt. Auch hier muss ein manueller Neustart des Daemon über die Schaltfläche 'Restart' durchgeführt werden.

Logbuch und alte Werte

Die beiden Registerkarten für das Logbuch und die alten, in der Datenbank gespeicherten Werte sind nahezu identisch mit denjenigen der GUI für die GEM-TPC. Auf der Registerkarte 'Logbook' fehlen lediglich die Pull-down-Menüs und das Kontrollkästchen für die automatische Erstellung neuer Logbucheinträge. Bei den 'Ancient Values' musste das Aufklappmenü 'Device' an die Hardware der TestBench angepasst werden, so dass hier 'MPOD (TPC HV)', 'MKS Gasflow', 'SPS (Temperature + LV)', 'HAMEG LV' und 'Logbook' als Möglichkeiten vorgegeben sind.

select all	show run ty	pe, trigger P ettings P end time P	show events show gases show magnet	F show scales F show voltag	es IP show ratures IP show	v pressures v dnft velocity v fields	show R selec	t none	go to run_nr	Run Nr Filename	4101 runC_4101	cle
Run nr T	Filename	Run Type	Trigger	T2K settings	Time Window	Start Time	Stop Time	Events	Gas (N) [%]=	Run Type	Cosmic	-
120	runC_4120	Cosmic	Barrel	0x1000=0x2	480	11/18/11 10:02 AM	11/18/11 10:23 AM	125473	0	T2K settings	E=0x61 0x1	100F=0x0
1119	runC_4119	Cosmic	Barrel	0x1000=0x2	480	11/18/11 9.41 AM	11/18/11 10:02 AM	125853	0	Time Window	480	
118	runC_4118	Cosmic	Barrel	0x1000=0x2	490	11/18/11 9:20 AM	11/18/11 9:41 AM	125760	0	Start Time 1	2011-11-18	03:24 🛫
117	runC_4117	Cosmic	Barrel	0x1000=0x2	480	11/18/11 8:58 AM	11/18/11 9:20 AM	125379	0	End Time	2011-11-18	03:42 ±
116	runC_4116	Cosmic	Barrel	0x1000=0x2	480	11/18/11 8:37 AM	11/18/11 8:58 AM	125511	0	Events	1	0.0000
115	runC_4115	Cosmic	Barrel	0x1000=0x2	480	11/18/11 8:16 AM	11/18/11 8 37 AM	125810	0	Nitro	gen J	0.00 %
114	runC_4114	Cosmic	Barrel	0x1000=0x2	490	11/18/11 7:55 AM	11/18/11 8:16 AM	124951	0	Gases Nee	on: 9	0.00 % ±
113	runC_4113	Cosmic	Barrel	0x1000=0x2	480	11/18/11 7:33 AM	11/18/11 7:55 AM	127853	o	co	z 1	0.00 % 🛨
112	runC_4112	Cosmic	Barrel	0x1000=0x2	480	11/18/11 7:12 AM	11/18/11 7:33 AM	128672	0	Magnetic Field	d.	0.60 T 🚖
111	runC_4111	Cosmic	Barrel	0x1000=0x2	480	11/18/11 6:50 AM	11/18/11 7 12 AM	128040	0	Scale Factor D	rift 8	9 90 % 축
110	runC_4110	Cosmic	Barrel	0x1000=0x2	400	11/18/11 6:29 AM	11/18/11 6:50 AM	126730	0	Scale Factor GE	EMs 7	1.60 % ±
109	runC_4109	Cosmic	Barrel	0x1000=0x2	480	11/18/11 6:07 AM	11/18/11 6:29 AM	127146	0	save NEW er	ntry san	ve change
108	runC_4108	Cosmic	Barrel	0x1000=0x2	480	11/18/11 5:46 AM	11/18/11 6:07 AM	126680	0	save ist to t	one de	elete entry
1107	runC_4107	Cosmic	Barrel	0x1000=0x2	480	11/18/11 5 25 AM	11/18/11 5.46 AM	125656	0	Voltages	Values. temperatur	res I T
106	runC_4106	Cosmic	Barrel	0x1000=0x2	490	11/18/11 5:03 AM	11/18/11 5:25 AM	126077	0	pressure	all for this i	run
105	runC_4105	Cosmic	Barrel	0x1000=0x2	480	11/18/11 4:42 AM	11/18/11 5:03 AM	124721	0	Calculate Scale	values:	run
104	runC_4104	Cosmic	Barrel	0x1000=0x2	480	11/18/11 4:22 AM	11/18/11 4:42 AM	122905	0	Calculate Drift V	elocity	run
103	runC_4103	Cosmic	Barrel	0x1000=0x2	490	11/18/11 4:01 AM	11/18/11 4 22 AM	119445	0	Drift 26453.8 V	68 V	
102	runC_4102	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:42 AM	11/18/11 4:01 AM	114899	0	GEM1 top : 2929	69 V	
101	runC_4101	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:24 AM	11/18/11 3:42 AM	107844	0	GEM2 top : 2104	57 V	
100	runC_4100	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:07 AM	11/18/11 3:24 AM	98615	0	GEM3 top : 1304.	63 V	
099	runC_4099	Cosmic	Barrel	0x1000=0x2	480	11/18/11 3:00 AM	11/18/11 3 07 AM	44029	0	Tomo Gor INI - 37	E AP	
1	1	-							ك.	E	Exit this Pro-	gramm

Abbildung C.19: Die Registerkarte 'RunDB'.

C.4 Graphische Benutzeroberfläche der Run-Datenbank

Die für die Run-Datenbank entwickelte graphische Benutzeroberfläche basiert technisch auf der SlowControl-GUI. Sie ist dabei in fünf Registerkarten unterteilt, auf denen die Werte der Run-Datenbank als Tabelle und als Graph sowie der Inhalt des Logbuchs, die Hardware-Fehler und die alten SlowControl-Werte ausgegeben werden. Die Registerkarte 'Ancient Values' wurde dabei ohne Änderung von der SlowControl-GUI der GEM-TPC übernommen.

Run-Datenbank

Die Darstellung der Run-Datenbank als Tabelle in einer QTableView nimmt einen Großteil der Registerkarte 'RunDB' ein (siehe Abbildung C.19). Über die Kontrollkästchen im oberen Bereich kann ausgewählt werden, welche Parameter angezeigt werden sollen. Mit den Schaltflächen 'select all' und 'select none' werden alle beziehungsweise keines der Kontrollkästchen aktiviert und die entsprechenden Parameter ausgegeben, wobei sich die Run-Nummer und der Dateiname nicht ausblenden lassen. Die Tabelle kann mit einem Klick auf die Überschrift nach den einzelnen Spalten sortiert werden. Um Einträge schneller finden zu können, erlaubt es der Button 'go to run_nr', zu dem Eintrag mit der im daneben liegenden Textfeld eingegebenen Run-Nummer zu springen.

Durch Anwählen einer Zeile in der Tabelle werden die aktivierten Werte in die zugehörigen Eingabefelder und das Textfeld auf der rechten Seite der Registerkarte übertragen. Hierdurch können Änderungen an den Werten in den Eingabefeldern vorgenommen ('save changes') oder der Eintrag aus der Run-Datenbank gelöscht ('delete entry') werden. Zudem kann über die Schaltfläche 'save NEW entry' aus den eingestellten Werten ein neuer Eintrag angelegt werden. Die Schaltfläche 'save list to file' speichert die über die Kontrollkästchen ausgewählten Werte als Textdatei ab.

Über die Schaltflächen 'voltages', 'temperatures', 'pressure' und 'all for this run' lassen sich für den angewählten Run die Mittelwerte der GEM- und Driftspannungen, der Temperaturen auf der Ausleseebene und am Gasein- und Gasauslass, die Werte der beiden Drucksensoren am Media-Flansch sowie die jeweiligen Standardabweichungen als Fehler berechnen. Hierzu werden alle Messwerte verwendet, die für die einzelnen Spannungen, Temperaturen oder Drucksensoren zwischen der eingetragenen Start- und Endzeit des Runs in der SlowControl-Datenbank abgespeichert sind. Sollten für diesen Zeitraum keine SlowControl-Messwerte vorhanden sein, wird anstelle des Mittelwerts der Wert "-2" in der Run-Datenbank gespeichert, um zwischen fehlenden und noch nicht berechneten Werten unterscheiden zu können.

Aus den berechneten Spannungen kann auf die eingestellten Skalierungsfaktoren und elektrischen Felder zurückgerechnet werden ('*Calculate Scale values*'), analog zu der Berechnung der Spannungen aus den Feldern in der SlowControl-GUI. Diese Berechnungen sind bisher allerdings nur für die fest implementierten Standardeinstellungen der Abstände der GEM-Folien und der GEM-Spannungen korrekt.

Mit der Schaltfläche 'Calculate Drift Velocity' lässt sich die Driftgeschwindigkeit für die einzelnen Runs aus den vorhandenen Werten für die Lage der Kanten berechnen.

Um die Spannungen, Temperaturen und Drücke sowie die Skalierungsfaktoren und die Driftgeschwindigkeiten für alle Runs in der Run-Datenbank über die drei 'all'-Schaltflächen berechnen zu lassen, müssen diese mit dem Kontrollkästchen 'all' aktiviert werden.

Run-Datenbank Graph

Auf der Registerkarte 'RunDB Graph' lassen sich die in der Run-Datenbank gespeicherten Werte in einem Graphen anzeigen und miteinander vergleichen. Mit der Schaltfläche 'get desired values' wird der über ein Pull-Down-Menü gewählte Parameter ('Choose value for Y axis') aus der Datenbank gelesen und im Graphen gegen die Run-Nummer auf der x-Achse aufgetragen. Der Bereich der angezeigten Runs wird über die beiden Eingabefelder 'Start' und 'End' eingestellt. Die Ausgabe der berechneten Fehler als Fehlerbalken kann über das entsprechende Kontrollkästchen gesteuert werden. Die zuletzt zum Graph hinzugefügten Werte werden zudem im Textfeld als Tabelle angezeigt.

Für eine genauere Betrachtung der Werte kann der Graph beliebig oft vergrößert werden, indem mit der Maus ein Kasten um den gewünschten Bereich gezogen wird. Ein Rechtsklick in den Graphen macht einen Vergrößerungsschritt wieder rückgängig. Mit der Schaltfläche 'save graph to file' kann der aktuell angezeigte Graph über ein neues Fenster in den Formaten PDF oder PS abgespeichert werden.

Über das zweite Pull-Down-Menü ('Choose value for additional Y axis'), welches sich über ein Kontrollkästchen aktivieren lässt, kann ein zweiter Parameter mit eigener y-Achsenbeschriftung auf der rechten Seite des Graphen ausgegeben werden. Die Ausgabe weiterer Parameter ist zudem mit der Schaltfläche 'add values to graph' möglich.

Abbildung C.20: Die Werte der Run-Datenbank können auf der Registerkarte 'RunDB Graph' graphisch dargestellt, miteinander verglichen und in den Formaten PDF oder PS abgespeichert werden.

Allerdings wird hierbei die ursprüngliche y-Achse automatisch skaliert, so dass bei Parametern unterschiedlicher Größenordnung keine Variationen zu erkennen sind. Um sich beispielsweise alle Temperaturen gleichzeitig anzeigen zu lassen ist die Schaltfläche 'add values to graph' hingegen sehr gut geeignet.

Die weiteren Schaltflächen 'fill database from file', 'fill rest', 'MPB') sind mit wechselnden Funktionen belegt und sollten nur bei genauer Kenntnis verwendet werden. Hier können beispielsweise verschiedene Werte aus Textdateien eingelesen und in der Datenbank gespeichert oder die durch die Driftkathode und dem Last Strip gebildeten Widerstände berechnet werden.

Logbuch und Fehler

Die Darstellung und Funktionalität der 'Logbook'-Registerkarte wurde weitestgehend von der SlowControl-GUI übernommen wie in Abbildung C.21 zu erkennen ist. Lediglich eine Schaltfläche zum Aktualisieren des Logbuchs ('refresh') wurde hinzugefügt und die für die 'Auto-save'-Funktion notwendigen Steuerelemente und die Anzeige der vom Daemon erkannten Fehler von der Registerkarte entfernt, da eine automatische Erzeugung neuer Logbucheinträge bei der Auswertung der Daten nicht sinnvoll ist. Die Fehlermeldungen werden der Übersichtlichkeit halber auf einer eigenen Registerkarte angezeigt (Registerkarte 'Errors', siehe Abbildung C.22). Hierdurch ist es möglich, mehr Informationen zu den einzelnen Fehlern abzufragen, diese gegebenenfalls mit der Schaltfläche 'delete this entry' zu löschen oder alle Fehler als Textdatei abzuspeichern ('save error list to file').

Event nr 🔻	Log nr	Name	Comment	Run nr	Start time	Run type	Tngger.*	show all entries	only nins only comments
1108	1866	Auto Logging	IBF 84%drift.	4631	11/11/12 6:15 PM	Deam	Beam	show an enales	
1108	1864	Auto Logging	IBF 84%drift,	4630	11/11/12 6:15 PM	Beam	Béam		search comments
51108	1863	Auto Logging	IBF 84%drift.	4629	11/11/12 6-15 PM	Beam	Beam		
51107	1862	Auto Logging	Problems wit	4628	11/11/12 6-13 PM	Cosmics	Barrel	Name	
1107	1861	Auto Logging	Problems wit	4627	11/11/12 6:10 PM	Cosmics	Barrel	Run nr :	
1104	1860	Auto Logging	Problems wit	4626	11/11/12 5:16 PM	Cosmics	Barrel	-	
1100	1858	Auto Logging	Problems wit	4625	11/11/12 3:09 PM	Cosmics	Barrel	Start time : 2013-0	7-15 14:52
1099	1857	Auto Logging	Problems wit	4624	11/11/12 3:09 PM	Cosmics	Barrel	Run type	clear
1096	1855	Auto Logging	Deterin bea	4623	11/11/12 3:09 PM	Deuteron	Beam	Trigger :	F Reas
1095	1854	Auto Logging	Deterin bea	4622	11/11/12 2:55 PM	Deuteron	Beam		
1094	1853	Auto Logging	Deterin bea	4621	11/11/12 2.55 PM	Deuteron	Beam	# Spills	
1094	1852	Auto Logging	Deterin bea	4620	11/11/12 2 51 PM	Deuteron	Beam	Comment Databa	se 'slowtpc' succesfully connected
51094	1851	Auto Logging	Deterin bea	4619	11/11/12 2·31 PM	Deuteron	Beam		
1094	1850	Auto Logging	Deterin bea	4618	11/11/12 2:31 PM	Deuteron	Beam		
\$1093	1849	Auto Logging	Deterin bea	4613	11/11/12 2 01 PM	Deuteron	Beam		
51093	1848	Auto Logging	Deterin bea	4617	11/11/12 2 31 PM	Deuteron	Beam		
1093	1847	Auto Logging	Deterin bea	4616	11/11/12 2:30 PM	Deuteron	Beam	(1
1092	1846	Auto Logging	Deterin bea	4614	11/11/12 2:01 PM	Deuteron	Beam	delete entry	save NEW entry save change
51091	1845	Auto Logging	Deterin bea	4614	11/11/12 2 21 PM	Deuteron	Beam		
1091	1844	Auto Logging	Deterin bea	4612	11/11/12 2:01 PM	Deuteron	Beam		
1090	1843	Auto Logging	Deterin bea	4610	11/10/12 8:52 PM	Deuteron	Beam		refresh
1089	1842	Auto Logging	Deterin bea	4609	11/10/12 8:52 PM	Deuteron	Beam	-	
1088	1841	Auto Logging	Deterin bea	4608	11/10/12 8 52 PM	Deuteron	Beam		
1088	1840	Auto Logging	Cosmics (BFIII	4607	11/11/12 1 25 PM	Cosmics	Barrel 🚬		

Abbildung C.21: Die Einträge des Logbuchs können auf der Registerkarte 'Logbook' untersucht und verändert werden.

Nr T	Time	Device	Command	Channel	Setpoint Value	measured Value	-	refresh
085	4/25/13 4:13 PM	MPOD	ChannelStatus	302		404		
084	4/25/13 4:13 PM	MPOD	SystemStatus	0		880		
083	4/25/13 4:13 PM	MPOD	ChannelStatus	302		404		
082	4/25/13 4:07 PM	MPOD	ChannelStatus	302		404		morm.
081	4/18/13 12:08 PM	MPOD (GUI)	OverVoltage	303	3353	2019.58		Time 2013-07-15 14:52
080	4/18/13 12:08 PM	MPOD (GUI)	OverVoltage	302	3427	2063.33		Device
079	4/18/13 12:08 PM	MPOD (GUI)	OverVoltage	401	28041	16549.3		
078	4/3/13 2:51 PM	MPOD	ChannelStatus	304		404		ommand :
1077	4/3/13 2:51 PM	MPOD	ChannelStatus	303		404		Channel :
076	4/3/13 2:51 PM	MPOD	ChannelStatus	302		404		Values
1075	4/3/13 2:51 PM	MPOD	ChannelStatus	303		8024	-	et Point :
1074	4/3/13 2:51 PM	MPOD	ChannelStatus	302		8024		
1073	4/3/13 2:48 PM	MPOD	ChannelStatus	303		404	in the second se	easured 1
072	4/3/13 2:48 PM	MPOD	ChannelStatus	302		404	N	POD Status Error :
1071	4/3/13 2:48 PM	MPOD	ChannelStatus	304		404		
1070	4/3/13 2:48 PM	MPOD	ChannelStatus	303		8024		
1069	4/3/13 2:48 PM	MPOD	ChannelStatus	302		8024		
1068	4/3/13 2:46 PM	MPOD	ChannelStatus	304		404		
1067	4/3/13 2.46 PM	MPOD	ChannelStatus	302		404		delete Unsier U
1066	4/3/13 2:46 PM	MPOD	ChannelStatus	303		404		
1065	4/3/13 2:31 PM	MPOD	ChannelStatus	306		404		save error list to file
1064	4/3/13 2:31 PM	MPOD	ChannelStatus	305		404		
063	4/3/13 2.31 PM	MPOD	ChannelStatus	304		404		
062	4/3/13 2:31 PM	MPOD	ChannelStatus	303		404	-1	Exit this Programm

Abbildung C.22: Die Registerkarte 'Errors' zeigt die vom Daemon erkannten Fehler an.

D Quellkode

D.1 Hauptprogramme der beiden Daemon

TestBench (SlowTPC.cpp)

```
1 #define MPOD IP_ADR_NEW "10.0.0.2"
//#define MPOD_IP_ADR_NEW "mpodcrate1.cb.uni-bonn.de"
 #include "MPOD_new.h"
#include "MKS_647B.h"
6 #include "SPS.h"
#include "HAMEG_4040.h"
#define UNIX_STYLE
#define SERVER PORT 10001
11 #define HAMEG_PORT 50003
#define QUEUE_MAX 5000
       #define SENSORS_LOOP 20
#define HAMEG_LOOP 10
16
        ost :: Slog slowctrllog;
       int main(int argc, char **argv) {
    int a,b, channel[QUEUE_MAX], value[QUEUE_MAX], doCom[QUEUE_MAX], doDaemonStop, i_max,
        newStart, zahltemp, countSensors, countHameg,
    endprogramm, slowIntervall, queue_id, connected_mks, connected_sps, connected_mpod,
        connected_hameg, device, status;
    float d, value f[QUEUE_MAX];
    char query[500],time_query[500],del_query[500],*clean_time_string;
    timeval start, end, start_vacuum, end_vacuum;
    time_t clean_time;
21
26
              MKS_647B newMKS(SERVER PORT);
             MRS(5047B newsR85(5RVER_FORT);
Sps_Tpc_newsPS;
MPOD_new_newMPOD;
HAMEG_4040_newHAMEG_(HAMEG_PORT);
31
             PGresult *res, *res1, *res2, *vacuumRes, *delquery; PGconn * conn;
               slowctrllog.clogEnable (false);
36
               status = 3;
              d e v i c e = 0;
endprogramm=1;
             connected_mks=0;
connected_sps=0;
connected_mpod=0;
connected_hameg=0;
41
              countSensors = 0;
              countHameg=0;
46
              d \circ D a e m \circ n S t \circ p = 0;
              slowIntervall=300;
newStart=1;
             newstart_1;
queu_id=0;
i_max=0;
for (int n=0; n<QUEUE_MAX; n++){
    doCom[n]=0;
    channel[n]=0;
    value[n]=0;
51
56
              }
             /* Check, which hardware is connected and checked in */
conn=sql_connect();
memset(query,0,sizeof(query));
sprintf(query,"SELECT status_code,device FROM hardware WHERE device>5");
res2=PQexec(conn,query);
61
              for (int i = 0; i < PQntuples (res 2); i++)
                         (int i=0;i<PQntuples(res2);i++) {
status=atoi(PQgetvalue(res2,i,0));
device=atoi(PQgetvalue(res2,i,1));
if (device==7 && status==0) {
    connected_sps=newSPS.connectSPS();
    if (connected_sps==0) {connected_sps+; endprogramm=0; printf("SPS checked.\n");}
else { endprogramm=1; printf("SlowTPC not started: Failure staring SPS readout.\n");
    }
} else if (device==8 && status==0) {
    connected_mk=newMKS_connectMKS();
}</pre>
66
71
                                \begin{array}{l} \texttt{connected} \_mks = \texttt{newMKS.connectMKS();} \\ \texttt{if} \quad (\texttt{connected}\_mks = = 1) \quad \{\texttt{endprogramm} = 0; \; \texttt{printf}(\texttt{"MKS checked.n");} \} \end{array}
```

```
else { endprogramm=1; printf("SlowTPC not started: Failure staring MKS readout.\n");
                }
} else if (device==9 && status==0)
                    else { endprogramm=1; printf("SlowTPC not started : Failure staring MPOD readout.\n");}
 76
                } else if (device==6 \&\& status==0) {
                    connected_hameg=newHAMEG.connectHAMEG();
if (connected_hameg==1) {endprogramm=0; printf("HAMEG checked.\n");}
else { endprogramm=1; printf("SlowTPC not started: Failure staring HAMEG readout.\n")
 81
                              }
                            ;
                }
         } PQclear(res2);
sql_disconnect(conn);
gettimeofday(&start_vacuum, 0);
 86
                          main routine
                                                  ******************
          while (!endprogramm)
                                            {
 91
             conn=sql_connect();
             /* Clean up database table 'aktuell' evere two hours (=7200 sec) */
gettimeofday(&end_vacuum, 0);
if ((end_vacuum.tv_sec - start_vacuum.tv_sec > 7200) || newStart) {
    clean_time=time(NULL);
    clean_time_string=ctime(&clean_time);
    clean_time_string[strlen(clean_time_string)-1]=0;
 96
                memset(query,0,sizeof(query));
sprintf(query,"VACUUM FULL ANALYZE aktuell");
101
                sprint(query, vacuum roll availab actuell);
vacuumRes=PQexec(conn,query);
PQclear(vacuumRes);
printf("Cleaned up database table 'aktuell' at %s.\n",clean_time_string);
gettimeofday(&start_vacuum, 0);
106
             }
             /* Create new event number *
             /* Oreate new event number */
memset(query,0,sizeof(query));
sprintf(query,"INSERT INTO events VALUES (nextval('events_seq'),NOW(),null)");
res1=PQexec(conn,query);
111
             PQclear(res1);
              /* Get latest event number *.
             /* Get faitest event number */
memset(query,0,sizeof(query));
sprintf(query,"SELECT max(event) FROM events");
res2=PQexec(conn,query);
116
             zahltemp=atoi(PQgetvalue(res2,0,0));
PQclear(res2);
121
             sql_disconnect(conn);
                \ast Connect all active devices and do a completeStatus \ast/
             if
                  (newStart) {
                if (connected_sps) {newSPS.logChange("'daemonStart'"); newSPS.completeReadout(newSPS.dc
,zahltemp);}
126
                 if (connected _mks) {newMKS.logChange("'daemonStart '"); newMKS.completeStatus(zahltemp)
                 if (connected_mpod) {newMPOD.logCommand("'daemonStart'"); newMPOD.completeStatus(
             zahltemp);}
if (connected_hameg) {newHAMEG.logChange("'daemonStart'"); newHAMEG.completeStatus(
    zahltemp);}
else {
                else {
    if (connected_sps) {newSPS.completeReadout(newSPS.dc,zahltemp);}
    if (connected_mks) {newMKS.shortStatus(zahltemp);}
    if (connected_mpod) {newMPOD.shortStatus(zahltemp);}
    if (connected_hameg) {newHAMEG.shortStatus(zahltemp);}
1\,3\,1
             }
             gettimeofday(&start, 0);
do {
136
      /**
                                                   and check-Queue- Loop **********/
                memset(query,0,sizeof(query));
memset(time_query,0,sizeof(time_query));
memset(del_query,0,sizeof(del_query));
conn=sql_connect();
141
                      deleting
                                    odd 'daemonStop' */
                if (newStart) {
    sprintf(query, "DELETE FROM queue WHERE device_id >5 AND command='daemonStop'");
146
                    res=PQexec(conn,query);
printf("Deleting odd 'daemonStop' from QUEUE (if necessary).\n");
PQclear(res);
                }
151
                      fast readout
                /* fast readout */
if (countSensors>SENSORS_LOOP) { //readout sensors
    if (connected_sps) newSPS.FASTstatus (newSPS.dc);
    if (connected_mks) newMKS.FASTstatus ();
    countSensors = 0;
}
                                                                           //readout sensors every SENSORS_LOOP - loops
156
                }
```

```
if (countHameg>HAMEG_LOOP) { //readout Hameg LV every HAMEG_LOOP - loops
if (connected_hameg) newHAMEG.FASTstatus ();
countHameg = 0;
 161
                                      if (connected_mpod) newMPOD.FASTstatus ();
                                     /* get new commands from Queue */
sprintf(query,"SELECT command,param1,param3,queue_id FROM queue WHERE device_id>5 ORDER
BY queue_id LIMIT %d", QUEUE_MAX);
real=POwree(comp curve);
                                     res1=PQexec(conn,query);
 166
                                     if (PQntuples(res1)>0) {
for(int i=0;i<PQntuples(res1);i++){
    char temp[255];</pre>
171
                                             sprintf(temp, "%s", PQgetvalue(res1, i, 0));
channel[i]=atoi(PQgetvalue(res1, i, 1));
value[i]=atoi(PQgetvalue(res1, i, 2));
                                             \texttt{queue\_id=atoi(PQgetvalue(res1,i,3));}
 176
                                            /* check active queue-row for known (= possible) commands */
/* MARK: commands that do not appaer here will be ignored and deleted */
if (strstr(temp,"daemonStop")) { endprogramm=1; }
********* MKS gasflow commands ***************/
if (strstreted meta)
                                            if (ornset(emp, databasep)) { chaptogramm=1, j
if (connected_mks) {
    if (strstr(temp, "MKSread")) { doCom[i]=1; }
    else if (strstr(temp, "MKScompleteRead")) { doCom[i]=3; }
    else if (strstr(temp, "MKSchannelOf")) { doCom[i]=3; }
    else if (strstr(temp, "MKSchannelOn")) { doCom[i]=4; }
    else if (strstr(temp, "MKSsetFlowSetpoint")) { doCom[i]=5; }
    else if (strstr(temp, "MKSsetFlowRange")) { doCom[i]=6; }
    else if (strstr(temp, "MKSsetGCF")) { doCom[i]=7; }
    else if (strstr(temp, "MKSsetDoperLimit")) { doCom[i]=8; }
    else if (strstr(temp, "MKSsetDoperLimit")) { doCom[i]=9; }
    else if (strstr(temp, "MKSsetPressure")) { doCom[i]=10; }
    else if (strstr(temp, "MKSsetPressureRange")) { doCom[i]=11; }
    else if (strstr(temp, "MKSsetPressureRange")) { doCom[i]=70; }
}
181
186
 191
                                                                                          SPS commands **********
                                            196
201
                                                         206
                                             if (strstr(temp, "MPODsetCurrent")) { doCom[i]=21; value_f[i]=atof(PQgetvalue(res1
                                             res1, i, 2));}
else if (strstr(temp, "MPODsetFallRate")) { doCom[i]=23; value_f[i]=atof(PQgetvalue(
211
                                                             res1, i, 2));}
                                            res1,1,2));}
else if (strstr(temp, "MPODsetMaxSenseVoltage")) { doCom[i]=24; value_f[i]=atof(
        PQgetvalue(res1,i,2));}
else if (strstr(temp, "MPODsetMaxTerminalVoltage")) { doCom[i]=25; value_f[i]=atof(
        PQgetvalue(res1,i,2));}
else if (strstr(temp, "MPODsetMaxCurrent")) { doCom[i]=26; value_f[i]=atof(PQgetvalue(
        i (strstr(temp, mPODsetMaxCurrent")) { doCom[i]=26; value_f[i]=atof(PQgetvalue(
        i (strstr(temp, mPODsetMaxCurrent")) { doCom[i]=26; value_f[i]=atof(PQgetvalue(
        i (strstr(temp, mPODsetMaxCurrent)) { doCom[i]=26; value_f[i]=26; value_f[i]=26;
                                            else if (strstr(temp, "MPODsetMaxCurrent")) { doCom[i]=26; value_f[i]=atof(PQgetvalu
res1,i,2));}
else if (strstr(temp, "MPODgetMeasurementSenseVoltage")) { doCom[i]=27; }
else if (strstr(temp, "MPODgetMeasurementTerminalVoltage")) { doCom[i]=28; }
else if (strstr(temp, "MPODgetMeasurementCurrent")) { doCom[i]=29; }
else if (strstr(temp, "MPODchannel_OnOff")) { doCom[i]=30; }
else if (strstr(temp, "MPODchannelOnOff")) { doCom[i]=31; }
else if (strstr(temp, "MPODchannelOn")) { doCom[i]=32; }
else if (strstr(temp, "MPODchannelOn")) { doCom[i]=32; }
else if (strstr(temp, "MPODchannelOff")) { doCom[i]=33; }
else if (strstr(temp, "MPODchannelOff")) { doCom[i]=33; }
else if (strstr(temp, "MPODsystemOff")) { doCom[i]=34; }
else if (strstr(temp, "MPODsystemOff")) { doCom[i]=35; }
else if (strstr(temp, "MPODerrorResetGroup")) { doCom[i]=37; }
else if (strstr(temp, "MPODsetTripTimeMaxCurrent")) { doCom[i]=38; value_f[i]=atof(
PQgetvalue(res1,i,2)); }
216
221
226
                                              }
                                            231
236
                                                             res1 , i , 2 ) ) ;
                                                             if (strstr(temp, "HAMEGsetCurrent")) { doCom[i]=47; value_f[i]=atof(PQgetvalue(
res1,i,2));}
                                              else if
```

241	<pre>else if (strstr(temp, "HAMEGsetFuseStatus")) { doCom[i]=48; } else if (strstr(temp, "HAMEGsetFuseLinkComplete")) { doCom[i]=49; } else if (strstr(temp, "HAMEGsetFuseDelay")) { doCom[i]=50; } else if (strstr(temp, "HAMEGsetCommonCommands")) { doCom[i]=51; } else if (strstr(temp, "HAMEGgetCommonCommands")) { doCom[i]=52; } }</pre>
246	<pre>/* delete active queue-row */ sprintf(del_query, "DELETE FROM queue WHERE device_id>5 AND queue_id=%d",queue_id); delquery=PQexec(conn,del_query); PQclear(delquery); i_max=i; }</pre>
251	} PQclear(res1);
256	<pre>/* get (new) time for duration of main readout loop */ sprintf(time_query, "SELECT time_intervall FROM config WHERE id=3"); res=PQexec(conn,time_query); slowIntervall=atoi(PQgetvalue(res,0,0)); PQclear(res);</pre>
	sql_disconnect(conn);
261	n ewStart=0;
	/* process known (=possible) commands */ for (int l=0;l<=i_max;l++) {
266	<pre>switch (doCom[1]) { /************* MKS assflow commands ************************************</pre>
	case 1: newMKS.shortStatus(zahltemp); break:
971	case 2: newMKS.completeStatus(zahltemp);
211	<pre>case 3: printf("MKS - Now turning off Channel %d.\n",channel[1]); newMKS.channelOff(channel[1]); newMKS.shortStatus(zahltemp); break;</pre>
276	case 4: printf("MKS – Now turning on Channel %d.\n", channel[1]); pw/MKS channel[0n(channel[1]);
	newMKS.shortStatus(zahltemp);
281	<pre>case 5: printf("MKS - Set FlowSetpoint on Channel %d.\n",channel[l]); newMKS.setFlowSetpoint(channel[l],value[l]); usleep(100000); newMKS.getFlowSetpoint(channel[l]);</pre>
286	<pre>break; break; case 6: printf("MKS - Set FlowRange on Channel %d.\n",channel[1]); newMKS.setFlowRange(channel[1],value[1]); nelegn(190000);</pre>
	newMKS.getFlowRange(channel[1]); break:
291	<pre>case 7: printf("MKS - Set GasCorrectionFactor on channel %d.\n",channel[l]); newMKS.setGCF(channel[l],value[l]);</pre>
	usleep(100000); newMKS.getGCF(channel[l]); break ;
296	<pre>case 8: printf("MKS - Set upper limit on channel %d.\n", channel[l]); newMKS.setUpperLimit(channel[l], value[l]); usleep(100000); newMKS.getUpperLimit(channel[l]);</pre>
	<pre>break; case 9: printf("MKS - Set lower limit on channel %d.\n",channel[1]);</pre>
301	newMKS.setLowerLimit(channel[1],value[1]); usleep(100000); newMKS.getLowerLimit(channel[1]);
306	case 10: printf("MKS - Set PressureSetpoint.\n"); newMKS.setPressureSetpoint(value[1]);
	usleep (100000); newMKS.getPressureSetpoint();
311	<pre>break; case 11: printf("MKS - Set PressureRange.\n"); newMKS.setPressureRange(value[1]); usleep(100000);</pre>
	newMKS.getPressureRange(); break;
316	<pre>case 70: printf("MKS - Hardware Reset.\n"); newMKS.hardwareReset(); sleep(10);</pre>
	newMKS.completeStatus(zahltemp); break ;
321	/************** SPS commands *************/ case 12: printf("SPS - Now reading all channels.\n");
	a=newSPS.readVolt(newSPS.dc); a=newSPS.readCurIn(newSPS.dc);
	a=newSPS.readTemp(newSPS.dc); a=newSPS.readCurOut(newSPS.dc);
326	<pre>break; case 13: printf(" Now starting SPS.\n"); provEPS do);</pre>
	neworo.run (neworo.uc);

```
break;
case 14: printf("
                                                   Now stopping SPS.\n");
               newSPS.stop(newSPS.dc);
331
               break;
            case 15: printf("SPS - Powercycle, Channel %d\n", channel [1]);
              switch (channel [1])
                 case 1: b = CHANNEL_1;
                            break
336
                 case 2: b = CHANNEL 2;
                 break;
case 3: b = CHANNEL_3;
                            break
                 case 4: b = CHANNEL 4;
341
                 cuse f. b = OHAINNED_4;
break;
default: printf("Error, wrong channel number.\n Try again.\n");
                            return -2;
346
               d=newSPS.powercycle(newSPS.dc,channel[1],b);
            break;
case 16: printf("SPS - Setcurrent, Channel %d\n", channel[1]);
d=float(value[1]);
               d=d/10000;
               switch(channel[1]) {
    case 1: b = CHANNEL_1;
        break;
351
                 case 2: b = CHANNEL_2;
                 break;
case 3: b = CHANNEL 3;
356
                 break;
case 4: b = CHANNEL_4;
                         break;
                  default:printf("Error, wrong channel number. \n Try again \n");
361
                                     -2;
                            return
               }
d=newSPS.setCurrent(newSPS.dc, channel[1], b, d);
d=newSPS.readValue(newSPS.dc, 8, channel[1], b);
               break;
            case 17: /* ATTENTION: ONL
switch(value[l]) {
    case 1: b = CHANNEL_1;
        break;
                        /* ATTENTION: ONLY HERE channel=Database number ; value=channel number */
366
                            break
                 case 2: b = CHANNEL_2;
                 break;
case 3: b = CHANNEL 3;
371
                            break
                 case 4: b = CHANNEL 4;
                           break;
b = CHANNEL 5;
                 case 5:
376
                 break;
case 6: b = CHANNEL 6;
                 break;
default:printf("Error, wrong channel number.\n Try again.\n");
return -2;
381
               d=newSPS.readValue(newSPS.dc, channel[1], value[1], b);
               break;
                              MPOD commands *****
386
    /****
            case 18: newMPOD.completeStatus(zahltemp);
              break:
            case 19: newMPOD.shortStatus(zahltemp);
              break;
              break;
ase 20: printf("MPOD - Set Voltage %f on Channel %d.\n", value_f[1], channel[1]);
newMPOD.setVoltage(channel[1], value_f[1]);
391
               break;
ise 21:
                        printf("MPOD - Set Current on Channel %d.\n", channel[1]);
            case
               newMPOD.setCurrent(channel[l],value_f[l]);
396
            break;
case 22:
              break;
ase 22: printf("MPOD - Set VoltageRiseRate on Channel %d.\n", channel[1]);
newMPOD.setVoltageRiseRate(channel[1],value_f[1]);
            break;
case 23:
              break;
ase 23: printf("MPOD - Set VoltageFallRate on Channel %d.\n", channel[1]);
newMPOD.setVoltageFallRate(channel[1],value_f[1]);
401
               break;
            break;
case 24: printf("MPOD - Set MaxSenseVoltage on Channel %d.\n", channel[1]);
newMPOD.setConfigMaxSenseVoltage(channel[1],value_f[1]);
               break;
ise 25:
              break;
ase 25: printf("MPOD - Set MaxTerminalVoltage on Channel %d.\n", channel[1]);
newMPOD.setConfigMaxTerminalVoltage(channel[1],value_f[1]);
406
            case
            break;
case 26:
                        printf("MPOD - Set MaxCurrent on Channel %d. n", channel[1]);
              newMPOD.setConfigMaxCurrent(channel[l],value_f[l]);
411
              break;
ase 27:
                        printf("MPOD - Get \ MeasurementSenseVoltage \ of \ Channel \ \%d. \ n", \ channel [1]);
            case
              newMPOD.getMeasurementSenseVoltage(channel[l]);
               break;
se 28:
                        printf("MPOD - Get MeasurementTerminalVoltage of Channel %d. n", channel[1]);
            case
416
              newMPOD.getMeasurementTerminalVoltage(channel[1]);
               break;
              newMPOD.getMeasurementCurrent(l]);
            case
```

421	<pre>break; case 30: printf("MPOD - Get OnOff Status of Channel %d.\n", channel[1]); newMPOD.channelOnOff(channel[1]);</pre>
	<pre>break; case 31: printf("MPOD - Get OnOff Status MPOD crate.\n"); newMPOD.systemOnOff();</pre>
426	<pre>break; case 32: printf("MPOD - Now turning on Channel %d.\n", channel[1]); newMPOD.channelOn(channel[1]); newMPOD.channelStatus(channel[1]);</pre>
431	<pre>break; case 33: printf("MPOD - Now turning off Channel %d.\n",channel[1]); newMPOD.channelOff(channel[1]); newMPOD.channelStatus(channel[1]); break;</pre>
436	<pre>case 34: printf("MPOD - Now turning on MPOD Crate.\n"); newMPOD.systemOn(); break:</pre>
	<pre>case 35: printf("MPOD - Now turning off MPOD Crate.\n"); newMPOD.systemOff(); break:</pre>
441	<pre>case 36: printf("MPOD - Reset error for group %d.\n",channel[l]); newMPOD.errorResetGroup(channel[l],10); brock:</pre>
116	<pre>case 37: printf("MPOD - Reset error for channel %d.\n",channel[1]); newMPOD.errorResetChannel(channel[1],10); brock:</pre>
110	<pre>case 38: printf("MPOD - Set Trip Time for channel %d.\n", channel[1]); newMPOD.setTripTimeMaxCurrent(channel[1], value[1]); break;</pre>
451	/************* HAMEG commands ************/ case 40: newHAMEG.completeStatus(zahltemp); brook:
	case 41: newHAMEG.shortStatus(zahltemp);
456	<pre>case 42: printf("HAMEG - Now turning all Channels on.\n"); newHAMEG.allOn(); break:</pre>
4.01	<pre>case 43: printf("HAMEG - Now turning all Channels off.\n"); newHAMEG.allOff();</pre>
401	<pre>break; case 44: printf("HAMEG - Now turning on Channel %d.\n", channel[1]); newHAMEG.channelOn(channel[1]); break:</pre>
466	<pre>case 45: printf("HAMEG - Now turning off Channel %d.\n", channel[1]); newHAMEG.channelOff(channel[1]); break:</pre>
	<pre>case 46: printf("HAMEG - Set Voltage %f on Channel %d.\n", value_f[1],channel[1]); newHAMEG.setVoltage(channel[1],value_f[1]); break:</pre>
471	<pre>case 47: printf("HAMEG - Set Current %f on Channel %d.\n", value_f[1], channel[1]); newHAMEG.setCurrent(channel[1], value_f[1]); break:</pre>
476	<pre>case 48: printf("HAMEG - Set Fuse Status %d on Channel %d.\n", value[1], channel[1]); newHAMEG.setFuseStatus(channel[1], value[1]); break:</pre>
	<pre>case 49: printf("HAMEG - Set Fuse Link %d on Channel %d.\n", value[l],channel[l]); newHAMEG.setFuseLinkComplete(channel[l],value[l]); break:</pre>
481	<pre>case 50: printf("HAMEG - Set Fuse Delay %d on Channel %d.\n", value[1],channel[1]); newHAMEG.setFuseDelay(channel[1],value[1]); break:</pre>
	<pre>case 51: printf("HAMEG - Set Common Command %d.\n", value[1]); newHAMEG.commonCommandsSet(channel[1],value[1]); break:</pre>
486	<pre>case 52: printf("HAMEG - Get Common Command %d.\n", value[1]); newHAMEG.commonCommandsGet(channel[1],value[1]); break; }</pre>
491	
	<pre>if (endprogramm) { printf(" Now stopping SlowTPC Daemon\n"); break; }</pre>
496	<pre>for (int n=0; n<queue_max; channel[n]="0;</pre" docom[n]="0;" n++){=""></queue_max;></pre>
501	value[n]=0; }
	i_max=0;
506	<pre>countSensors++; //readout sensors every SENSORS LOOP - loops countHameg++; //readout sensors every HAMEG LOOP - loops /*wait for some time with the next QUEUE-check */ // usleep(500000);</pre>
	gettimeofdav(&end. 0):

```
511  } while (end.tv_sec - start.tv_sec < slowIntervall);
  /******* end of main readout- and check-Queue- Loop
  /******** end of main routine
  if (connected_mks) { newMKS.logChange("'daemonStop'"); }
  if (connected_sps) { newSPS.logChange("'daemonStop'"); }
  if (connected_mpod) { newMPOD.logCommand("'daemonStop'"); }
  if (connected_hameg) { newHAMEG.logChange("'daemonStop'"); }
  521 printf(" ... Daemon stopped, exit programm.\n\n");</pre>
```

GEM-TPC (SlowTPC.cpp)

```
#define MPOD IP_ADR_NEW "10.0.0.2"
2 #define HPN_IP_ADR "10.0.0.3"
#define UNICHILLER_IP_ADR "10.0.0.4"
#define 12C_IP_ADR "10.0.0.18"
#define ASFI IP_ADR "10.0.0.21"
#define ASF2_IP_ADR "10.0.0.23"
          \#include < pthread.h>
#include "HPn300.h"
12 #include "MPOD_new.h"
#include "Unichiller.h"
#include "ASF_1400.h"
#include "AVR_first.h"
#include "I2C_new.h"
 17
            #define UNIX STYLE
           #define SERVER PORT 10001
#define AVR PORT 2701
#define I2C_PORT 5000
 22 #define QUEUE_MAX 5000
          #define I2C_LOOP 10
#define ASF_LOOP 20
27 ost::Slog slowctrllog;
          MPOD new MPOD;

MPOD_new MPOD;
// HPn300 HV HPn(SERVER PORT, HPN IP ADR);
Unichiller Chiller (SERVER_PORT, UNICHILLER_IP_ADR);
32 ASF 1400 ASF Flow1 (SERVER_PORT, ASF1 IP ADR);
ASF 1400 ASF Flow2 (SERVER PORT, ASF2 IP ADR);
AVR_first avr(AVR_PORT, AVR_IP_ADR);
I2C_new i2c (I2C_PORT, I2C_IP_ADR);

          void *readMPODfast(void *arg1) { int conn1 = *((int *) arg1); cerr << flush; if (conn1) MPOD
        .FASTstatus (); pthread_exit((void *) arg1); }
void *readCHILLERfast(void *arg2) { int conn2 = *((int *) arg2); cerr << flush; if (conn2)
        Chiller.FASTstatus (); pthread_exit((void *) arg2); }
void *readASF1fast(void *arg3) { int conn3 = *((int *) arg3); cerr << flush; if (conn3)
        ASF_Flow1.FASTstatus(1); pthread_exit((void *) arg3); }
void *readASF2fast(void *arg4) { int conn4 = *((int *) arg4); cerr << flush; if (conn4)
        ASF_Flow2.FASTstatus(2); pthread_exit((void *) arg4); }
void *readASF4fast(void *arg5) { int conn5 = *((int *) arg5); cerr << flush; if (conn5) avr.
        FASTstatus (); pthread_exit((void *) arg5); }
void *readI2Cfast(void *arg6) { int conn6 = *((int *) arg6); cerr << flush; if (conn6) i2c.
        FASTstatus (); pthread_exit((void *) arg6); }
37 void *readMPODfast(void *arg1)
42 void
          int main(int argc, char **argv) {
    int channel[QUEUE_MAX], value[QUEUE_MAX], doCom[QUEUE_MAX], doDaemonStop, i_max, newStart,
        zahltemp, count12c, countASF,
    endprogramm, slowIntervall, queue_id, connected_mpod, connected_chiller, connected_asf1,
        connected_asf2, connected_avr, connected_i2c, status, device;
    float value f[QUEUE_MAX];
    char query[500],time_query[500],del_query[500],*clean_time_string;
    time_t clean_time;
    pthread_t threads[6];
    pthread_attr_t attr;
    int thread_created[6] = {1,1,1,1,1,1};

 47
52
                    \label{eq:posterior} P\,G\,result \ *\,res\,, \ *\,res1\ , \ *\,res2\ , \ *\,vacuumRes \ , \ *\,delquery\,;
                   PGconn * conn;
 57
                     slowctrllog.clogEnable (false);
                     status = 3;
                     d e v i c e = 0;
62
                   endprogramm = 0;
                   endprogramm=0;
connected_mpod=0;
connected_hv_hpn=0;
connected_chiller=0;
connected_asf1=0;
```

```
\begin{array}{c} {\rm connected\_asf2=0;}\\ {\rm connected\_avr=0;}\\ {\rm connected\_i2c=0;}\\ {\rm countI2c=0;}\\ {\rm countASF=0;} \end{array}
67
 72
          pthread _ attr_init(& attr);
pthread_attr_setdetachstate(& attr, PTHREAD_CREATE_JOINABLE);
          d \circ D a e m \circ n S t \circ p = 0
77
         s l o w I n t e r v a l l = 60;
n e w S t a r t = 1;
          queue_id=0;
i max=0;
          for (int n=0; n < QUEUE MAX; n++){
            doCom[n]=0;
channel[n]=0;
 ^{82}
             value [n] = 0;
          3
87
          /* Check, which hardware is connected and checked in */
         /* Oneck, which hardware is connected and checked in */
conn=sql_connect();
memset(query,0,sizeof(query));
sprintf(query,"SELECT status_code,device FROM hardware ORDER BY device");
res2=PQexec(conn,query);
        92
97
102
107
112
                endprogramm +=1;
             }
117
          }
if (endprogramm<PQntuples(res2)) {endprogramm=0;}
          PQclear(res2);
sql_disconnect(conn);
122
          gettimeofday(&start_vacuum, 0);
              ****** main routine
                                                     *****
         while (!endprogramm) {
             connesql_connect();
127
             /* Clean up database table 'aktuell' evere two hours (=7200 sec) */
gettimeofday(&end_vacuum, 0);
if ((end_vacuum.tv_sec - start_vacuum.tv_sec > 7200) || newStart) {
    clean_time=time(NULL);
    clean_time_string=ctime(&clean_time);
    clean_time_string[strlen(clean_time_string)-1]=0;
132
                memset(query,0,sizeof(query));
sprintf(query,"VACUUM FULL ANALYZE aktuell");
vacuumRes=PQexec(conn,query);
137
                PQclear(vacuumRes);
printf("Cleaned up database table 'aktuell' at %s.\n",clean_time_string);
gettimeofday(&start_vacuum, 0);
             }
142
             /* Create new event number */
memset(query,0,sizeof(query));
sprintf(query,"INSERT INTO events VALUES (nextval('events_seq'),NOW(),null)");
res1=PQexec(conn,query);
147
              /* Get latest event number */
             memset(query,0,sizeof(query));
sprintf(query,"SELECT max(event) FROM events");
res2=PQexec(conn,query);
152
             zahltemp=atoi (PQgetvalue(res2,0,0));
PQclear(res2);
             sql disconnect(conn);
```

```
157
                              Connect all active devices and do a completeStatus */
                            f (newStart) {
    f (newStart) {
        if (connected_mpod) MPOD.logCommand("'daemonStart'");
            if (connected_hv_hpn) HV_HPn.logCommand("'daemonStart'");
            if (connected_chiller) Chiller.logChange("'daemonStart'");
            if (connected_asf1) && (connected_asf2)) ASF_Flow1.logCommand("'daemonStart'");
            if (connected_i2c) i2c.logCommand("'daemonStart'");
            if (connected_i2c) i2c.logCommand("'daemonStart'');
            if (connected_i2c) i2c.logComman(iconticuteCommand(iconticuteComman(iconticuteComman(iconticuteComma
                        if
162
                              if (connected_mpod) MPOD.completeStatus(zahltemp);
                                      (connected_mpou) MrOD. completeStatus (zahltemp);
(connected_hv_hpn) HV_HPn. completeStatus (zahltemp);
(connected_chiller) { Chiller.completeStatus (zahltemp); }
(connected_asf1) ASF_Flow1.completeStatus (zahltemp,1);
(connected_asf2) ASF_Flow2.completeStatus (zahltemp,2);
(connected_avr) avr.completeStatus (zahltemp);
(connected_i2c) i2c.completeStatus (zahltemp);
167 //
                              i f
                              i f
                              if
 172
                      if (connected_12c) 12c.completeoratus(zanitemp);
} else {
    /* do the regular shortStatus */
    if (connected_mpod) MPOD.shortStatus(zahltemp);
        if (connected_hv_hpn) HV_HPh.shortStatus(zahltemp);
        if (connected_chiler) Chiller.shortStatus(zahltemp);
        if (connected_asf1) ASF_Flow1.shortStatus(zahltemp,1);
        if (connected_asf2) ASF_Flow2.shortStatus(zahltemp,2);
        if (connected_avr) avr.completeStatus(zahltemp);
    }
}
177
                       ****** main readout- and check-Queue- Loop **********/
gettimeofday(&start, 0);
do {
182
             /******
                            > {
    memset(query,0,sizeof(query));
    memset(time_query,0,sizeof(time_query));
    memset(del_query,0,sizeof(del_query));
    conn=sql_connect();
187
192
                                      deleting odd 'daemonStop' */
                             if (newStart) {
    sprintf(query, "DELETE FROM queue WHERE command='daemonStop'");
                                   res=PQexec(conn,query);
printf("Deleting odd 'daemonStop' from QUEUE (if necessary).\n");
 197
                                   PQclear(res);
                             }
                             /* fast readout */
                            /* fast readout */
    if (connected_mpod) MPOD.FASTstatus ();
    if (connected_mpod) thread_created[0] = pthread_create(&threads[0], &attr, &
        readMPODfast, &connected_mpod);
    if (connected_chiller) thread_created[1] = pthread_create(&threads[1], &attr, &
        readCHILLERfast, &connected_chiller);
202
                             if (countASF>ASF_LOOP) {
    if (connected_asf1) thread_created[2] = pthread_create(&threads[2], &attr, &
        readASF1fast, &connected_asf1); //readout ASF Flow+Preassure every ASF_LOOP --
                                                  loops
                                                 207
                                    if (connected
                                                 if (connected avr)
                                   countASF=0;
                              if (connected_i2c && countI2c>I2C_LOOP) {
                                                                                                                                                                                   //readout I2C Temperatures every
                                   thread created [5] = pthread create(&threads[5], &attr, &readI2Cfast, &connected_i2c); countI2c=0;
212

}
if (countASF>ASF_LOOP) { //readout ASF Flow+Preassure every ASF_LOOP - loops
if (connected_asf1) ASF_Flow1.FASTstatus(1);
if (connected_asf2) ASF_Flow2.FASTstatus(2);
if (connected_avr) avr.FASTstatus();
countASF=0.
217
                                   countASF = 0;
                             3
222
                              / * wait for
                                                              threads to be finished */
                             }
                             227
                              if (PQntuples(res1)>0) {
    for(int i=0;i<PQntuples(res1);i++){</pre>
232
                                         char temp [255];
```

```
sprintf(temp, "%s", PQgetvalue(res1,i,0));
channel[i]=atoi(PQgetvalue(res1,i,1));
237
                                                           value [i] = atoi (PQgetvalue (res1, i, 2));
queue_id=atoi (PQgetvalue (res1, i, 3));
                                                            /* check active queue-row for known (= possible) commands */
/* MARK: commands that do not appaer here will be ignored and deleted */
if (strstr(temp,"daemonStop")){ endprogramm=1; }
242
                                                                              ***** MPOD commands (1-30)
                                                          247
                                                                             res1, i, 2));]
                                                            else if
                                                                                             (strstr(temp, "MPODsetRiseRate")){ doCom[i]=5; value f[i]=atof(PQgetvalue(
                                                                               res1
                                                                                                , i , 2 ) ) ; ]
                                                            res1,1,2);;
else if (strstr(temp,"MPODsetFallRate")){ doCom[i]=6; value_f[i]=atof(PQgetvalue(
    res1,i,2));}
else if (strstr(temp,"MPODsetMaxSenseVoltage")){ doCom[i]=7; value_f[i]=atof(
252
                                                                             else if
                                                         else if (strstr(temp, "MPODsetMaxCurrent")) { doCom[i]=9; value_f[i]=atof(PQgetvalue(
res1, i, 2));}
else if (strstr(temp, "MPODsetSupervisionBehaviour")) { doCom[i]=10; }
else if (strstr(temp, "MPODsetSupervisionCurrent")) { doCom[i]=11; value_f[i]=atof(
PQgetvalue(res1, i, 2));}
else if (strstr(temp, "MPODchannel_OnOff")) { doCom[i]=13; }
else if (strstr(temp, "MPODchannel_OnOff")) { doCom[i]=14; }
else if (strstr(temp, "MPODchannel_OnOff")) { doCom[i]=15; }
else if (strstr(temp, "MPODchannelOn")) { doCom[i]=15; }
else if (strstr(temp, "MPODchannelOff")) { doCom[i]=16; }
else if (strstr(temp, "MPODsystemOff")) { doCom[i]=20; }
else if (strstr(temp, "MPODsetTripTimeMaxCurrent")) { doCom[i]=21; value_f[i]=atof(
PQgetvalue(res1, i, 2)); }
}
                                                            else if
257
262
267
                                                        272
                                    res1, i, 2)); j
                                                            else
                                                                                  if (strstr(temp, "HPn300setCurrent")) \{ doCom[i] = 62; value \_ f[i] = atof(PQgetvalue(i)) \} = 0
                                     res1,i,2));j
                                    PQgetvalue(res1, i, 2))
277
                                                           else \quad if \quad (strstr(temp, "HPn300setCurrentLimit")) \{ \ doCom[i]=65; \ value \_ f[i]=atof(i) = f(i) = f(i)
                                   else if (strstr(temp,"HPn300setGurrentLinni"))1 accom[i]=
PQgetvalue(res1,i,2);}
else if (strstr(temp,"HPn300hvOn")){ doCom[i]=66; }
else if (strstr(temp,"HPn300hvOff")){ doCom[i]=67; }
else if (strstr(temp,"HPn300killEnable")){ doCom[i]=68; }
else if (strstr(temp,"HPn300killDisable")){ doCom[i]=69; }
else if (strstr(temp,"HPn300emOff")){ doCom[i]=70; }
else if (strstr(temp,"HPn300errorReset")){ doCom[i]=71; }
,
282
                                                                                                      287
292
                                                         if (connected_asf1 && connected_asf2) {
    (connected_asf1 && connected_asf2) {
        if (strstr(temp, "ASFcompleteStatus")) { doCom[i]=106; }
        else if (strstr(temp, "ASFsetResolution")) { doCom[i]=107; }
        else if (strstr(temp, "ASFsetResolution")) { doCom[i]=108; }
        else if (strstr(temp, "ASFsetDisplayMode")) { doCom[i]=109; }
        else if (strstr(temp, "ASFsetDisplayMode")) { doCom[i]=110; }
        else if (strstr(temp, "ASFsetDisplayMode")) { doCom[i]=110; }
        else if (strstr(temp, "ASFsetDisplayMode")) { doCom[i]=110; }
        else if (strstr(temp, "ASFsetDisplayMode")) { doCom[i]=112; }
        else if (strstr(temp, "ASFseter")) { doCom[i]=113; }
    }
}
297
302
 307
                                                                    ******* I2C Tempperature commands (126-130) ***********************
                                                           if (connected_i2c) {
    if (strstr(temp, "I2CcompleteStatus")){ doCom[i]=126; }
```

```
/* delete active queue-row */
sprintf(del_query,"DELETE FROM queue WHERE queue_id=%d",queue_id);
delquery=PQexec(conn,del_query);
PQclear(delquery);
i_max=i;
                   else if (strstr(temp, "I2CshortStatus")){ doCom[i]=127; }
312
317
                  i_{max=i};
               }
             ,
PQclear(res1);
             /* get (new) time for duration of main readout loop */
sprintf(time_query, "SELECT time_intervall FROM config WHERE id=3");
res=PQexec(conn,time_query);
slowIntervall=atoi(PQgetvalue(res,0,0));
PQclear(rea);
322
             PQclear(res);
327
             sql disconnect (conn);
             \mathrm{n\,e\,w\,S\,t\,ar\,t}=0\,;
             /* process known (=possible) commands */ for (int l=0;l<=i_max;l++) {
332
               337
                  break
               case 2: MPOD. shortStatus(zahltemp);
break;
                case 3: printf("MPOD - Set Voltage %f on Channel %d.\n", value f[1], channel[1]);
                  MPOD. setVoltage(channel[l],value_f[l]);
break;
342
               break;
case 4: printf("MPOD - Set Current on Channel %d.\n", channel[1]);
MPOD.setCurrent(channel[1],value_f[1]);
                  break;
ase 5: printf("MPOD - Set VoltageRiseRate on Channel %d.\n", channel[1]);
MPOD.setVoltageRiseRate(channel[1],value_f[1]);
347
                case
                  meak,
ase 6: printf("MPOD - Set VoltageFallRate on Channel %d.\n", channel[1]);
MPOD.setVoltageFallRate(channel[1],value_f[1]);
352
                  break;
ase 7:
                 meak,
ase 7: printf("MPOD - Set MaxSenseVoltage on Channel %d.\n", channel[1]);
MPOD.setConfigMaxSenseVoltage(channel[1],value_f[1]);
                case
                  break;
                          ,
printf("MPOD - Set MaxTerminalVoltage on Channel %d.\n", channel[l]);
                case
                  MPOD. setConfigMaxTerminalVoltage(channel[1], value f[1]);
357
                  break;
                  ase 9: printf("MPOD - Set MaxCurrent on Channel %d.\n", channel[1]);
MPOD.setConfigMaxCurrent(channel[1],value_f[1]);
                case
                  break;
                      10: printf("MPOD -
                                               Set SupervisionBehaviou
                                                                                  of Channel %d.\n", channel[1]);
362
                case
                  MPOD. setSupervisionBehavior(channel[1], value[1]);
                  break;
                  break;
ase 11: printf("MPOD – Set SupervisionCurrent of Channel %d.\n", channel[1]);
MPOD.setSupervisionMaxCurrent(channel[1],value_f[1]);
                case
367
               break;
case 12: printf("MPOD - Set SupervisionTerminalVoltage of Channel %d.\n", channel[1])
                  MPOD. setSupervisionMaxTerminalVoltage(channel[l], value f[l]);
               break;
case 13: printf("MPOD - Get OnOff Status of Channel %d.\n", channel[1]);
372
                  MPOD.channelOnOff(channel[l]);
                  break;
               case 14: printf("MPOD - Get OnOff Status MPOD crate.\n");
MPOD.systemOnOff();
                  break;
see 15: printf("MPOD - Now turning on Channel %d.\n", channel[1]);
377
                case
                  MPOD.channelOn(channel[1]);
               break;
case 16: printf("MPOD - Now turning off Channel %d.\n",channel[1]);
MPOD.channelOff(channel[1]);
382
               break;
case 17: printf("MPOD - Now turning on MPOD Crate.\n");
                  MPOD.systemOn();
               break;
case 18: printf("MPOD - Now turning off MPOD Crate.\n");
                  MPOD systemOff();
387
               break;
case 19: printf("MPOD - Reset error for group %d.\n", channel[1]);
MPOD.errorResetGroup(channel[1],10);
                  break;
                      20: printf("MPOD - Reset error for channel %d.\n",channel[1]);
392
                case
                  MPOD. errorResetChannel(channel[1],10);
                 break;
ase 21: printf("MPOD - Set Trip Time for channel %d.\n", channel[1]);
MPOD.setTripTimeMaxCurrent(channel[1], value[1]);
                cas
397
```

```
break;
case 60: HV_HPn.shortStatus(zahltemp);
402
                   case 61: printf("HV HPn - Set Voltage to %f kV. | n", value_f[l]);
HV_HPn. setVoltage(value_f[l]);
break;
                      break;
                    dream;
case 62: printf("HV_HPn - Set Current.\n");
HV_HPn.setCurrent(value_f[l]);
407
                   break;
case 63: printf("HV_HPn - Set VoltageRampSpeed. | n");
HV_HPn.setRampSpeed(value_f[i]);
412
                       break;
                        rreak;
se 64: printf("HV_HPn - Set VoltageLimit.\n");
HV_HPn.setVoltageLimit(value_f[l]);
                    case
                   HV_HHn.setvonagez....,

break;

case 65: printf("HV_HPn - Set CurrentLimit.\n");

HV_HPn.setCurrentLimit(value_f[l]);

break;

case 66: printf("HV_HPn - HV on.\n");

HV_HPn.hvOn();

break:
417
                      422
                    break;
case 68: printf("HV HPn - KILL enable.\n");
                     HV_HPn. KillEnable();
427
                      break:
                   break;
case 69: printf("HV_HPn - KILL disable.\n");
HV_HPn.KillDisable();
break;
case 70: printf("HV_HPn - Emergency off.");
HV_HPn.EmergencyOff();
break;
432
                    case 71: printf("HV_HPn - Reset error.");
HV_HPn.errorReset();
                      b r e a k;
437
                   *****
                                          case 75: Chiller.completeStatus(zahltemp);
                   break;
case 76: Chiller.shortStatus(zahltemp);
                   break;
case 77: printf("Unichiller - Start regulation.");
Chiller_turnOn();
442
                        sleep(2);
                       Chiller getStatus();
                   break;
case 78: printf("Unichiller - Stop regulation.");
Chiller.turnOff();
447
                       sleep(2);
Chiller.getStatus();
                      break;
break;
ise 79: printf("Unichiller - Set Temperature Set Point to %f C.",value_f[1]);
Chiller.setTemperatureSetPoint(value_f[1]);
452
                    case
                   break;
case 80: printf("Unichiller - Get Status.");
457
                       Chiller.getStatus();
                   case 106: ASF_1400 Flow+Temp commands (86-105) ************/
ASF_Flow1.completeStatus(zahltemp,1);
ASF_Flow2.completeStatus(zahltemp,2);
avr.completeStatus(zahltemp);
break;
case 107.ASD_T;
462
                   case 107: ASF_Flow1.shortStatus(zahltemp,1);
ASF_Flow2.shortStatus(zahltemp,2);
avr.completeStatus(zahltemp);
break;
467
                    case 108: printf("ASF - Set Resolution on Channel %d.\n",channel[1]);
if (channel[1]==1) { ASF_Flow1.setResolution(1,value[1]); }
else_if (channel[1]==2) { ASF_Flow2.setResolution(2,value[1]); }
472
                       break;
                   case 109: printf("ASF - Set Mode on Channel %d.\n",channel[l
if (channel[l]==1) { ASF_Flow1.setMode(1,value[l]); }
else if (channel[l]==2) { ASF_Flow2.setMode(2,value[l]); }
                                                                                                       , channel[1]);
                       break;
                   case 110: printf("ASF - Set Display Mode on Channel %d.\n",channel[1]);
if (channel[1]==1) { ASF_Flow1.setDisplayMode(1,value[1]); }
else if (channel[1]==2) { ASF_Flow2.setDisplayMode(2,value[1]); }
477
                   482
                   487
                   break;
case 113: printf("ASF - RESET on Channel %d.\n",channel[1]);
                      if (channel[l]==1) { ASF_Flow1.reset(1); }
else if (channel[l]==2) { ASF_Flow2.reset(2); }
```

```
492
              break;
            497
                     break;
            }
           }
          if (endprogramm) {
    printf("
    break;
502
                                  Now stopping SlowTPC Daemon ... \ n");
           }
          for (int n=0; n<QUEUE_MAX;n++){
    doCom[n]=0;
    channel[n]=0;
    value[n]=0;</pre>
507
          i max=0;
512
          517
          /*wait for some time with the next QUEUE-check */
usleep(500000);
     gettimeofday(&end, 0);
} while (end.tv_sec - start.tv_sec < slowIntervall);
'********* end of main readout- and check-Queue- Loop **********/</pre>
522
      }
      for (int k=0; k<7; k++) { if (thread_created[k]==0) { if (pthread_join(threads[k], NULL)
==0) thread_created[k]=1; else printf("Thread %d not joined, will try again\n",k); } }
      527
    pthread_attr_destroy(& attr);
pthread_exit(NULL);
}
532
```

D.2 Schnittstellenklassen der Hardwarekomponenten

ASF 1400 (ASF 1400.h)

```
class ASF_1400 {
   public:
     ASF_1400(int port, char *hostname); //Konstruktor
   ASF_1400(int port); //Konstruktor
   ~ASF_1400(); //Destruktor
 4
                      connectASF ();
disconnectASF ();
          int
int
 9
          void
                     usage();
                      logFloat (char command[40], int channel, float value, int changed);
logString (char command[40], int channel, char value[8]);
logInt (char command[40], int channel, int value);
logChange (char command[40], int channel);
logCommand (char command[40]);
          void
          void
14
          void
          void
          void
                      sendCommand (char command[30]);
sendRecieveCommand (char command[50], char buffer[500]);
           int
19
          int
                      completeStatus (int count, int channel);
shortStatus (int count, int channel);
FASTstatus (int count);
          void
           void
          void
^{24}
                      getFlow (int channel);
getTemperature (int channel);
getFlowTemperature (int channel, int nofast);
          int
           int
          int
                      go (int channel);
29
          void
                      stop (int channel);
reset (int channel);
           void
          void
           void
                      setResolution (int channel, int res);
                    setResolution (int channel, int res);
getResolution (int channel);
setMode (int channel, int mode);
getMode (int channel);
setDisplayMode (int channel, int disp_mode);
getDisplayMode (int channel);
34
          int
void
          int
          void
int
39
          float OLDtemp;
float OLDflow;
        private:
44
                  sock;
connected;
          int
          int
          struct sockaddr_in address;
struct in addr *atoaddr (char *address);
49
      public:
          void
                      init(int port, char *hostname);
     int
};
54
                      d\,a\,t\,a\_p\,re\,s\,en\,t\,(\,)\,\,;
```

AVR NET I/O (AVR first.h)

```
class AVR_first {
       class AVR_first (

public:

AVR_first(int port, char *hostname); //Konstruktor

AVR_first(int port); //Konstruktor

~AVR_first(); //Destruktor
 5
                     connectAVR ();
disconnectAVR ();
          int
          int
10
          void
                    usage();
                   logFloat (char command[40], int channel, float value, int changed);
logString (char command[40], int channel, char value[8]);
logInt (char command[40], int channel, int value);
logChange (char command[40], int channel);
logCommand (char command[40]);
          void
          void
          void
15
          void
          void
                     sendCommand (char command[30]);
sendRecieveCommand (char command[50], char buffer[500]);
          int
          int
20
                       completeStatus (int count);
          void
          void
                     FASTstatus ();
```

```
getPressure (int channel);
getPressureMean (int channel, int nofast);
getPT100 (int channel);
      int
25
       int
      int
               getStatus ();
      int
30
     private:
               sock;
connected;
      int
       int
      struct sockaddr_in address;
struct in_addr *atoaddr (char *address);
35
       float OLDvalue [6]:
40 public:
               init(int port, char *hostname);
      void
      int
               data_present();
    };
```

Hameg HMP 4040 (HAMEG 4040.h)

```
1 class HAMEG 4040 {
        ilass framEd_bit {
    public:
    HAMEG_4040(int port, char *hostname); //Konstruktor
    HAMEG_4040(int port); //Konstruktor
    ~HAMEG_4040(); //Destruktor
 6
           void
                       usage();
                       connectHAMEG ();
disconnectHAMEG ();
logValue (char Fname[20], int channel, float value);
logStatus (char Fname[20], int channel, int value);
logChange (char Fname[20], int channel);
logChange (char Fname[20]);
           int
           int
11
           void
           void
           void
           void
           void
                       logError (char Fname[20], int channel, char value[8]);
16
                        sendCommand (char command[12]);
sendRecieveCommand (char command[12], char buffer[8]);
           int
           int
                        completeStatus (int count);
shortStatus (int count);
21
           void
           void
                        allOn ();
allOff ();
           void
           void
26
                        channelStatus (int channel);
channelOn (int channel);
channelOff (int channel);
           \mathbf{int}
           void
           void
                        getVoltage (int channel);
setVoltage (int channel, float value);
getCurrent (int channel);
setCurrent (int channel, float value);
31
           int
           void
           int
void
36
                        getFuseStatus (int channel);
setFuseStatus (int channel, int value);
           int
           void
                       setFuseStatus (int channel, int value);
getFuseLink (int channel);
setFuseLink (int channel);
setFuseLinkComplete (int channel, int link);
setFuseUnLink (int channel, int link);
getFuseDelay (int channel);
setFuseDelay (int channel, int value);
getTrip (int channel);
commonCommandsSet (int command, int enableLog = 0);
commonCommandsGet (int command, int enableLog = 0);
           int
void
41
           void
           void
           int
            void
           int
           void
46
           void
                        FASTlogValue (char Fname[20], int channel, float value, int changed);
FASTlogStatus (char Fname[20], int channel, int value, int changed);
           void
           void
                        FASTstatus ();
FASTchannelStatus (int channel, int i);
51
           void
           \mathbf{int}
                        FASTgetVoltage (int channel, int i);
FASTgetCurrent (int channel, int i);
FASTgetTrip (int channel, int i);
           int
           int
           int
56
         private:
                        sock;
           int
           int
                        connected;
61
           struct sockaddr_in address;
struct in_addr *atoaddr (char *address);
         public:
```

```
66 void init(int port, char *hostname);
int data_present();
int OLDchannelStatus[HAMEG_CHANNEL_COUNT];
float OLDgetVoltage[HAMEG_CHANNEL_COUNT];
float OLDgetCurrent[HAMEG_CHANNEL_COUNT];
int OLDgetTrip[HAMEG_CHANNEL_COUNT];
};
```

iseg HPn300 (HPn300.h)

```
class HPn300 {
      class Hrhoud {
    public:
    HPn300(int port, char *hostname); //Konstruktor
    HPn300(int port); //Konstruktor
    ~HPn300(); //Destruktor
 5
         void usage();
                   connectHPn300 ();
disconnectHPn300 ();
         int
10
         in t
                  logFloat (char command[20], float value);
logString (char command[20], char *value);
logCommand (char command[20]);
         void
         void
         void
15
                   sendCommand (char *data);
sendRecieveCommand (char *data, char *buffer, int buf_length);
         int
         int
                   completeStatus (int count);
         void
20
         void
                    shortStatus (int count);
          // int
                                  getID()
                   getLamStatus ();
         void
         void
                    getStatus ();
25
                   hvOn ();
hvOff ();
KillEnable ();
KillDisable ();
EmergencyOff ();
         int
int
         int
         int
30
         int
                   setVoltage (float value);
getVoltage ();
getMeasuredVoltage ();
setRampSpeed (float value);
getRampSpeed ();
setVoltageLimit (float value);
getVoltageLimit ();
         int
         void
         void
35
         int
        void
int
         void
                    setCurrent (float value);
40
         int
                   setCurrent (float value);
getCurrent ();
getMeasuredCurrent ();
setCurrentLimit (float value);
getCurrentLimit ();
         void
         void
         int
         void
45
         void errorReset ();
     private:
50
         int sock;
         int
                   connected;
        struct sockaddr_in address;
struct in_addr *atoaddr (char *address);
55
     public:
         void init(int port, char *hostname);
int
60 };
                   data_present();
```

l²C (l2C_new.h)

```
virtual bool I2CRead(unsigned char address, int num_bytes, unsigned char *data);
virtual bool I2CWrite(unsigned char address, int num_bytes, unsigned char *data);
virtual bool I2CReadRegister(BYTE address, BYTE subaddr, int num_bytes, BYTE* data);
virtual bool SlaveExists(unsigned char address);
13
           void
                       logCommand (char command[20]);
                       logCommand (char command[20]);
logChange (char command[20], int channel);
logString (char command[20], int channel, char value[8]);
logFloat (char command[20], int channel, float value, int changed);
logError (char command[40], int channel, int value);
18
           void
           void
           void
           void
23
          void completeStatus (int count);
void FASTstatus ();
          void getADCTemperature (int channel, int nofast);
void getADCValue (int channel);
^{28}
      protected :
          rotected:
BYTE GetChecksum(BYTE *data, int length);
bool SendUdp(BYTE data[], int numBytes);
bool ReadAnswer(BYTE& cmd, BYTE buffer[], int& numBytes);
bool ReadAnswer(WORD& msg, BYTE& ack, BYTE buffer[], int& numBytes);
33
          int fTimeout;
        private:
                      sock:
38
          int
                     sock ,
connected ;
          int
          struct sockaddr_in address;
struct in_addr *atoaddr (char *address);
43
          unsigned char getChip (int channel);
float getChannelFactor(int channel, int value);
float getTemperature (unsigned char *data, int channel);
float getPressure (unsigned char *data, int channel);
48
           float OLDvalue [16];
           int
                      count;
      public:
          53
                       data_present();
58 };
```

MKS 647b (MKS 647B.h)

```
class MKS_647B {
        public
          MKS_647B(int port, char *hostname); //Konstruktor
MKS_647B(int port); //Konstruktor
~MKS_647B(); //Destruktor
 \mathbf{5}
          void usage();
                     connectMKS ();
disconnectMKS ();
logValue (char Fname[20], int channel, int value);
logChange (char Fname[20]);
logChange (char Fname[20], int channel);
logStatus (char Fname[20], int channel, char value[8]);
logError (char Fname[20], int channel, char value[8]);
          int
10
          int
          void
void
           void
           void
15
          void
          int
                       sendCommand (char command[12]);
sendRecieveCommand (char command[12], char buffer[8]);
           int
20
          void
                       hardwareReset ();
                       completeStatus (int count);
shortStatus (int count);
           void
          void
                       channelOn (int channel);
channelOff (int channel);
channelStatus(int channel);
          void
25
           void
          int
                       setFlowSetpoint (int channel, int value);
           void
                       setFlowSetpoint (int channel, int value);
getFlow (int channel);
getFlowSetpoint (int channel);
setFlowRange (int channel, int rangeCode);
getFlowRange (int channel);
getFlowOffset (int channel);
30
          int
int
           void
          int
           int
35
           hiov
                       setPressureSetpoint (int value);
                       getPressure ();
getPressureSetpoint ();
setPressureRange (int rangeCode);
          int
          int
          void
```

```
getPressureRange ();
getPressureOffset();
40
        int
        int
                  setGCF (int channel, int factor);
getGCF (int channel);
         void
        int
45
         void
                  setUpperLimit (int channel, int value);
getUpperLimit (int channel);
        int
                  setLowerLimit (int channel, int value);
getLowerLimit (int channel);
         void
50
        int
                  FASTlogValue (char command[20], int channel, int value, int changed);
FASTlogStatus (char command[20], int channel, char value[8], int changed);
FASTstatus ();
FASTchannelStatus(int channel, int i);
FASTgetFlow (int channel, int i);
        void
         void
        void
55
         in t
        int
      private:
60
        int
                  sock:
                  connected;
        int
        int channel_list [CHANNEL_COUNT+1];
void setChannelList ();
65
        struct sockaddr_in address;
struct in_addr *atoaddr (char *address);
    public:
70
        void init(int port, char *hostname);
        int
                  data present();
                  OLDchannelStatus [CHANNEL COUNT][8];
         char
75
        \mathbf{in}\,\mathbf{t}
                  OLDgetFlow[CHANNEL_COUNT];
     }:
```

MPOD-Crate (MPOD new.h)

```
class MPOD_new {
   public:
    MPOD_new(); //Konstruktor
    ~MPOD_new(); //Destruktor
  5
              int
                              connectMPOD (char *hostname);
                              connectMPOD ();
disconnectMPOD ();
              in t
              int
10
              void
                              usage();
                              logFloat (char command[40], int channel, float value);
logString (char command[40], int channel, char value[8]);
logInt (char command[40], int channel, int value);
logChange (char command[40], int channel);
logCommand (char command[40]);
logError (char command[40], int channel, char value[8], int send_mail);
              void
              void
              void
15
              void
              void
              void
                              getInt (char com[40], int& read_value);
getFloat (char com[40], float& read_value);
getDouble (char com[40], double& read_value);
getString (char com[40], u_char *return_value, int getcount);
getStatus (char com[40], char *erg);
setInt (char com[40], int value_in, int& value);
setFloat (char com[40], float value_in, float& value);
              int
20
              int
              int
              int
              \mathbf{in}\,\mathbf{t}
               i n t
25
             int
              void
                               completeStatus (int count);
                              shortStatusChannel (int count, int channel);
shortStatusChannel (int count, int channel);
              void
              void
30
              void
                             systemStatus ();
systemOnOff ();
systemOn ();
systemOff ();
              void
             void
void
35
              void
              void
                               channelStatus (int channel);
                              channelOnOff (int channel);
channelOn (int channel);
channelOff (int channel);
              void
              void
40
              void
                              getVoltage (int channel);
getCurrent (int channel);
getVoltageRiseRate (int channel);
getVoltageFallRate (int channel);
getMeasurementSenseVoltage (int channel);
getMeasurementTerminalVoltage (int channel);
getMeasurementTermerature (int channel);
              void
              void
             void
void
45
              void
              void
              void
              void
```

```
getSupervisionBehavior (int channel);
getSupervisionMinSenseVoltage (int channel);
getSupervisionMaxSenseVoltage (int channel);
getSupervisionMaxTerminalVoltage (int channel);
getSupervisionMaxCurrent (int channel);
getSupervisionMaxPower (int channel);
getConfigMaxSenseVoltage (int channel);
getConfigMaxTerminalVoltage (int channel);
 50
               void
                void
                void
                void
                void
  55
                void
                void
                void
                                getConfigMaxCurrent (int channel);
getTripTimeMaxCurrent(int channel);
                void
                void
  60
               void
                                getName(int channel);
                              setVoltage (int channel, float value_in);
setCurrent (int channel, float value_in);
setVoltageRiseRate (int channel, float value_in);
setVoltageFallRate (int channel, float value_in);
setSupervisionBehavior (int channel, int value_in);
setSupervisionMaxSenseVoltage (int channel, float value_in);
setSupervisionMaxTerminalVoltage (int channel, float value_in);
setSupervisionMaxCurrent (int channel, float value_in);
setSupervisionMaxCourrent (int channel, float value_in);
setSupervisionMaxCourrent (int channel, float value_in);
setConfigMaxSenseVoltage (int channel, float value_in);
setConfigMaxTerminalVoltage (int channel, float value_in);
setConfigMaxCurrent (int channel, float value_in);
setConfigMaxCurrent (int channel, float value_in);
setTripTimeMaxCurrent (int channel, int value_in);
                void
                void
               void
  65
                void
                void
                void
                void
                                                                                                                                                                                   value_in);
                 void
  70
                void
                void
                void
                void
                void
  75
                void
                               errorResetChannel (int channel, int write_value);
errorResetGroup (int group, int write_value);
                void
                void
  80
                void
                                FASTlogFloat (char command [40], int channel, float value, int changed);
                                FASTlogInt (char command [40], int channel, int value, int changed);
FASTlogString (char command [40], int channel, char value [8], int changed);
FASTrotatus ().
                void
void
                               FASTestIng (char command[40], int channel, char value
FASTstatus ();
FASTchannelStatus (int channel, int i);
FASTchannelOnOff (int channel, int i);
FASTgetVoltage (int channel, int i);
FASTgetCurrent (int channel, int i);
FASTgetMeasurementTerminalVoltage (int channel, int i);
FASTgetMeasurementTerminalVoltage (int channel, int i);
                void
                void
  85
                void
                void
                void
                void
                void
                               FASTgetMeasurementCurrent (int channel, int i);
FASTgetMeasurement (int channel, int i);
  90
                void
                void
                              FASTsystemOnOff ();
               void fillAktuell ();
 95 private:
               netsnmp_session session , *ss;
netsnmp_pdu *pdu;
netsnmp_pdu *response;
               netsnmp_variable_list *vars;
100
                char
                                  *names_cur;
name[MAX_OID_LEN];
                o i d
               size_t name_length;
                               connected;
channel_list[30];
105
               int
                int
                void setChannelList ();
110
                char
                                OLDchannelStatus [30][5];
                                OLDchannelOnOff[30];
OLDgetVoltage[30];
OLDgetCurrent[30];
                int
                \mathbf{int}
                int
                                OLDgetMeasurementTerminalVoltage [30];
OLDgetMeasurementCurrent [30];
                int
115
                int
                                OLDsystemOnOff;
OLDsystemStatus [5];
               int
               int
          }:
```

SPS (SPS.h)

```
class Sps_Tpc {
     public:
daveConnection * dc;
       Sps_Tpc(); //Konstruktor
~Sps_Tpc(); //Destruktor
 4
                  connectSPS ();
       int
                 connectors();
usage();
logValue (char Fname[20], int DBnr, int channel, float value);
logChange (char Fname[20]);
logError (char Fname[20], int DBnr, int channel, float value);
        void
 9
        void
        void
        void
        void
                 run (daveConnection *dc);
14
       void
                 stop (daveConnection *dc);
                 completeReadout(daveConnection *dc, int count);
readVolt (daveConnection *dc, int printvalues=0);
        void
        int
```

```
int readCurIn (daveConnection *dc, int printvalues=0);
int readTemp (daveConnection *dc, int printvalues=0);
int readCurOut (daveConnection *dc, int printvalues=0);
float readValue (daveConnection *dc, int DBnr, int channel, int DBchannel);
19
              float setCurrent (daveConnection *dc, int channel, int DBchannel, float value);
float powercycle (daveConnection *dc, int channel, int DBchannel);
void status (daveConnection *dc);
24
                              FASTlogValue (char Fname[20], int DBnr, int channel, float value, int changed);
FASTstatus(daveConnection *dc);
FASTreadVolt (daveConnection *dc, int printvalues=0);
FASTreadCurln (daveConnection *dc, int printvalues=0);
FASTreadTemp (daveConnection *dc, int printvalues=0);
FASTreadCurOut (daveConnection *dc, int printvalues=0);
               void
              void
29
               int
              int
               int
              int
                              readSZL (daveConnection *dc, int id, int index);
readSZLAll (daveConnection *dc);
loadBlocksOfType (daveConnection * dc, int blockType);
              void
34
               void
              void
           private:
             private:
float voltages_in[4];
float currents_in[4];
float temperatures_in[6];
float currents_out[4];
39
             float OLDvoltages_in[4];
float OLDcurrents_in[4];
float OLDtemperatures_in[6];
float OLDcurrents_out[4];
44
         };
```

Unichiller (Unichiller.h)

```
class Unichiller {
2 public:
        Unichiller(int port, char *hostname);
Unichiller(int port);
        Unichiller();
 7
        void usage();
                connectUnichiller ();
disconnectUnichiller ();
logValue (char command[20], float value);
logChange (char command[20]);
logStatus (char command[20], int value);
        int
        int
        void
12
        void
        void
                 sendCommand (char *data);
sendRecieveCommand (char *data, char *buffer, int buf_length);
       int
       int
17
                 completeStatus (int count);
        void
        void
                 shortStatus (int count);
        void
                 getStatus ();
22
        int
                 rescue ();
                 turnOn ();
turnOff ();
        in t
       int
                 getTemperatureIntern ();
getTemperatureExtern ();
       void
27
        void
                 getTemperatureSetPoint ();
setTemperatureSetPoint (float value);
        void
       int
^{32}
       void
                 getAnalogSetPoint ();
                 FASTlogValue (char command [20], float value, int changed);
FASTlogStatus (char command [20], int value, int changed);
FASTstatus ();
        void
37
        void
        void
        void
                 FASTgetTemperatureIntern ()
FASTgetTemperatureExtern ()
        void
                FASTgetTemperatureSetPoint ();
       void
42
    private:
       int sock;
                connected;
       int
47
       struct sockaddr_in address;
struct in_addr *atoaddr (char *address);
        float OLDtempIntern;
        float OLDtempExtern;
float OLDtempSetPoint;
52
       int
                OLDstatus :
```
```
public:
57 void init(int port, char *hostname);
int data_present();
};
```

D.3 SPS-Anweisungsliste

```
DATA BLOCK DB 1
TITLE = Analogbaugruppe 1 Rohdaten (AI 8x16Bit), Spannung
VERSION : 1.0
STRUCT
\begin{array}{c} \text{STRUCT} \\ 5 & \text{CH} = 0 \quad \text{V1} \quad \text{raw} : : \\ & \text{CH} = 1 \quad \text{V2} \quad \text{raw} : : \\ & \text{CH} = 2 \quad \text{V3} \quad \text{raw} : : \\ & \text{CH} = 3 \quad \text{V4} \quad \text{raw} : \\ & \text{END} \quad \text{STRUCT} ; \\ 10 \quad \text{BEGIN}^{-1} \\ & \text{CH} = 0 \quad \text{V1} \quad \text{cm} \end{array}
                                                   WORD;
                                                                       //Kanal 0 - Spannung 1
//Kanal 1 - Spannung 2
//Kanal 2 - Spannung 3
//Kanal 3 - Spannung 4
                                                   WORD ;
WORD ;
                                                   WORD ;
DATA_BLOCK DB 2
REAL ;
REAL ;
                                                                      //Spannung 1
//Spannung 2
//Spannung 3
//Spannung 4
                Voltage_1
               Voltage_3
Voltage_4
                                               REAL
                                                           ;
25
                                              REAL :
       END_STRUCT ;
BEGIN
               30
       END_DATA_BLOCK
DATA BLOCK DB 3
35 TITLE = Analogbaugruppe 1 Rohdaten (AI 8x16Bit), Strom
VERSION : 1.0
STRUCT
            CH_4_I1_raw :
CH_5_I2_raw :
CH_6_I3_raw :
CH_7_I4_raw :
END_STRUCT ;
EGIN
                                                  WORD ;
WORD ;
WORD ;
                                                                      //Kanal 0 - Strom 1
//Kanal 1 - Strom 2
//Kanal 2 - Strom 3
//Kanal 3 - Strom 4
40
                                                   WORD ;
        BEGIN
       \begin{array}{c} {\rm CH} \ 4 \ 11 \ {\rm raw} \ := \ W\#16\#0; \\ {\rm CH} \ 5 \ 12 \ {\rm raw} \ := \ W\#16\#0; \\ {\rm CH} \ 6 \ 13 \ {\rm raw} \ := \ W\#16\#0; \\ {\rm CH} \ 7 \ 14 \ {\rm raw} \ := \ W\#16\#0; \\ {\rm END} \ D{\rm ATA} \ B{\rm LOCK} \end{array}
 45
50
       DATA BLOCK DB 4
        \mbox{TITL}\overline{E}=\mbox{Analogbaugruppe}\ 1 Werte, Strom VERSION : 1.0 STRUCT
                                        : REAL ;
: REAL ;
               Current_1
Current_2
Current_3
Current_4
                                                                      //Strom 1
//Strom 2
//Strom 3
//Strom 4
55
                                              REAL
                                                           ;
                                          REAL ;
END_STRUCT ;
60 BEGIN
               Current 1 := 0.000000 e + 000;
Current 2 := 0.000000 e + 000;
Current 3 := 0.000000 e + 000;
Current 4 := 0.000000 e + 000;
65 END_DATA_BLOCK
       DATA BLOCK DB 5
       \text{TITL}\overline{\text{E}} =Analogbaugruppe 2 Rohdaten (AI 8xRTD), Temperatur VERSION : 1.0
70
            STRUCT
            \begin{array}{c} {\rm STRUCT} \\ {\rm CH} \ 0 \ T1 \ raw \\ {\rm CH} \ 1 \ T2 \ raw \\ {\rm CH} \ 2 \ T3 \ raw \\ {\rm CH} \ 2 \ T3 \ raw \\ {\rm CH} \ 3 \ T4 \ raw \\ {\rm CH} \ 3 \ T4 \ raw \\ {\rm CH} \ 5 \ T6 \ raw \\ {\rm CH} \ 5 \ T6 \ raw \\ {\rm CH} \ 5 \ T6 \ raw \\ {\rm END} \ STRUCT \ ; \end{array}
                                                  75
       BEGIN
               80
               CH_5T6_raw := W\#16\#0;
85
       END DATA BLOCK
```

```
90 DATA_BLOCK DB 6
TITLE = Analogbaugruppe 2 Werte, Temperatur
VERSION : 1.0
STRUCT
           STRUCT

Temperature 1 : REAL ;

Temperature 2 : REAL ;

Temperature 3 : REAL ;

Temperature 4 : REAL ;

Temperature 5 : REAL ;

Temperature 6 : REAL ;

END STRUCT ;

FGIN<sup>-</sup>
                                                                               //F hler 1 Temperatur (Grad C)
//F hler 2 Temperatur (Grad C)
//F hler 3 Temperatur (Grad C)
//F hler 4 Temperatur (Grad C)
//F hler 5 Temperatur (Grad C)
//F hler 6 Temperatur (Grad C)
 95
100
        BEGIN
       105
110
        DATA BLOCK DB 7
        \rm TITLE =Analogausgabebaugruppe Rohdaten (AO 4 \, x \, 0 \, / \, 4 \, . \, 2 \, 0 m A) , Strom VERSION : 1.0
             STRUCT
            STRUCT

CH_0_11_OUT_raw :

CH_1_12_OUT_raw :

CH_2_13_OUT_raw :

CH_3_14_OUT_raw :

END_STRUCT ;
                                                                                //Ausgabestrom 1 Rohdaten
//Ausgabestrom 2 Rohdaten
                                                      WORD :
115
                                                      WORD ;
                                                                                //Ausgabestrom 3 Rohdaten
//Ausgabestrom 4 Rohdaten
                                                       WORD ;
                                                      WORD
120 BEGIN
120 BEGIN

CH_0_11_OUT_raw := W#16#5100;

CH_1_12_OUT_raw := W#16#0;

CH_2_13_OUT_raw := W#16#0;

CH_3_14_OUT_raw := W#16#0;

125 END_DATA_BLOCK
DATA_BLOCK DB 8
TITLE = Analogausgabebaugruppe Werte
130 VERSION : 1.0
STRUCT
              STRUCT
Current_Out_1 : REAL;
Current_Out_2 : REAL;
Current_Out_3 : REAL;
Current_Out_4 : REAL;
                                                                                 //Ausgabestrom 1
                                                                               //Ausgabestrom 1
//Ausgabestrom 2
//Ausgabestrom 3
//Ausgabestrom 4
135
            END_STRUCT ;
        BEGIN
       BEGIN

Current_Out_1 := 0.000000 e+000;

Current_Out_2 := 0.000000 e+000;

Current_Out_3 := 0.000000 e+000;

Current_Out_4 := 0.000000 e+000;

END_DATA_BLOCK
140
145
        FUNCTION FC 1 : VOID
        TITLE = Konvertierung von Rohwerte von einem Kanal +/-10V in Spannungen VERSION : 1.0
150 VAR INPUT
        Raw : WORD ;
END_VAR
VAR_OUTPUT
Voltage : REAL ;
155 END_VAR
VAR_TEMP
TDoubleInt : DINT ;
TInt : INT ;
END_VAR
160 BEGIN
        NETWORK
        TITLE =
                     L
                                   #Raw;
                      T
                                   #TInt;
165
                     \mathbf{L}
                                   \#TInt;
                     ITD
                      т
                                   ,
#TDoubleInt;
170
                                   #TDoubleInt;
                     DTR
                                   ,
#Voltage;
3.617000e-004;
                      т
                     L
                     *R
T
                                   ^{,}_{\#}Voltage;
175
        END FUNCTION
```

```
180 FUNCTION FC 2 : VOID TITLE = Konvertierung von Rohwerte von einem Kanal +/-5\mathrm{V} in Spannungen VERSION : 1.0
        VAR INPUT
 VAR_INPUT

185 Raw : WORD ;

END_VAR

VAR_OUTPUT

Voltage : REAL ;

END_VAR

190 VAR_TEMP
       TDoubleInt : DINT ;
TInt : INT ;
END_VAR
BEGIN
 195 NETWORK
        TITLE =
L
T
                              \# Raw;
                              #TInt;
                                      #TInt ;
                   L
 200
                           \mathbf{L}
                                                    0;
                          \stackrel{\cdot}{=}I;
T
                                                     \#Voltage;
 205
                   L
ITD
                              \#TInt;
                              ,
#TDoubleInt;
                   Т
                              #TDoubleInt;
                   Τ.
 210
                   DTR
                              #Voltage;
1.808000e-004;
                   _{\rm L}^{\rm T}
                   *R
T
                              ,
#Voltage;
 215
        END FUNCTION
        FUNCTION FC 3 : VOID TITLE = Konvertierung von Rohwerte von einem Kanal0\,..\,2\,0\,mA in Strom VERSION : 1.0
. . 1.0
VAR_INPUT
Raw : WORD ;
225 END_VAR
VAR_OUTPUT
Current : REAL ;
END_VAR
VAR_TEMP
230 TDoubleInt : DINT ;
TInt : INT ;
END_VAR
BEGIN
NETWORK
35 TJT'
 220
 NETWORK
235 TITLE =
                              #Raw;
#TInt;
                   _{\rm T}^{\rm L}
                              #TInt;
                   L
 240
                   ITD
                              ,
#TDoubleInt;
                   Т
                              #TDoubleInt;
                   \mathbf{L}
                   _{\rm T}^{\rm DTR}
                              ,
#Current;
 245
                               7.234000e - 007;
                   \mathbf{L}
                   *R
                              #Current;
                   Т
 250 END_FUNCTION
 FUNCTION FC 4 : VOID TITLE = Konvertierung von Rohwerte von einem Kanal in Temperaturen 255 VERSION : 1.0
        VAR_INPUT
 Raw : WORD ;
END_VAR
260_VAR_OUTPUT
        Temperature : REAL ;
END_VAR
VAR_TEMP
       TDoubleInt : DINT ;
TInt : INT ;
END_VAR
BEGIN
NETWORK
 265
        NET VVC.
TITLE =
L
 270
                              #Raw;
```

Т

```
#TInt;
                        L
                                      #TInt;
                        ITD
                                      ,
#TDoubleInt;
275
                       т
                        L
                                      #TDoubleInt :
                        DTR
                       _{\rm L}^{\rm T}
                                      #Temperature
                                      1.000000e-002;
280
                        *R
                       Т
                                      #Temperature;
         END FUNCTION
285
         ORGANIZATION BLOCK OB 1
         VERSION : 1.0
290
       VAR TEMP

OB1_EV_CLASS : BYTE ; //Bits 0-3 = 1 (Coming event), Bits 4-7 = 1 (Event class 1)

OB1_SCAN 1 : BYTE ; //1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of OB 1)

OB1_PRIORITY : BYTE ; //Priority of OB Execution

OB1_OB_NUMBR : BYTE ; //1 (Organization block 1, OB1)

OB1_RESERVED 1 : BYTE ; //Reserved for system

OB1_RESERVED 2 : BYTE ; //Reserved for system

OB1_RESERVED 2 : BYTE ; //Reserved for system

OB1_RESERVED 2 : BYTE ; //Cycle time of previous OB1 scan (milliseconds)

OB1_MIN_CYCLE : INT ; //Minimum cycle time of OB1 (milliseconds)

OB1_DATE_TIME : DATE_AND_TIME ; //Date and time OB1 started

END_VAR

BEGIN

NETWORK
295
300
305 NETWORK
       NETWORK
TITLE = Kan le auslesen
//Die Kanalwerte werden geladen und in
// DB1 (Spannung), DB3 (Strom) und DB5 (Temperatur) gespeichert
L PEW 256; // Kanal 0 - Spannung 1
T DB1.DBW 0;
L PEW 258; // Kanal 1 - Spannung 2
T DB1.DBW 2;
L PEW 260; // Kanal 2 - Spannung 3
T DB1.DBW 4;
L PEW 262; // Kanal 3 - Spannung 4
T DB1.DBW 6;
310
315
                                    PEW 264; // Kanal 4 - Strom 1
DB3.DBW 0;
PEW 266; // Kanal 5 - Strom 2
DB3.DBW 2;
PEW 2668; // Kanal 6 - Strom 3
DB3.DBW 4;
                       L
                        Т
320
                       \mathbf{L}
                       Т
                                \mathbf{L}
                                              DBW 4;
PEW 270; // Kanal 7 – Strom 4
                       Т
                                    DB3 DBW
                                \mathbf{L}
325
                       Т
                                     DB3 DBW
                                                                 6
                                     PEW 288; // Kanal 0 - Temperatur 1
                       L
                                     PEW 288; // Kanal 0 - Temperatur 1
DB5.DBW 0;
PEW 290; // Kanal 1 - Temperatur 2
DB5.DBW 2;
PEW 292; // Kanal 2 - Temperatur 3
DB5.DBW 4;
PEW 294; // Kanal 3 - Temperatur 4
DB5.DBW 6:
                       т
330
                       L
T
                        \mathbf{L}
                        T
L
                                    PEW 294; // Kanal 5
DB5.DBW 6;
PEW 296; // Kanal 4 - Temperatur 5
DB5.DBW 8;
PEW 298; // Kanal 5 - Temperatur 6
DB5.DBW 10;
335
                       Т
                        \mathbf{L}
                       Т
                        L
                       т
340
        NETWORK
         TITLE = Konvertierung
//Konvertierung der Rohdaten in Spannung/Strom/Temperatur
CALL FC 1 (
                                                                                                                                 0,
                                                                                               := DB1.DBW
                                   Raw
345
                                    Kaw
Voltage
FC 1 (
                                                                                                        = DB2 DBD
                                                                                                                                           0);
                        CALL FC
                                    Raw
                                                                                                := DB1.DBW
                                                                                                                                   2
                       Voltage
CALL FC 1 (
                                                                                                := DB2 DBD
                                                                                                                                  2);
350
                                                                                                := DB1.DBW
                                   Raw
                                                                                                                                   4.
                       Voltage
CALL FC 1 (
Raw
                                                                                                := DB2.DBD
                                                                                                                                  4);
                                                                                                := DB1.DBW
                                                                                                                                   6
355
                                    Voltage
                                                                                                = DB2 DBD
                                                                                                                                   6);
                                  FC 3 (
Raw
                        CALL FC
                                                                                                := DB3.DBW
                                                                                                                                   0,
                       Current
CALL FC 3 (
360
                                                                                                := DB4.DBD
                                                                                                                                   0);
```

	Raw Current CALL EC 3 (:= DB3.DBW := DB4.DBD	2 , 2) ;
365	Raw Current	:= DB3.DBW := DB4.DBD	$\begin{pmatrix} 4 \\ 4 \end{pmatrix};$
	CALL FC 3 (Raw	= DB3 DBW	$\begin{pmatrix} 6 \\ -6 \end{pmatrix}$
370	Guirent	004.000	oy,
	CALL FC 4 (Raw	:= DB5.DBW	0,
375	CALL FC 4 (Raw	= DB5 DBW	2.
	Temperature CALL FC 4 (:= DB6.DBD	2);
380	Raw Temperature CALL FC 4 (:= DB5.DBW := DB6.DBD	4, 4);
	Raw Temperature	:= DB5.DBW := DB6.DBD	$\begin{array}{c} 6 \\ 6 \end{array}$;
385	CALL FC 4 (Raw Temperature	= DB5 DBW = DB6 DBD	8 , 8) ·
	CALL FC 4 (Raw	= DB5.DBW	10,
390	Temperature	:= DB6.DBD	10);
	NETWORK TITLE = Ausgabewert setzen CLR;		
395	CALL FC 3 (Raw Current	:= DB7 .DBW := DB8 .DBD	0, 0);
400	L DB7.DBW 0; T PAW 272;		
405	CALL FC 3 (Raw Current	= DB7 DBW = DB8 DBD	2 , 2) ;
	L DB7.DBW 2; T PAW 274;		
410	CALL FC 3 (Raw Current	:= DB7.DBW := DB8.DBD	4 , 4) ;
415	L DB7.DBW 4; T PAW 276;		
420	CALL FC 3 (Raw Current	= DB7 DBW = DB8 DBD	$\begin{array}{c} 6 \ , \\ 6 \) \ ; \end{array}$
	L DB7.DBW 6; T PAW 278;		
425	NETWORK TITLE =Prozessalarm zur cksetz //Obwohl die Prozessalarm bei //wurden muss der Prozessalarm	en verlassen von der Wort h ndig zur	OB40 Hardwarem ig quittiert ckgesetzzt werden
430	$ \begin{array}{cccc} {\rm SPBN} & {\rm Ib10}; \\ {\rm L} & {\rm MW} & {\rm 100}; \\ {\rm SSI} & 4; \\ {\rm T} & {\rm MW} & {\rm 100}; \end{array} $		
435	lbl0: NOP 0; NETWORK TITLE =The End		
	${ m BE}$;		
440	END_ORGANIZATION_BLOCK		
445	ORGANIZATION_BLOCK OB 40 TITLE = "Hardware Interrupt" //Auswertung von OB40_POINT_ADD //	DR (L8 to L11)	
	//L8 Obere Grenzwert berschrit //L9 Untere Grenzwert untersch VERSION : 1.0	ten ritten	
450	VAR_TEMP OB40_EV_CLASS : BYTE ;	//Bits 0-3 = 1	(Coming event), Bits $4-7 = 1$ (Event class 1)

```
OB40_STRT_INF : BYTE ; //16#41 (OB 40 has started)
OB40_PRIORITY : BYTE ; //Priority of OB Execution
OB40_OB_NUMBR : BYTE ; //40 (Organization block 40, OB40)
OB40_RESERVED 1 : BYTE ; //40 (Organization block 40, OB40)
OB40_IO_FLAG : BYTE ; //16#54 (input module), 16#55 (output module)
OB40_MDL_ADDR : WORD ; //Base address of module initiating interrupt
OB40_POINT_ADDR : DWORD ; //Interrupt status of the module
OB40_DATE_TIME : DATE_AND_TIME ; //Date and time OB40 started
END_VAR
BEGIN
NETWORK
455
460
      NETWORK
      TITLE =Geber 1 (Kanal 0): untere Grenzwert
465
                 U L
SPBNB L001;
                                       10.0; // Kanal 0 untere Grenzwert
                           W#16#1;
MW 10
                 \mathbf{L}
                                   100;
                 \mathbf{L}
470
                 OW
                           ;
MW
      T
L001: NOP
                                    100:
                            0;
      NETWORK
      TITLE =Geber 1 (Kanal 0): obere Grenzwert
475
                 U L
SPBNB L002;
                                       50.0; // Kanal 0 obere Grenzwert
                 L
                           W#16#2;
MW 10
                                     100:
                 \mathbf{L}
480
                OW
                           ,
MW
                                     100;
                 Т
      L002: NOP
                             0;
485 NETWORK
      TITLE =Geber 2 (Kanal 2): untere Grenzwert
                                        20.0; // Kanal 2 untere Grenzwert
                 U
                            \mathbf{L}
                 SPBNB L003;
                           W#16#4;
MW 10
490
                 L
                                   100;
                 \mathbf{L}
                OW
                  Т
                           мw
                                     100;
      L003: NOP
                            0;
495
      NETWORK
      TITLE =Geber 2 (Kanal 2): obere Grenzwert
                 U L
SPBNB L004;
                                        50.0; // Kanal 2 obere Grenzwert
500
                           W#16#8;
MW 10
                 \mathbf{L}
                 \mathbf{L}
                                     100:
                 OW
                           ;
MW
                                     100:
                 т
505 L004: NOP
                            0;
```

END_ORGANIZATION_BLOCK

E Driftgeschwindigkeiten

Driftgeschwindigkeiten

Tabelle E.1 umfasst alle Driftgeschwindigkeiten, die aus den aufgezeichneten Daten der GEM-TPC extrahiert werden konnten. Die Spalten beinhalten für jeden Run die folgenden Angaben und Werte:

Run-Nummer	Nummer zur eindeutigen Identifizierung des Runs
Runtyp	gibt an, ob mit kosmischer Strahlung (kosm. Str.) oder einem Teilchenstrahl (Strahl) gemessen wurde
Datum und Uhrzeit	Datum sowie Start- und Endzeitpunkt des Runs
Anzahl Ereignisse	Anzahl der aufgezeichneten Ereignisse in diesem Run
Gasgemisch	verwendetes Driftgas
Driftfeld	Driftfeld während des Runs in $\%$ von $E_{ m drift,max}~(=360~{ m V/cm})$
Kante GEM-Folie	Position der ersten GEM-Folie im Zeitspektrum in $sample$ -Nummern
Kante Kathode	Position der Kathodenendkappe im Zeitspektrum in $sample$ -Nummern
Driftlänge	zur Bestimmung der Driftgeschwindigkeit verwendete Drift- länge in mm
${ m Driftgeschwindigkeit}$	be rechnete Driftgeschwindigkeit in mm/ μs

Eine graphische Darstellung der Driftgeschwindigkeiten ist in Abbildung 7.7 zu finden.

Run-				Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum	und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	[mm/µs]
2168	kosm. Str.	10.04.11	12:35 - 12:48	1847	$ArCO_2 (90:10)$	70,0	$9,128\pm1$	$476,199\pm1$	$727,80\pm 1,00$	$24,2335\pm0,1283$
2172	kosm. Str.	10.04.11	18:28 - 18:28	744	$ArCO_2$ (90:10)	96,6	$5,268\pm1$	$422,934 \pm 1$	$727,80 \pm 1,00$	$27,1000\pm0,1493$
2173	kosm. Str.	10.04.11	18:28 - 18:29	1895	$ArCO_2$ (90:10)	96,6	$24,399 \pm 1$	$421,717 \pm 1$	$727,80 \pm 1,00$	$28,4878\pm0,1600$
2174	kosm. Str.	10.04.11	18:32 - 18:48	27524	$ArCO_2 (90:10)$	96,6	$23,899\pm 1$	$421,618 \pm 1$	$727,80 \pm 1,00$	$28,4591\pm0,1598$
2175	kosm. Str.	10.04.11	18:56 - 19:23	53357	$ArCO_2 (90:10)$	96,6	$36,840\pm1$	$420,894 \pm 1$	$727,80 \pm 1,00$	$29,4717\pm0,1679$
2176	kosm. Str.	10.04.11	19:23 - 20:08	54271	$ArCO_2 (90:10)$	96,6	$37,042\pm1$	$421,432 \pm 1$	$727,80\pm 1,00$	$29,4460\pm0,1676$
2178	kosm. Str.	10.04.11	20:36 - 21:05	54048	$ArCO_2 (90:10)$	96,6	$37,027 \pm 1$	$422,224 \pm 1$	$727,80 \pm 1,00$	$29,3843\pm0,1672$
2179	kosm. Str.	10.04.11	21:05 - 21:06	3091	$ArCO_2 (90:10)$	96,6	$28,109\pm1$	$421,626 \pm 1$	$727,80 \pm 1,00$	$28,7630\pm0,1622$
2182	kosm. Str.	10.04.11	21:45 - 22:03	14022	$ArCO_2 (90:10)$	96,6	$33,134\pm1$	$423,222 \pm 1$	$727,80 \pm 1,00$	$29,0159\pm0,1642$
2183	kosm. Str.	10.04.11	22:03 - 22:13	17743	$ArCO_2$ (90:10)	96,6	$35,674\pm1$	$422,759\pm1$	$727,80 \pm 1,00$	$29,2410\pm0,1660$
2186	kosm. Str.	10.04.11	23:17 - 23:56	54767	$ArCO_2$ (90:10)	96,6	$28,444 \pm 1$	$422,710 \pm 1$	$727,80 \pm 1,00$	$28,7084\pm0,1618$
2187	kosm. Str.	10.04.11	23:56 - 23:57	2712	$ArCO_2$ (90:10)	96,6	$21,\!216\pm1$	$421,044 \pm 1$	$727,80 \pm 1,00$	$28,3090\pm0,1586$
2190	kosm. Str.	11.04.11	00:33 - 00:44	20922	$ArCO_2$ (90:10)	96,6	$78,579\pm1$	$437,954\pm1$	$727,80 \pm 1,00$	$31,4957\pm0,1846$
2191	kosm. Str.	11.04.11	00:44 - 01:06	45007	$ArCO_2$ (90:10)	96,6	$77,056\pm1$	$438,618 \pm 1$	$727,80 \pm 1,00$	$31,3051\pm0,1830$
2192	kosm. Str.	11.04.11	01:08 - 01:35	52259	$ArCO_2$ (90:10)	96,6	$77,197\pm1$	$438,772\pm1$	$727,80 \pm 1,00$	$31,3040\pm0,1830$
2193	kosm. Str.	11.04.11	01:35 - 01:47	18477	$ArCO_2 (90:10)$	96,6	$77,156\pm1$	$439,737\pm1$	$727,80 \pm 1,00$	$31,2171\pm0,1823$
2194	kosm. Str.	11.04.11	01:47 - 01:58	6180	$ArCO_2 (90:10)$	96,6	$77,948\pm1$	$439,235\pm1$	$727,80 \pm 1,00$	$31,3290\pm0,1832$
2195	kosm. Str.	11.04.11	01:50 - 02:07	34208	$ArCO_2 (90:10)$	96,6	$76,838\pm1$	$438,424 \pm 1$	$727,80\pm 1,00$	$31,3030\pm0,1830$
2196	kosm. Str.	11.04.11	02:08 - 02:16	7810	$ArCO_2 (90:10)$	97,3	$77,083\pm1$	$440,035 \pm 1$	$727,80\pm 1,00$	$31,1852\pm0,1820$
2197	kosm. Str.	11.04.11	02:16 - 02:26	19714	$ArCO_2 (90:10)$	99,4	$77,024\pm1$	$438,726\pm1$	$727,80 \pm 1,00$	$31,2930\pm0,1829$
2214	kosm. Str.	12.04.11	00:22 - 00:27	11133	$ArCO_2$ (90:10)	96,6	$76,185\pm1$	$437,673\pm1$	$727,80 \pm 1,00$	$31,3115\pm0,1831$
2215	kosm. Str.	12.04.11	00:35 - 00:41	12120	$ArCO_2 (90:10)$	96,6	$77,536\pm1$	$437,164 \pm 1$	$727,80\pm 1,00$	$31,4735\pm0,1844$
2232	kosm. Str.	12.04.11	22:23 - 22:30	12107	$ArCO_2 (90:10)$	99,4	$77,020\pm1$	$429,979 \pm 1$	$727,80\pm 1,00$	$32,0682\pm0,1895$
2233	kosm. Str.	12.04.11	22:31 - 22:37	11372	$ArCO_2 (90:10)$	99,4	$77,042\pm1$	$430,696\pm1$	$727,80 \pm 1,00$	$32,0051\pm0,1890$
2234	kosm. Str.	12.04.11	22:39 - 22:40	1478	$ArCO_2 (90:10)$	99,4	$76,173\pm1$	$429,381 \pm 1$	$727,80 \pm 1,00$	$32,0456\pm0,1893$
2235	kosm. Str.	12.04.11	22:41 - 22:49	15118	$ArCO_2 (90:10)$	99,4	$76,944\pm1$	$431,099 \pm 1$	$727,80\pm 1,00$	$31,9598\pm0,1886$
2236	kosm. Str.	12.04.11	22:50 - 22:58	13807	$ArCO_2 (90:10)$	99,4	$77,496\pm1$	$432,071 \pm 1$	$727,80 \pm 1,00$	$31,9220\pm0,1883$
2237	kosm. Str.	12.04.11	22:58 - 23:04	13315	$ArCO_2 (90:10)$	99,4	$77,230\pm1$	$428,961 \pm 1$	$727,80\pm 1,00$	$32,1801\pm0,1905$
2238	kosm. Str.	12.04.11	23:04 - 23:12	13818	$ArCO_2 (90:10)$	99,4	$76,747\pm1$	$431,323 \pm 1$	$727,80 \pm 1,00$	$31,9219\pm0,1883$
2239	kosm. Str.	12.04.11	23:12 - 23:19	13267	$ArCO_2 (90:10)$	99,4	$77,170 \pm 1$	$431,172 \pm 1$	$727,80 \pm 1,00$	$31,9737\pm0,1887$
2240	kosm. Str.	12.04.11	23:19 - 23:22	7360	$ArCO_2 (90:10)$	99,4	$77,120\pm1$	$431,100 \pm 1$	$727,80 \pm 1,00$	$31,9757\pm0,1887$
2242	kosm. Str.	12.04.11	23:31 - 23:36	9778	$ArCO_2 (90:10)$	99,4	$77,033 \pm 1$	$430,822 \pm 1$	$727,80 \pm 1,00$	$31,9929\pm0,1889$
2243	kosm. Str.	12.04.11	23:32 - 23:37	906	$ArCO_2 (90:10)$	99,4	$77,063\pm1$	$430,535 \pm 1$	$727,80 \pm 1,00$	$32,0216\pm0,1891$
2244	kosm. Str.	12.04.11	23:38 - 23:42	4720	$ArCO_2 (90:10)$	99,4	$77,040\pm1$	$431,273 \pm 1$	$727,80 \pm 1,00$	$31,9528\pm0,1885$
2245	kosm. Str.	12.04.11	23:42 - 23:48	13470	$ArCO_2 (90:10)$	99,4	$76,819\pm1$	$431,790 \pm 1$	$727,80 \pm 1,00$	$31,8864\pm0,1880$
2246	kosm. Str.	12.04.11	23:48 - 23:51	6358	$ArCO_2 (90:10)$	99,4	$77,249\pm1$	$430,885 \pm 1$	$727,80 \pm 1,00$	$32,0068\pm0,1890$
2247	kosm. Str.	12.04.11	23:52 - 23:59	13300	$ArCO_2 (90:10)$	99,4	$76,985\pm1$	$430,863 \pm 1$	$727,80 \pm 1,00$	$31,9848\pm0,1888$
2248	kosm. Str.	12.04.11	23:59 - 00:23	14689	$ArCO_2 (90:10)$	48,6	$76,526\pm1$	$432,265\pm 1$	$727,80 \pm 1,00$	$31,8176\pm0,1874$
2252	kosm. Str.	13.04.11	00:48 - 00:55	13163	$ArCO_2 (90:10)$	99,4	$77,039\pm1$	$431,468 \pm 1$	$727,80 \pm 1,00$	$31,9352\pm0,1884$
2253	kosm. Str.	13.04.11	00:55 - 01:01	13172	$ArCO_2 (90:10)$	99,4	$76,758\pm1$	$430,830 \pm 1$	$727,80 \pm 1,00$	$31,9674\pm 0,1887$
2254	kosm. Str.	13.04.11	01:01 - 01:13	555	$ArCO_2 (90:10)$	99,3	$76,932\pm1$	$432,657 \pm 1$	$727,80 \pm 1,00$	$31,8188\pm0,1874$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	$[mm/\mu s]$
2256	kosm. Str.	$13.04.11\ 01{:}19-01{:}26$	13351	$ArCO_2 (90:10)$	99,4	$78,908\pm1$	$431,816 \pm 1$	$727,80\pm 1,00$	$32,0728\pm0,1896$
2257	kosm. Str.	$13.04.11\ 01:26-01:33$	13214	$ArCO_{2}$ (90:10)	99,4	$77,085\pm1$	$431,621 \pm 1$	$727,80 \pm 1,00$	$31,9255\pm0,1883$
2258	kosm. Str.	$13.04.11\ 01:33 - 01:36$	536	$ArCO_2$ (90:10)	99,7	$77,512\pm1$	$432,117 \pm 1$	$727,80 \pm 1,00$	$31,9193\pm0,1883$
2271	kosm. Str.	13.04.11 $15:18 - 15:24$	11906	$NeCO_2$ (90:10)	99,4	$14,986\pm 1$	$488,862\pm1$	$727,80 \pm 1,00$	$23,8855\pm0,1259$
2272	kosm. Str.	13.04.11 $15:24 - 15:31$	12720	$NeCO_2$ (90:10)	99,4	$14,565\pm 1$	$491,609 \pm 1$	$727,80 \pm 1,00$	$23,7268\pm0,1248$
2273	kosm. Str.	13.04.11 $15:31 - 15:37$	11355	$NeCO_2$ (90:10)	99,4	$14,859\pm1$	$491,469 \pm 1$	$727,80 \pm 1,00$	$23,7485\pm0,1250$
2274	kosm. Str.	13.04.11 $15:39 - 15:43$	8406	$NeCO_2 (90:10)$	99,4	$14,863\pm1$	$490,985 \pm 1$	$727,80 \pm 1,00$	$23,7728\pm0,1251$
2275	kosm. Str.	13.04.11 $15:44 - 15:50$	11899	$NeCO_2 (90:10)$	99,4	$14,739\pm1$	$490, 340 \pm 1$	$727,80 \pm 1,00$	$23,7988\pm0,1253$
2276	kosm. Str.	13.04.11 $15:50 - 15:56$	11975	$NeCO_2$ (90:10)	99,4	$14,354 \pm 1$	$490,524 \pm 1$	$727,80 \pm 1,00$	$23,7704\pm0,1251$
2277	kosm. Str.	$13.04.11 \ 15.56 - 15.59$	2498	$NeCO_2$ (90:10)	99,4	$14,463\pm1$	$491,936 \pm 1$	$727,80 \pm 1,00$	$23,7055\pm0,1247$
2278	kosm. Str.	$13.04.11 \ 16:02 - 16:09$	12808	$NeCO_2 (90:10)$	99,4	$15,299\pm 1$	$489,187 \pm 1$	$727,80 \pm 1,00$	$23,8849\pm0,1259$
2279	kosm. Str.	$13.04.11 \ 16:09 - 16:16$	12587	$NeCO_2 (90:10)$	99,4	$14,555\pm 1$	$490,794\pm1$	$727,80 \pm 1,00$	$23,7669\pm0,1251$
2280	kosm. Str.	$13.04.11 \ 16:18 - 16:24$	11842	$NeCO_2$ (90:10)	99,4	$14,178\pm1$	$492,094 \pm 1$	$727,80 \pm 1,00$	$23,6835\pm0,1245$
2281	kosm. Str.	$13.04.11 \ 16:24 - 16:31$	12322	$NeCO_2 (90:10)$	99,4	$14,004\pm 1$	$490,201 \pm 1$	$727,80 \pm 1,00$	$23,7690\pm0,1251$
2282	kosm. Str.	$13.04.11 \ 16:31 - 16:36$	11478	$NeCO_2 (90:10)$	99,4	$14,319\pm1$	$491,332 \pm 1$	$727,80 \pm 1,00$	$23,7284\pm0,1248$
2283	kosm. Str.	$13.04.11 \ 16:40 - 16:47$	12229	$NeCO_2$ (90:10)	99,4	$14,019\pm 1$	$490,722\pm1$	$727,80 \pm 1,00$	$23,7438\pm0,1249$
2284	kosm. Str.	$13.04.11 \ 16:47 - 16:48$	12560	$NeCO_2$ (90:10)	99,4	$14,835\pm1$	$491,991 \pm 1$	$727,80 \pm 1,00$	$23,7213\pm0,1248$
2290	kosm. Str.	$13.04.11\ 20:06 - 20:13$	11825	$NeCO_2 (90:10)$	99,4	$15,768\pm1$	$492,033 \pm 1$	$727,80 \pm 1,00$	$23,7657\pm0,1251$
2291	kosm. Str.	$13.04.11\ 20{:}13-20{:}18$	11251	$NeCO_2 (90:10)$	99,4	$14,327 \pm 1$	$490,019 \pm 1$	$727,80 \pm 1,00$	$23,7943\pm0,1253$
2293	kosm. Str.	$13.04.11\ 20.27 - 20.33$	11373	$NeCO_2 (90:10)$	99,4	$21,598\pm 1$	$496,891 \pm 1$	$727,80 \pm 1,00$	$23,8142\pm0,1254$
2294	kosm. Str.	$13.04.11\ 20:33 - 20:39$	11607	$NeCO_2$ (90:10)	99,4	$16,920\pm 1$	$493,700\pm1$	$727,80 \pm 1,00$	$23,7400\pm0,1249$
2296	kosm. Str.	$13.04.11\ 20:41 - 20:47$	11295	$NeCO_2 (90:10)$	99,4	$16,622\pm 1$	$492,959 \pm 1$	$727,80 \pm 1,00$	$23,7620\pm0,1250$
2297	kosm. Str.	$13.04.11\ 20.47 - 20.52$	10726	$NeCO_2$ (90:10)	99,4	$16,772\pm1$	$495,714 \pm 1$	$727,80 \pm 1,00$	$23,6328\pm0,1242$
2299	kosm. Str.	$13.04.11\ 20.56 - 21.02$	11302	$NeCO_2$ (90:10)	99,4	$16,987\pm1$	$493,474 \pm 1$	$727,80 \pm 1,00$	$23,7546\pm0,1250$
2300	kosm. Str.	$13.04.11\ 21:02 - 21:05$	5608	$NeCO_2$ (90:10)	99,4	$17,006\pm1$	$493,\!259\pm1$	$727,80 \pm 1,00$	$23,7663\pm0,1251$
2301	kosm. Str.	$13.04.11\ 21:06 - 21:12$	10899	$NeCO_2$ (90:10)	99,4	$16,360\pm 1$	$492,975 \pm 1$	$727,80 \pm 1,00$	$23,7482\pm0,1250$
2302	kosm. Str.	$13.04.11\ 21:13 - 21:19$	11383	$NeCO_2$ (90:10)	99,4	$16,856\pm 1$	$492,650\pm1$	$727,80 \pm 1,00$	$23,7892\pm0,1252$
2303	kosm. Str.	$13.04.11\ 21:19 - 21:21$	4340	$NeCO_2 (90:10)$	99,4	$16,234\pm 1$	$493,053\pm1$	$727,80 \pm 1,00$	$23,7380\pm0,1249$
2304	kosm. Str.	$13.04.11\ 21:22 - 21:26$	6455	$NeCO_2$ (90:10)	99,4	$16,101 \pm 1$	$493,126 \pm 1$	$727,80 \pm 1,00$	$23,7278\pm0,1248$
2351	Strahl	$19.04.11\ 21:21 - 21:25$	24606	$ArCO_2 (90:10)$	94,6	$14,736\pm 1$	$458,933 \pm 1$	$727,80 \pm 1,00$	$25,4813\pm0,1373$
2352	Strahl	$19.04.11\ 21:25 - 21:28$	24002	$ArCO_2$ (90:10)	95,3	$14,583\pm 1$	$455,023 \pm 1$	$727,80 \pm 1,00$	$25,6987\pm0,1388$
2353	Strahl	$19.04.11\ 21:28 - 21:32$	23395	$ArCO_2 (90:10)$	95,4	$14,548\pm 1$	$454,279\pm1$	$727,80 \pm 1,00$	$25,7401\pm0,1391$
2354	Strahl	$19.04.11\ 21:32 - 21:35$	20972	$ArCO_2 (90:10)$	95,5	$13,998\pm1$	$453,961 \pm 1$	$727,80 \pm 1,00$	$25,7266\pm0,1390$
2355	Strahl	$19.04.11\ 21:35 - 21:38$	18998	$ArCO_2$ (90:10)	96,2	$13,889\pm1$	$451,451\pm 1$	$727,80 \pm 1,00$	$25,8677\pm0,1401$
2356	Strahl	$19.04.11\ 21:38 - 21:41$	17737	$ArCO_2 (90:10)$	96,6	$13,974\pm 1$	$448,447 \pm 1$	$727,80 \pm 1,00$	$26,0517\pm0,1414$
2357	Strahl	$19.04.11\ 21:41 - 21:44$	18536	$ArCO_2 (90:10)$	97,2	$13,019\pm1$	$445,560\pm1$	$727,80 \pm 1,00$	$26,1680\pm0,1423$
2358	Strahl	$19.04.11\ 21:44 - 21:47$	18581	$ArCO_2 (90:10)$	97,7	$13,309\pm1$	$442,800 \pm 1$	$727,80 \pm 1,00$	$26,3538\pm0,1437$
2359	Strahl	$19.04.11\ 21:47 - 21:47$	3475	$ArCO_2 (90:10)$	98,1	$13,907\pm1$	$441,138 \pm 1$	$727,80 \pm 1,00$	$26,4932\pm0,1447$
2360	Strahl	$19.04.11\ 21:57 - 21:59$	16093	$ArCO_2 (90:10)$	99,4	$14,002\pm1$	$432,167 \pm 1$	$727,80 \pm 1,00$	$27,0676\pm0,1490$
2361	Strahl	$19.04.11\ 21:59 - 22:02$	16181	$ArCO_2 (90:10)$	99,4	$13,870\pm1$	$432,185\pm1$	$727,80 \pm 1,00$	$27,0579\pm0,1490$
2362	Strahl	$19.04.11\ 22:02 - 22:04$	16188	$ArCO_{2}$ (90:10)	99,4	$13,999\pm 1$	$432,170 \pm 1$	$727,80 \pm 1,00$	$27,0673\pm0,1490$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Run-	C		Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
3 Straid 1904.11 2240 -2266 12541 $-ACO_2$ $00:10$ 99.4 -38.87 ± 14 -423.097 ± 16 2 Strahl 1904.11 $-223.0-223.7$ 16308 ACO_2 $00:10$ 99.4 -33.876 ± 14 -423.007 ± 16 5 Strahl 1904.11 $223.0-223.7$ 16308 ACO_2 $00:10$ 99.4 33.876 ± 14 451.2097 ± 176 7 Strahl 1904.11 $223.9-223.7$ 15576 ACO_2 $00:10$ 99.4 33.876 ± 14 $451.729\pm172.232.055.7$ 7 Strahl 1904.11 $223.92223.7$ 15576 ACO_2 $00:10$ 99.4 33.876 ± 14 $450.770-3$ 8 Strahl 1904.11 $223.9-223.7$ 15553 ACO_2 $00:10$ 99.4 33.350 ± 14 $450.670-3$ 8 Strahl 1904.11 $224.9-223.7$ 1557.6 ACO_2 90.10 99.4 33.875 ± 14 $450.670-3$ 8 Strahl 1904.11	ner	Kuntyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	% Emax	GEM-Fole	Kathode	mm	$mm/\mu s$
	33	Strahl	$19.04.11\ 22:04 - 22:06$	12541	$ArCO_2 (90:10)$	99,4	$13,847\pm1$	$432,141 \pm 1$	$727,80 \pm 1,00$	$27,0593\pm 0,1490$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	Strahl	$19.04.11\ 22:12 - 22:13$	8133	$ArCO_2 (90:10)$	99,4	$8,069\pm1$	$411,870 \pm 1$	$727,80 \pm 1,00$	$28,0305\pm0,1564$
2 Strahl 19,04.11 22.77 22.33 16125 $ArCO_2$ 90.61 33.876 ± 1 $41.80.876$ 5 Strahl 19,04.11 22.33 23.33 157.26 $ArCO_2$ 90.10 99.4 33.876 ± 1 $41.80.870$ 7 Strahl 19,04.11 22.33 23.52 23.41 157.66 $ArCO_2$ 90.10 99.4 33.876 ± 1 $451.776-3$ 8 Strahl 19,04.11 22.47 25.56 $ArCO_2$ 90.10 99.4 33.875 ± 1 $450.870-3$ 8 Strahl 19,04.11 22.47 22.49 30.01 39.46 33.875 ± 1 $450.870-3$ 1 Strahl 19,04.11 22.47 22.49 30.101 33.875 ± 1 $450.870-3$ 5 Strahl 19,04.11 22.41 10.21 22.72 33.875 ± 1 $450.870-3$ 5 Strahl 19,04.11 22.16 $ArCO_2$ 90.10 33.875 ± 1 $40.9.8$		Strahl	$19.04.11\ 22:25 - 22:27$	16308	$ArCO_2$ (90:10)	99,4	$33,834\pm1$	$452,097 \pm 1$	$727,80 \pm 1,00$	$27,0613\pm0,1490$
3 Strahl 19.04.11 22:30 22:33 15129 ArCO2 (90:10) 99.4 33.867 ±1 451,7554 5 Strahl 19.04.11 22:34 15768 ArCO2 (90:10) 99.4 33.864 ±1 451,7754 6 Strahl 19.04.11 22:34 15768 ArCO2 (90:10) 99.4 33.864 ±1 451,7754 7 Strahl 19.04.11 22:44 15.55 ArCO2 (90:10) 99.4 33.864 ±1 451,7754 8 Strahl 19.04.11 22:44 15.55 ArCO2 (90:10) 99.4 33.875 ±1 40.6764 5 Strahl 19.04.11 22:41 15.55 ArCO2 (90:10) 99.4 33.875 ±1 40.7694 5 Strahl 19.04.11 22:41 13.55 ArCO2 (90:10) 99.4 33.867 ±1 40.7634 40.7634 40.7615 40.763 40.763 40.763 40.763 40.763 40.763 40.763 40.763 40.763 40.763 40.763 40.763 40.	.5	Strahl	$19.04.11\ 22:27 - 22:30$	16175	$ArCO_2 (90:10)$	99,4	$33,869\pm1$	$452,025 \pm 1$	$727,80 \pm 1,00$	$27,0682\pm0,1490$
4 Strahl 19.04.11 22:35 15982 ArCO2 90:10 99.4 33.851±1 451.7054 7 Strahl 19.04.11 22:341 15766 ArCO2 90:10 99.4 33.857±1 450.7704 8 Strahl 19.04.11 22:41 15766 ArCO2 90:10 99.4 33.857±1 450.7704 8 Strahl 19.04.11 22:47 15556 ArCO2 90:10 99.4 33.852±1 450.4704 8 Strahl 19.04.11 22:47 15555 ArCO2 90:10 99.4 33.855±1 450.4704 5 Strahl 19.04.11 23:17 23:19 14250 ArCO2 90:10 99.4 33.857±1 450.4754 5 Strahl 19.04.11 23:17 23:19 14250 ArCO2 90:10 99.4 33.755±1 450.469 37.055 5 Strahl 22.04.11<01:01	33	Strahl	$19.04.11\ 22:30-22:33$	16129	$ArCO_2$ (90:10)	99,4	$33,870\pm1$	$451,880\pm1$	$727,80 \pm 1,00$	$27,0777\pm0,1491$
5 Strahl 1904.11 22.37 10950 ArCO2 90.41 33.852±11 451.7705 7 Strahl 1904.11 22.44 15766 ArCO2 90.10 99.4 33.875±11 450.8774 8 Strahl 1904.11 22.44 15766 ArCO2 90.10 99.4 33.875±11 450.8773 8 Strahl 1904.11 22.47 22.555 3455 ArCO2 90.10 99.4 33.875±11 450.403 5 Strahl 1904.11 22.47 22.555 3455 ArCO2 90.10 99.4 33.835±11 450.403 5 Strahl 1904.11 22.41 15.552 ArCO2 90.10 99.4 33.505±11 450.4051 5 Strahl 190.41.11 22.41 12.533 ArCO2 90.10 99.4 33.535±11 450.4051 5 Strahl 190.41.1 22.41 12.524 12.52 34.7052 90.9151 93.925 44.95	4	Strahl	$19.04.11\ 22:33 - 22:35$	15982	$ArCO_2 (90:10)$	99,4	$33,864\pm1$	$451,725 \pm 1$	$727,80 \pm 1,00$	$27,0874\pm0,1492$
6 Strahl 1904.11 22:341 15768 ArCO2 90:41 33.827±1 450.770-3 8 Strahl 1904.11 22:44 22:44 15566 ArCO2 90:10) 99,4 33.827±1 450.770-3 9 Strahl 1904.11 22:44 22:44 15565 ArCO2 90:10) 99,4 33.875±1 450.700-3 2 Strahl 1904.11 22:47 25:55 ArCO2 90:10) 99,4 33.847±1 450.760-3 4 Strahl 1904.11 22:19 23:20 15355 ArCO2 90:10) 99,4 33.847±1 450.760-3 5 Strahl 1904.11 22:19 23:20 153.53 ArCO2 90:10) 99,4 33.847±1 450.760-3 6 ktrahl 22:04.11 01:10 01:10 12:24 12:25 6543 NrCO2 90:10) 99,4 33.847±1 450.760-3 7 strahl 22:04.11 01:10 01:10	<u>م</u>	Strahl	$ 19.04.11 \ 22:35 - 22:37$	10950	$ArCO_2 (90:10)$	99,4	$33,811 \pm 1$	$451,705 \pm 1$	$727,80 \pm 1,00$	$27,0852\pm0,1492$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Strahl	$19.04.11\ 22:39 - 22:41$	15768	$ArCO_2 (90:10)$	99,4	$33,852\pm1$	$450,877 \pm 1$	$727,80 \pm 1,00$	$27,1417\pm0,1496$
8 Strahl 19.04.11 22.44 22.43 1556 ArCO ₂ (90:10) 99.4 33.355 \pm 1 450.4623 0 Strahl 19.04.11 22.47 12.547 22.43 15.55 ArCO ₂ (90:10) 99.4 33.355 \pm 1 450.4623 2 Strahl 19.04.11 22.41 112.559 23.31 13.553 ArCO ₂ (90:10) 99.4 33.763 \pm 1 450.4623 4 Strahl 19.04.11 22.40.11 10.21 23.33 ArCO ₂ (90:10) 99.4 33.763 \pm 1 450.4623 5 Strahl 19.04.11 23.10 13.23.76 ArCO ₂ (90:10) 99.4 33.93.241 449.463.23 6 Strahl 22.04.11 10.10 10.11 0.110 15.18 NeCO ₂ (90:10) 99.4 33.93.241 449.63.23 7 Strahl 22.04.11 0.101 15.14 NeCO ₂ (90:10) 99.4 33.93.241 49.7628 8 Strahl 22.04.11 0.112 17.547 NeCO ₂ (90:1	2	Strahl	$19.04.11\ 22:41 - 22:44$	15746	$ArCO_2 (90:10)$	99,4	$33,827\pm1$	$450,760 \pm 1$	$727,80 \pm 1,00$	$27,1476\pm0,1496$
9 Strahl 19.04.11 22:47 22:49 15555 ArCO ₂ 99:10 33,755 1 450.463 2 Strahl 19.04.11 22:49 22:55 15553 ArCO ₂ 99:10 99;4 33,755 1 450.463 2 Strahl 19.04.11 22:31 23:355 ArCO ₂ 99:10 99;4 33,355 1 450.463 3 Strahl 19.04.11 23:17 23:19 23:26 653 ArCO ₂ 99:10 99;4 33,363 1 450.453 5 strahl 22.04.11 01:01 01:01 15.241 NeCO ₂ 90:10 99;4 33,325 1 450.463 3773 1 450.453 3773 1 450.453 3773 1 450.453 3773 1 450.453 370.433 450.453 370.352 1 450.463 370.352 1 450.463 370 1 450.453 370.353 1 450.463 37	×	Strahl	$19.04.11\ 22:44 - 22:47$	15566	$ArCO_2$ (90:10)	99,4	$33,092\pm1$	$450,679 \pm 1$	$727,80 \pm 1,00$	$27,1051\pm0,1493$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Strahl	$19.04.11\ 22:47 - 22:49$	15525	$ArCO_2$ (90:10)	99,4	$33,795\pm1$	$450,462 \pm 1$	$727,80 \pm 1,00$	$27,1650\pm 0,1498$
11 Strahl 1904.11 22:62 22:55 3455 ArCO2 (90:10) 99.4 33,763 ±1 450.155 ±33 25 Strahl 19.04.11 23:17 - 23:20 23:33 ArCO2 (90:10) 99.4 33,330 ±1 449.872 5 Strahl 19.04.11 23:17 - 23:10 23:23 8738 ArCO2 (90:10) 99.4 33,332 ±1 449.872 5 Strahl 19.04.11 23:19 - 23:20 8738 ArCO2 (90:10) 99.4 14,150 ±1 500.423 6 Strahl 22.04.11 01:10 - 01:01 152.14 NeCO2 (90:10) 98.0 5.985 ±1 500.9424 6 Strahl 22.04.11 01:12 - 01:12 17647 NeCO2 (90:10) 98.0 6.335 ±1 500.4226 8 Strahl 22.04.11 01:12 - 01:12 17647 NeCO2 (90:10) 98.0 6.335 ±1 500.4226 8 Strahl 22.04.11 01:12 - 01:12 17647 NeCO2 (90:10) 98.0 6.335 ±1 500.4226 500.425	0	Strahl	$19.04.11\ 22:49 - 22:52$	15653	$ArCO_2 (90:10)$	99,4	$33,835\pm1$	$450,469 \pm 1$	$727,80 \pm 1,00$	$27,1671\pm0,1498$
22 Strahl $19.04.11$ $22:59 - 23:01$ 15333 ArCO2 (90:10) 99.4 33.8347 ± 1 450.1554 6 Strahl $19.04.11$ $22:17 - 23:19$ 8798 ArCO2 (90:10) 99.4 33.332 ± 11 450.1554 10 Ream. Str. $20.04.11$ $112.24 - 12.25$ 64.33 $NeCO2$ (90:10) 99.4 33.332 ± 1 449.8324 8 Strahl $22.04.11$ $01:10 - 01:10$ 15241 $NeCO2$ (90:10) 98.0 $3.10\pm1 - 497.628$ 6 Strahl $22.04.11$ $01:10 - 01:12$ 1724 $NeCO2$ (90:10) 98.0 $3.10\pm1 - 497.628$ 7 Strahl $22.04.11$ $01:10 - 01:12$ 1747 $NeCO2$ (90:10) 98.0 5.985 ± 1 500.3694 ± 1 7 Strahl $22.04.11$ $01:12 - 01:12$ 17535 $NeCO2$ (90:10) 98.0 6.335 ± 11 500.3694 ± 1 8 Strahl $22.04.11$ $01:12 - 01:12$ 175353 $NeCO2$ (90:10) 98.0 6.135 ± 1 $500.3692+1$ <td>1</td> <td>Strahl</td> <td>$19.04.11\ 22:52 - 22:55$</td> <td>3455</td> <td>$ArCO_2$ (90:10)</td> <td>99,4</td> <td>$33,763\pm1$</td> <td>$450,258 \pm 1$</td> <td>$727,80 \pm 1,00$</td> <td>$27,1762\pm0,1499$</td>	1	Strahl	$19.04.11\ 22:52 - 22:55$	3455	$ArCO_2$ (90:10)	99,4	$33,763\pm1$	$450,258 \pm 1$	$727,80 \pm 1,00$	$27,1762\pm0,1499$
44 Strahl $19.04.11$ $23:17$ $23:19$ 14250 ΛrCO_2 $90:10$ $99:4$ $33,830\pm1$ $449,877$ 55 Strahl $19.04.11$ $12:24$ $12:25$ 5543 $NeCO_2$ $90:10$ $99;4$ $33,830\pm1$ $449,877$ 6 Strahl $22.04.11$ $01:01$ $01:21$ 15241 $NeCO_2$ $90:10$ $99;4$ $33,932\pm1$ $497,652$ 6 Strahl $22.04.11$ $01:02$ $01:12$ 17647 $NeCO_2$ $90:10$ $98;0$ $3,110\pm1$ $497,655$ 6 Strahl $22.04.11$ $01:12$ 17647 $NeCO_2$ $90:10$ $98;0$ $5,35\pm1$ $500,3691$ $497,655$ 7 Strahl $22.04.11$ $01:12$ $01:12$ 17647 $NeCO_2$ $90:10$ $98;0$ $5,35\pm1$ $500,3691$ $497,652$ 7 Strahl $22.04.11$ $01:12$ 117464 $NeCO_2$ $90:10$ $98;0$ $5,985\pm1$	5	Strahl	$19.04.11\ 22:59 - 23:01$	15353	$ArCO_2$ (90:10)	99,4	$33,847\pm1$	$450,155 \pm 1$	$727,80 \pm 1,00$	$27,1884\pm0,1500$
55 Strahl 19.04.11 23:10 8798 ArCO2 90.4 33,932±1 449,832 83,932±1 549,832± 83,932±1 549,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 849,832± 840,82± 850,94± 500,942±	34	Strahl	$19.04.11\ 23.17 - 23.19$	14250	$ArCO_2 (90:10)$	99,4	$33,830\pm1$	$449,877 \pm 1$	$727,80 \pm 1,00$	$27,2054\pm0,1501$
0 kosm. Str. 20.04.11 12:24 - 12:25 6543 NeCO2 99.4 14,150±1 502,253±1 47,658±1 507,658±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 47,055±1 50,942±1 47,055±1 50,942±1 500,942±1 47,055±1 500,942±1 47,055±1 500,342±1 47,055±1 500,342±1 47,055±1 500,342±1 500,342±1 500,342±1 500,342±1 500,345±1 <td>55</td> <td>Strahl</td> <td>$19.04.11\ 23:19-23:20$</td> <td>8798</td> <td>$ArCO_2 (90:10)$</td> <td>99,4</td> <td>$33,932\pm1$</td> <td>$449,832 \pm 1$</td> <td>$727,80 \pm 1,00$</td> <td>$27,2151\pm0,1502$</td>	55	Strahl	$19.04.11\ 23:19-23:20$	8798	$ArCO_2 (90:10)$	99,4	$33,932\pm1$	$449,832 \pm 1$	$727,80 \pm 1,00$	$27,2151\pm0,1502$
11 Strahl 22.04.11 01:01 6128 NeCO2 (90:10) 98,0 3,052±1 497,628 36 Strahl 22.04.11 01:06 01:10 01:01 17647 NeCO2 (90:10) 98,0 5,955 ±1 500,305 ±1	10 k	osm. Str.	$20.04.11 \ 12:24 - 12:25$	6543	$NeCO_2 (90:10)$	99,4	$14,150\pm1$	$502,253\pm1$	$727,80 \pm 1,00$	$23,1892\pm0,1211$
3Strahl $22.04.110$ $01:08 - 01:10$ 15241 NeCO2 $90:10$ $98,0$ $3,110\pm1$ $497,065$ 5Strahl $22.04.110$ $01:10 - 01:12$ 17647 NeCO2 $90:10$ $98,0$ $5,985\pm1$ $500,3094$ 5Strahl $22.04.110$ $01:12 - 01:12$ 17647 NeCO2 $90:10$ $98,0$ $5,135\pm1$ $500,1564$ 7Strahl $22.04.110$ $01:12 - 01:12$ 17647 NeCO2 $90:10$ $98,0$ $5,394\pm1$ $502,203$ 8Strahl $22.04.110$ $01:12 - 01:12$ 177464 NeCO2 $90:10$ $98,0$ $8,594\pm1$ $502,503$ 9Strahl $22.04.110$ $01:12 - 01:21$ 177464 NeCO2 $90:10$ $98,0$ $8,107\pm1$ $502,505$ 9Strahl $22.04.110$ $01:12 - 01:21$ 177464 NeCO2 $90:10$ $98,0$ $8,107\pm1$ $502,505$ 1Strahl $22.04.110$ $01:22 - 01:23$ 17750 $NeCO2$ $90:10$ $98,0$ $8,106\pm1$ $502,505$ 2Strahl $22.04.110$ $01:22 - 01:23$ 17730 $NeCO2$ $90:10$ $98,0$ $8,106\pm1$ $502,203$ 5Strahl $22.04.110$ $01:22 - 01:23$ 17730 $NeCO2$ $90:10$ $98,0$ $8,001\pm1$ $502,203$ 2Strahl $22.04.110$ $01:22 - 01:23$ 17730 17730 $90:10$ $98,0$ $8,106\pm1$ $502,203$ 5Strahl $22.04.110$ $01:22 - 01:23$ 17730 17730		Strahl	$22.04.11\ 01:01 - 01:01$	6128	$NeCO_2 (90:10)$	98,0	$3,052\pm1$	$497,628 \pm 1$	$727,80 \pm 1,00$	$22,8857\pm0,1190$
4Strahl $22.04.11$ $01:10 - 01:12$ 17647 $NeCO_2$ $90:10$ $5,985 \pm 1$ $500,389 \pm 300,389$ 5Strahl $22.04.11$ $01:12 - 01:12$ 17647 $NeCO_2$ $90:10$ $98,0$ $6,135 \pm 1$ $500,389 \pm 500,389$ 6Strahl $22.04.11$ $01:12 - 01:12$ 17583 $NeCO_2$ $90:10$ $98,0$ $6,135 \pm 1$ $500,389 \pm 500,389$ 8Strahl $22.04.11$ $01:12 - 01:12$ 17753 $NeCO_2$ $90:10$ $98,0$ $8,594 \pm 1$ $502,503$ 9Strahl $22.04.11$ $01:12 - 01:12$ 17763 $NeCO_2$ $90:10$ $98,0$ $8,407 \pm 1$ $502,503$ 1Strahl $22.04.11$ $01:17 - 01:19$ 17753 $NeCO_2$ $90:10$ $98,0$ $8,407 \pm 1$ $502,503$ 1Strahl $22.04.11$ $01:21 - 01:23$ 17753 $NeCO_2$ $90:10$ $98,0$ $8,407 \pm 1$ $502,744$ 2Strahl $22.04.11$ $01:22 - 01:26$ 5881 $NeCO_2$ $90:10$ $98,0$ $8,407 \pm 1$ $502,723$ 3Strahl $22.04.11$ $01:22 - 01:26$ 5881 $NeCO_2$ $90:10$ $98,0$ $8,002 \pm 1$ $502,723$ 4Strahl $22.04.11$ $01:22 - 01:26$ 5881 $NeCO_2$ $90:10$ $98,0$ $8,002 \pm 1$ $502,723$ 5Strahl $22.04.11$ $01:22 - 01:26$ 5881 $NeCO_2$ $90:10$ $98,0$ $8,002 \pm 1$ $502,923$ 5Strahl $22.04.11$ $01:2$	с С	Strahl	$22.04.11\ 01:08 - 01:10$	15241	$NeCO_2 (90:10)$	98,0	$3,110\pm1$	$497,065\pm1$	$727,80 \pm 1,00$	$22,9145\pm0,1192$
5 Strahl $22.04.11$ $01:10 - 01:12$ 17647 NeCO2 $90:0$ $6;235\pm1$ $500;363\pm1$ $500;361\pm1$ $500;361\pm1$	4	Strahl	$22.04.11 \ 01:10 - 01:10$	4124	$NeCO_2 (90:10)$	98,0	$5,985\pm1$	$500,942\pm1$	$727,80 \pm 1,00$	$22,8681\pm0,1189$
6 Strahl $22.04.11$ $01:12 - 01:12$ 1263 NeCO ₂ $90:01$ $98,0$ $6,135\pm1$ $500,1564$ 8 Strahl $22.04.11$ $01:13 - 01:13$ 17585 NeCO ₂ $90:10$ $98,0$ $6,135\pm1$ $502,2004$ 9 Strahl $22.04.11$ $01:15 - 01:17$ 17753 NeCO ₂ $90:10$ $98,0$ $8,157\pm1$ $502,203$ 9 Strahl $22.04.11$ $01:17 - 01:19$ 177509 NeCO ₂ $90:10$ $98,0$ $8,107\pm1$ $502,203$ 1 Strahl $22.04.11$ $01:21$ 177509 NeCO ₂ $90:10$ $98,0$ $8,107\pm1$ $502,503$ 3 Strahl $22.04.11$ $01:22$ 17730 NeCO ₂ $90:10$ $98,0$ $8,107\pm1$ $502,503$ 3 Strahl $22.04.11$ $01:22$ 17730 $NeCO_2$ $90:10$ $98,0$ $8,107\pm1$ $502,503$ 5 Strahl $22.04.11$ $01:22$ 17733	5	Strahl	$22.04.11 \ 01:10 - 01:12$	17647	$NeCO_2 (90:10)$	98,0	$6,235\pm1$	$500,369\pm1$	$727,80 \pm 1,00$	$22,9062\pm0,1192$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	Strahl	$22.04.11 \ 01:12 - 01:12$	1263	$NeCO_2 (90:10)$	98,0	$6,135\pm1$	$500,156 \pm 1$	$727,80 \pm 1,00$	$22,9115\pm0,1192$
8 Strahl $22.04.11$ $01:15 - 01:17$ 17535 NeCO ₂ 99.0 $8,554\pm1$ $502,655$ 9 Strahl $22.04.11$ $01:17 - 01:19$ 17753 NeCO ₂ 99.0 $8,157\pm1$ $502,9654$ 1 Strahl $22.04.11$ $01:17 - 01:21$ 17753 NeCO ₂ 99.0 $8,107\pm1$ $502,9654$ 2 Strahl $22.04.11$ $01:19 - 01:21$ 177509 NeCO ₂ 99.0 $8,107\pm1$ $502,9654$ 2 Strahl $22.04.11$ $01:21 - 01:23$ 17430 NeCO ₂ $90:10$ $98,0$ $8,106\pm1$ $502,9854$ 5 Strahl $22.04.11$ $01:23 - 01:23$ 3620 NeCO ₂ $90:10$ $98,0$ $8,106\pm1$ $502,9834$ 5 Strahl $22.04.11$ $01:23 - 01:23$ 3620 NeCO ₂ $90:01$ $90,02441$ $502,9824$ 5 Strahl $22.04.11$ $01:23 - 01:25$ 33230 NeCO ₂ $90:010$ $98,0$ $8,1$	2	Strahl	$22.04.11\ 01:13 - 01:13$	3649	$NeCO_2 (90:10)$	98,0	$7,944\pm1$	$502,200 \pm 1$	$727,80 \pm 1,00$	$22,9006\pm 0,1191$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	Strahl	$22.04.11 \ 01:13 - 01:15$	17585	$NeCO_2 (90:10)$	98,0	$8,594\pm1$	$502,691 \pm 1$	$727,80 \pm 1,00$	$22,9080\pm0,1192$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Strahl	$22.04.11 \ 01:15 - 01:17$	17464	$NeCO_2 (90:10)$	98,0	$8,157\pm1$	$502,965 \pm 1$	$727,80 \pm 1,00$	$22,8750\pm0,1190$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	Strahl	$22.04.11 \ 01:17 - 01:19$	17553	$NeCO_2 (90:10)$	98,0	$8,001\pm1$	$502,513 \pm 1$	$727,80 \pm 1,00$	$22,8887\pm0,1191$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Strahl	$22.04.11\ 01:19 - 01:21$	17509	$NeCO_2 (90:10)$	98,0	$8,407\pm1$	$502,727 \pm 1$	$727,80 \pm 1,00$	$22,8976\pm0,1191$
3 Strahl $22.04.11\ 01:23 - 01:24$ 8392 NeCO ₂ 99.0 $8,106\pm1$ $502,0984$ 6 Strahl $22.04.11\ 01:25 - 01:26$ 5881 NeCO ₂ 99.0 $7,985\pm1$ $502,2334$ 7 Strahl $22.04.11\ 01:53 - 01:53$ 3620 NeCO ₂ 99.0 $8,031\pm1$ $501,3564$ 8 Strahl $22.04.11\ 01:53 - 01:55$ 13289 NeCO ₂ 99.0 $8,031\pm1$ $501,3564$ 9 Strahl $22.04.11\ 01:53 - 01:55$ 13289 NeCO ₂ 99.0 $8,012\pm1$ $501,3264$ 9 Strahl $22.04.11\ 02:00 - 02:02$ 18615 NeCO ₂ 99.0 $8,122\pm1$ $502,3224$ 9 Strahl $22.04.11\ 02:00 - 02:08$ 13230 NeCO ₂ 99.0 $8,163\pm1$ $501,706$ 1 Strahl $22.04.11\ 02:02 - 02:15$ 13230 NeCO ₂ 99.0 $8,163\pm1$ $501,706$ 2 Strahl $22.04.11\ 02:02 - 02:15$ 13230 NeCO ₂ 99.0	7	Strahl	$22.04.11 \ 01:21 - 01:23$	17430	$NeCO_2 (90:10)$	97,9	$7,943\pm1$	$502,744 \pm 1$	$727,80 \pm 1,00$	$22,8753\pm0,1190$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Strahl	$22.04.11 \ 01:23 - 01:24$	8392	$NeCO_2 (90:10)$	98,0	$8,106\pm1$	$502,098 \pm 1$	$727,80 \pm 1,00$	$22,9128\pm0,1192$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	Strahl	$22.04.11 \ 01:25 - 01:26$	5881	$NeCO_2 (90:10)$	98,0	$7,985\pm1$	$502,283 \pm 1$	$727,80 \pm 1,00$	$22,8986\pm0,1191$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	Strahl	$22.04.11\ 01:53 - 01:53$	3620	$NeCO_2 (90:10)$	98,0	$8,031\pm1$	$501,356 \pm 1$	$727,80 \pm 1,00$	$22,9438\pm0,1194$
8 Strahl 22.04.11 02:00 - 02:02 18605 NeCO ₂ (90:10) 98,0 8,122 \pm 1 502,322 ± 50.789 ± 50.799 ± 50.790 ± 50.700 ±	2	Strahl	22.04.11 01:53 $-$ 01:55	13289	$NeCO_2 (90:10)$	98,0	$8,002\pm1$	$501,760 \pm 1$	$727,80 \pm 1,00$	$22,9237\pm0,1193$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	Strahl	$22.04.11 \ 02:00 - 02:02$	18605	$NeCO_2 (90:10)$	98,0	$8,122\pm1$	$502,322 \pm 1$	$727,80 \pm 1,00$	$22,9031\pm0,1192$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Strahl	$22.04.11 \ 02:02 - 02:04$	18619	$NeCO_2 (90:10)$	98,0	$8,023\pm1$	$500,789\pm1$	$727,80 \pm 1,00$	$22,9698\pm0,1196$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	Strahl	$22.04.11 \ 02:04 - 02:06$	18615	$NeCO_2 (90:10)$	98,0	$8,163\pm1$	$501,069 \pm 1$	$727,80 \pm 1,00$	$22,9633 \pm 0,1196$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Strahl	$22.04.11 \ 02:06 - 02:08$	13230	$NeCO_2$ (90:10)	97,9	$8,037\pm1$	$501,716 \pm 1$	$727,80 \pm 1,00$	$22,9273\pm0,1193$
3 Strahl 22.04.11 02:15 02:18 24402 NeCO2 (90:10) 98,0 8,018 1 502,638 4 Strahl 22.04.11 02:18 02:20 24427 NeCO2 (90:10) 98,0 8,018 1 502,638 5 Strahl 22.04.11 02:20 02:22 13044 NeCO2 (90:10) 98,0 8,150 1 503,330 5 Strahl 22.04.11 02:20 02:22 13044 NeCO2 (90:10) 98,0 8,150 1 503,330 6 α_{samal} α_{smal} α_{samal}	2	Strahl	$22.04.11 \ 02:14 - 02:15$	9851	$NeCO_2$ (90:10)	98,0	$8,279\pm1$	$502,982\pm1$	$727,80 \pm 1,00$	$22,8799\pm0,1190$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	 	Strahl	$22.04.11 \ 02:15 - 02:18$	24402	$NeCO_2$ (90:10)	98,0	$8,018\pm1$	$502,638\pm1$	$727,80 \pm 1,00$	$22,8837\pm0,1190$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	Strahl	$22.04.11 \ 02:18 - 02:20$	24427	$NeCO_2 (90:10)$	98,0	$8,237\pm1$	$502,876 \pm 1$	$727,80 \pm 1,00$	$22,8828\pm0,1190$
c c_{1} c_{2} c_{2} c_{1}] c_{2} c_{2}]] c_{2}] c_{2}] c_{2}]]] c_{2}]] c_{2}]]] c_{2}]] c_{2}]] c_{2}]]] c_{2}]]] c_{2}]]] c_{2}]]]] c_{2}]]] c_{2}]]]]] c_{2}]]]]]]]]]]] c_{2}]]]]]]]]]]]]]]]]]]]	5	Strahl	$22.04.11 \ 02:20 - 02:22$	13044	$NeCO_2 (90:10)$	98,0	$8,150\pm1$	$503,330\pm1$	$727,80 \pm 1,00$	$22,8578\pm0,1189$
0 DUALI 22.04.11 U2:22 U2:24 3000 IVECU2 (20.10) 20,00 I 1,000 A	9	Strahl	$22.04.11 \ 02:22 - 02:24$	3580	$NeCO_2 (90:10)$	98,0	$7,887\pm1$	$503,544\pm1$	$727,80 \pm 1,00$	$22,8359\pm0,1187$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Drift geschwindi gkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	[% E ^{drift}]	GEM-Folie	Kathode	[mm]	$[mm/\mu s]$
2528	Strahl	$22.04.11\ 02:31 - 02:33$	24467	$NeCO_2 (90:10)$	97,9	$7,999 \pm 1$	$503,056\pm1$	$727,80 \pm 1,00$	$22,8635\pm0,1189$
2529	Strahl	$22.04.11\ 02:33 - 02:33$	1412	$NeCO_2$ (90:10)	98,0	$7,908\pm1$	$502,939\pm 1$	$727,80 \pm 1,00$	$22,8647\pm0,1189$
2530	Strahl	$22.04.11 \ 02:34 - 02:37$	24306	$NeCO_2$ (90:10)	98,0	$7,937\pm1$	$502,296\pm 1$	$727,80 \pm 1,00$	$22,8958\pm0,1191$
2531	Strahl	$22.04.11\ 02:37 - 02:39$	24278	$NeCO_2$ (90:10)	98,0	$8,095\pm1$	$503,066\pm1$	$727,80 \pm 1,00$	$22,8675\pm0,1189$
2532	Strahl	$22.04.11 \ 02:39 - 02:42$	24291	$NeCO_2$ (90:10)	98,0	$8,100\pm1$	$503,512\pm1$	$727,80 \pm 1,00$	$22,8471\pm0,1188$
2533	Strahl	$22.04.11 \ 02:42 - 02:45$	23531	$NeCO_2$ (90:10)	97,9	$8,357\pm1$	$503,862\pm1$	$727,80 \pm 1,00$	$22,8429\pm0,1187$
2534	Strahl	$22.04.11 \ 02:45 - 02:46$	11158	$NeCO_2$ (90:10)	97,9	$7,919\pm1$	$503,085\pm1$	$727,80 \pm 1,00$	$22,8585\pm0,1189$
2536	Strahl	$22.04.11 \ 02.50 - 02.51$	10657	$NeCO_2 (90:10)$	98,0	$7,962\pm1$	$502,729\pm1$	$727,80 \pm 1,00$	$22,8769\pm0,1190$
2537	Strahl	$22.04.11 \ 02.51 - 02.54$	23255	$NeCO_2$ (90:10)	98,0	$7,999 \pm 1$	$502,401 \pm 1$	$727,80 \pm 1,00$	$22,8938\pm 0,1191$
2538	Strahl	$22.04.11 \ 02.54 - 02.56$	23225	$NeCO_2$ (90:10)	98,0	$8,039\pm1$	$502,856\pm1$	$727,80 \pm 1,00$	$22,8746\pm0,1190$
2539	Strahl	$22.04.11 \ 02.56 - 02.59$	23188	$NeCO_2$ (90:10)	97,9	$7,988\pm1$	$502,835 \pm 1$	$727,80 \pm 1,00$	$22,8732\pm0,1190$
2540	Strahl	$22.04.11 \ 02.59 - 03.01$	14469	$NeCO_2 (90:10)$	98,0	$7,989\pm1$	$502,892\pm1$	$727,80 \pm 1,00$	$22,8706\pm0,1189$
2541	Strahl	$22.04.11 \ 03:01 - 03:02$	8936	$NeCO_2$ (90:10)	98,0	$7,815\pm1$	$503,378\pm1$	$727,80 \pm 1,00$	$22,8402\pm0,1187$
2542	Strahl	$22.04.11 \ 03:02 - 03:04$	18906	$NeCO_2 (90:10)$	98,0	$7,819\pm1$	$503,029 \pm 1$	$727,80 \pm 1,00$	$22,8565\pm0,1188$
2543	Strahl	$22.04.11 \ 03:08 - 03:11$	5004	$NeCO_2$ (90:10)	98,0	$7,820\pm1$	$502,727\pm1$	$727,80 \pm 1,00$	$22,8705\pm0,1189$
2544	Strahl	$22.04.11 \ 03:11 - 03:13$	20983	$NeCO_2 (90:10)$	97,9	$7,811\pm1$	$502,880\pm1$	$727,80 \pm 1,00$	$22,8630\pm0,1189$
2545	Strahl	$22.04.11 \ 03:14 - 03:15$	4528	$NeCO_2 (90:10)$	98,0	$7,799\pm1$	$503,202\pm1$	$727,80 \pm 1,00$	$22,8476\pm0,1188$
2546	Strahl	$22.04.11 \ 03:15 - 03:25$	21659	$NeCO_2 (90:10)$	98,0	$7,355\pm1$	$502,958\pm 1$	$727,80 \pm 1,00$	$22,8384\pm0,1187$
2640	Strahl	$01.05.11 \ 01.19 - 01.22$	21211	$NeCO_2 (90:10)$	98,0	$7,744 \pm 1$	$501,169\pm1$	$727,80 \pm 1,00$	$22,9391\pm0,1194$
2641	Strahl	$01.05.11 \ 01:28 - 01:35$	15107	$NeCO_2 (90:10)$	98,0	$7,939\pm1$	$501,612\pm 1$	$727,80 \pm 1,00$	$22,9276\pm0,1193$
2643	Strahl	$01.05.11 \ 01.35 - 01.37$	7107	$NeCO_2$ (90:10)	98,0	$7,893 \pm 1$	$503,983\pm1$	$727,80 \pm 1,00$	$22,8159\pm0,1186$
2645	Strahl	$01.05.11 \ 01:42 - 01:44$	6742	$NeCO_2 (90:10)$	98,0	$7,906\pm1$	$501,357 \pm 1$	$727,80 \pm 1,00$	$22,9379\pm0,1194$
2646	Strahl	$01.05.11 \ 01:44 - 01:48$	22598	$NeCO_2$ (90:10)	98,0	$7,794 \pm 1$	$503,303\pm 1$	$727,80 \pm 1,00$	$22,8427\pm0,1187$
2647	Strahl	$01.05.11 \ 01:48 - 01:52$	136	$NeCO_2 (90:10)$	98,0	$7,974\pm1$	$498,473 \pm 1$	$727,80 \pm 1,00$	$23,0760\pm0,1203$
2649	Strahl	$01.05.11 \ 01.52 - 01.54$	3416	$NeCO_2$ (90:10)	98,0	$7,983 \pm 1$	$502,625\pm 1$	$727,80 \pm 1,00$	$22,8827\pm0,1190$
2651	Strahl	$01.05.11 \ 01.56 - 02.02$	33688	$NeCO_2 (90:10)$	98,0	$8,051\pm1$	$502,558\pm 1$	$727,80 \pm 1,00$	$22,8889\pm0,1191$
2652	Strahl	$01.05.11 \ 02:06 - 02:07$	9211	$NeCO_2$ (90:10)	98,0	$8,031\pm1$	$502,096\pm1$	$727,80 \pm 1,00$	$22,9094\pm0,1192$
2653	Strahl	$01.05.11 \ 02:09 - 02:14$	29050	$NeCO_2 (90:10)$	97,9	$7,953\pm1$	$502,767\pm1$	$727,80 \pm 1,00$	$22,8748\pm0,1190$
2654	Strahl	$01.05.11 \ 02:14 - 02:17$	19282	$NeCO_2 (90:10)$	98,0	$7,973 \pm 1$	$503,375 \pm 1$	$727,80 \pm 1,00$	$22,8476\pm0,1188$
2655	Strahl	$01.05.11 \ 02:19 - 02:25$	21469	$NeCO_2 (90:10)$	98,0	$7,989\pm1$	$501,980 \pm 1$	$727,80 \pm 1,00$	$22,9128\pm0,1192$
2656	Strahl	$01.05.11 \ 02:25 - 02:28$	4414	$NeCO_2 (90:10)$	98,0	$7,772 \pm 1$	$501,985\pm1$	$727,80 \pm 1,00$	$22,9026\pm0,1192$
2658	Strahl	$01.05.11 \ 02:28 - 02:31$	16150	$NeCO_2 (90:10)$	98,0	$7,\!839\pm1$	$502,803\pm1$	$727,80 \pm 1,00$	$22,8678\pm0,1189$
2659	Strahl	$01.05.11 \ 03:12 - 03:17$	35147	$NeCO_2 (90:10)$	98,0	$7,876\pm1$	$501,668 \pm 1$	$727,80 \pm 1,00$	$22,9221\pm0,1193$
2660	Strahl	$01.05.11 \ 03:17 - 03:23$	32467	$NeCO_2$ (90:10)	98,0	$7,968\pm1$	$502,015\pm 1$	$727,80 \pm 1,00$	$22,9103\pm0,1192$
2661	Strahl	$01.05.11 \ 03:28 - 03:34$	34136	$NeCO_2$ (90:10)	98,0	$7,739\pm1$	$502,248 \pm 1$	$727,80 \pm 1,00$	$22,8889\pm0,1191$
2662	Strahl	$01.05.11 \ 03:34 - 03:40$	34439	$NeCO_2 (90:10)$	98,0	$7,741 \pm 1$	$502, 361 \pm 1$	$727,80 \pm 1,00$	$22,8837\pm0,1190$
2663	Strahl	$01.05.11 \ 03:40 - 03:46$	34688	$NeCO_2 (90:10)$	98,0	$7,805\pm1$	$501,121 \pm 1$	$727,80 \pm 1,00$	$22,9442\pm0,1194$
2664	Strahl	$01.05.11 \ 03:46 - 03:52$	33187	$NeCO_2 (90:10)$	98,0	$7,\!840\pm1$	$501,608 \pm 1$	$727,80 \pm 1,00$	$22,9232\pm0,1193$
2665	Strahl	$01.05.11 \ 03.52 - 03.57$	29991	$NeCO_2$ (90:10)	98,0	$7,841 \pm 1$	$501,125\pm1$	$727,80 \pm 1,00$	$22,9457\pm0,1194$
2666	Strahl	$01.05.11 \ 03.57 - 04.03$	29054	$NeCO_2 (90:10)$	98,0	$7,872 \pm 1$	$500,785\pm1$	$727,80 \pm 1,00$	$22,9630\pm 0,1196$
2667	Strahl	$01.05.11 \ 04:03 - 04:10$	32323	$NeCO_2$ (90:10)	98,0	$7,735\pm1$	$501,818 \pm 1$	$727,80 \pm 1,00$	$22,9086\pm 0,1192$

Drift geschwindi gkeit	$[mm/\mu s]$	$22,9302\pm0,1193$	$22,9277\pm0,1193$	$22,9343\pm0,1194$	$22,9317\pm0,1194$	$22,9470\pm0,1195$	$22,9528\pm0,1195$	$22,9606\pm0,1195$	$22,9602\pm0,1195$	$22,9664\pm0,1196$	$22,9720\pm0,1196$	$22,9707\pm0,1196$	$22,9705\pm0,1196$	$22,9706\pm0,1196$	$22,9617\pm0,1196$	$22,9569\pm0,1195$	$22,9517\pm0,1195$	$22,9550\pm0,1195$	$22,9532\pm 0,1195$	$22,9565\pm0,1195$	$22,9452\pm0,1194$	$22,9523\pm0,1195$	$22,9286\pm0,1193$	$22,9285\pm0,1193$	$22,9471\pm0,1195$	$22,8691\pm0,1189$	$22,9104\pm0,1192$	$22,9902\pm0,1197$	$22,9339\pm0,1194$	$22,8711\pm0,1189$	$22,8740\pm0,1190$	$22,8744 \pm 0,1190$	$22,8768\pm0,1190$	$22,8509\pm0,1188$	$22,9762\pm0,1197$	$22,9405\pm0,1194$	$22,9470\pm0,1195$	$22,8944\pm0,1191$	$22,8662\pm0,1189$	$22,8712\pm0,1189$	$22,8689\pm0,1189$	$22,9299\pm 0,1193$
Driftlänge	[mm]	$727,80\pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80\pm 1,00$	$727,80 \pm 1,00$	$727,80\pm 1,00$	$727,80\pm1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	727,80 \pm 1,00
Kante	Kathode	$501,461 \pm 1$	$501,565 \pm 1$	$501,207 \pm 1$	$501,318 \pm 1$	$501,079 \pm 1$	$500,921 \pm 1$	$500,668 \pm 1$	$500,712 \pm 1$	$500,577 \pm 1$	$500,562 \pm 1$	$500,501 \pm 1$	$500,449 \pm 1$	$500,470 \pm 1$	$500,633 \pm 1$	$500,716 \pm 1$	$500,800 \pm 1$	$500,857 \pm 1$	$500,840 \pm 1$	$500,758 \pm 1$	$500,919 \pm 1$	$500,821 \pm 1$	501,228 ± 1	$501,221 \pm 1$	$500,934 \pm 1$	$502,005 \pm 1$	$501,511 \pm 1$	$500,059 \pm 1$	$500,921 \pm 1$	$501,877 \pm 1$	$502,025 \pm 1$	$502,010 \pm 1$	$502,215\pm 1$	$502,274 \pm 1$	$500,058 \pm 1$	$501,723 \pm 1$	$500,873 \pm 1$	$501,936 \pm 1$	$502,372 \pm 1$	$502,152 \pm 1$	$502,205 \pm 1$	$ 500,691 \pm 1$
Kante	GEM-Folie	$7,843\pm1$	$7,894 \pm 1$	$7,678\pm1$	$7,733\pm1$	$7,822 \pm 1$	$7,789\pm1$	$7,704 \pm 1$	$7,739\pm1$	$7,737\pm1$	$7,842 \pm 1$	$7,754\pm1$	$7,697 \pm 1$	$7,721 \pm 1$	$7,694 \pm 1$	$7,672 \pm 1$	$7,646\pm1$	$7,772 \pm 1$	$7,718\pm1$	$7,706\pm1$	$7,624\pm1$	$7,680\pm1$	$7,577\pm1$	$7,568\pm1$	$7,680\pm1$	$7,068\pm1$	$7,466\pm1$	$7,729\pm1$	$7,383\pm1$	$6,984\pm1$	$7,194\pm1$	$7,189\pm1$	$7,446\pm1$	$6,944\pm1$	$7,430\pm1$	$8,326\pm1$	$7,617\pm1$	$7,548\pm1$	$7,373 \pm 1$	$7,261 \pm 1$	$7,264\pm1$	$7,067 \pm 1$
Driftfeld	$[\% E_{max}^{drift}]$	6'26	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	98,0	97,9	98,0	98,0	98,0	98,0	98,0	98,0	97,9	98,0	98,0	98,0	97,9	98,0	98,0	97,9	98,0	98,0	98,0	98,0	98,0	98,0	97,8	98,0	98,0	98,0	98,0	98,0	98,0
	Gasgemisch	$NeCO_2 (90:10)$	$NeCO_2$ (90:10)	$NeCO_2$ (90:10)	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2$ (90:10)	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2$ (90:10)	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$	$NeCO_2 (90:10)$
Anzahl	Ereignisse	33506	902	29667	30327	29595	940	27587	27469	27362	27252	27255	27195	27294	27168	26322	26112	26563	26236	16182	26106	24204	27732	25480	18621	34602	18084	15865	9580	11179	37552	37540	37511	21965	38751	39204	38163	19156	35861	34473	35930	35273
	Datum und Uhrzeit	$01.05.11 \ 04:10 - 04:15$	$01.05.11 \ 04.15 - 04.16$	$01.05.11 \ 04:16 - 04:22$	$01.05.11 \ 04:22 - 04:27$	$01.05.11 \ 04:27 - 04:32$	$01.05.11 \ 04:32 - 04:47$	01.05.11 04:47 - 04:54	$01.05.11 \ 04.54 - 04.59$	$01.05.11 \ 04.59 - 05.05$	$01.05.11 \ 05:05 - 05:10$	$01.05.11\ 05.10 - 05.15$	$01.05.11\ 05:15 - 05:20$	$01.05.11 \ 05:20 - 05:25$	$01.05.11\ 05:25 - 05:30$	$01.05.11\ 05:31 - 05:37$	$01.05.11 \ 05:37 - 05:43$	$01.05.11\ 05.56 - 06.11$	$01.05.11\ 06:11 - 06:17$	$01.05.11\ 06:17 - 06:20$	$01.05.11 \ 06:22 - 06:27$	$01.05.11 \ 06:27 - 06:32$	$01.05.11\ 06:33 - 06:40$	$01.05.11 \ 06:40 - 06:45$	$01.05.11\ 06:45 - 06:52$	$01.05.11\ 21:35 - 21:44$	$01.05.11\ 21:47 - 21:52$	$01.05.11\ 22:32-23:03$	$01.05.11\ 23:14-23:26$	$01.05.11\ 23:26-23:29$	$01.05.11\ 23:29 - 23:51$	$01.05.11\ 23.51 - 00:00$	$02.05.11\ 00:00 - 00:10$	$02.05.11\ 00:10-00:15$	$02.05.11\ 00:32 - 00:42$	$02.05.11\ 00.42 - 00.51$	$02.05.11 \ 00.51 - 01.01$	$02.05.11\ 01:01 - 01:06$	$02.05.11\ 01:18 - 01:35$	$02.05.11\ 01:35 - 01:55$	$02.05.11\ 01.55 - 02.04$	$02.05.11\ 02:07 - 02:16$
_	Runtyp	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl
Run-	Nummer	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679	2680	2681	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2696	2697	2699	2701	2702	2703	2704	2705	2706	2711	2712	2713	2714	2717	2718	2719	2720

Run-	_		Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	$[mm/\mu s]$
2721	Strahl	$02.05.11\ 02.16 - 02.26$	34934	$NeCO_2$ (90:10)	98,0	$7,245\pm1$	$500,068 \pm 1$	$727,80 \pm 1,00$	$22,9672\pm0,1196$
2722	Strahl	$02.05.11 \ 02:26 - 02:35$	35176	$NeCO_2$ (90:10)	98,0	$7,162\pm1$	$500,069 \pm 1$	$727,80 \pm 1,00$	$22,9632\pm0,1196$
2723	Strahl	$02.05.11 \ 02:35 - 02:44$	35331	$NeCO_2$ (90:10)	98,0	$7,499\pm1$	$500,243 \pm 1$	$727,80 \pm 1,00$	$22,9709\pm0,1196$
2725	Strahl	$02.05.11 \ 02.53 - 03.01$	31536	$NeCO_2$ (90:10)	98,0	$7,274\pm1$	$499,681 \pm 1$	$727,80 \pm 1,00$	$22,9866\pm0,1197$
2726	Strahl	$02.05.11 \ 03:01 - 03:10$	36729	$NeCO_2$ (90:10)	98,0	$7,298\pm1$	$500,028 \pm 1$	$727,80 \pm 1,00$	$22,9715\pm0,1196$
2728	Strahl	$02.05.11 \ 03:19 - 03:22$	12465	$NeCO_2$ (90:10)	98,0	$11,010\pm 1$	$501,930\pm 1$	$727,80 \pm 1,00$	$23,0562\pm0,1202$
2729	Strahl	$02.05.11 \ 03:22 - 03:25$	9704	$NeCO_2$ (90:10)	98,0	$11,713 \pm 1$	$499,722 \pm 1$	$727,80 \pm 1,00$	$23,1937\pm0,1211$
2730	Strahl	$02.05.11 \ 03:25 - 03:27$	6986	$NeCO_2$ (90:10)	97,9	$10,384\pm1$	$503,017\pm1$	$727,80 \pm 1,00$	$22,9760\pm0,1197$
2731	Strahl	$02.05.11 \ 03:27 - 03:36$	37753	$NeCO_2$ (90:10)	98,0	$11,520\pm1$	$501,291 \pm 1$	$727,80 \pm 1,00$	$23,1103\pm0,1206$
2732	Strahl	$02.05.11 \ 03:36 - 03:40$	16358	$NeCO_2$ (90:10)	98,0	$11,371 \pm 1$	$503,116\pm1$	$727,80 \pm 1,00$	$23,0175\pm0,1199$
2734	Strahl	$02.05.11 \ 03:44 - 03:53$	37276	$NeCO_2$ (90:10)	98,0	$10,807\pm 1$	$503,046\pm1$	$727,80 \pm 1,00$	$22,9944\pm 0,1198$
2735	Strahl	$02.05.11 \ 03.53 - 04.03$	37422	$NeCO_2$ (90:10)	98,0	$10,562\pm1$	$501,054\pm1$	$727,80 \pm 1,00$	$23,0763\pm0,1203$
2736	Strahl	$02.05.11 \ 04:03 - 04:12$	37427	$NeCO_2$ (90:10)	98,0	$10,640\pm1$	$502,241 \pm 1$	$727,80 \pm 1,00$	$23,0242\pm 0,1200$
2737	Strahl	$02.05.11 \ 04.12 - 04.21$	37339	$NeCO_2$ (90:10)	98,0	$10,882\pm1$	$503,097\pm 1$	$727,80 \pm 1,00$	$22,9955\pm0,1198$
2738	Strahl	$02.05.11 \ 04:21 - 04:31$	36750	$NeCO_2$ (90:10)	98,0	$10,915\pm1$	$503,712\pm1$	$727,80 \pm 1,00$	$22,9684\pm0,1196$
2739	Strahl	$02.05.11 \ 04:31 - 04:38$	4473	$NeCO_2 (90:10)$	97,9	$10,177\pm 1$	$502,730\pm1$	$727,80 \pm 1,00$	$22,9798\pm0,1197$
2740	Strahl	$02.05.11 \ 04:38 - 04:42$	8249	$NeCO_2$ (90:10)	98,0	$10,651\pm1$	$501,343 \pm 1$	$727,80 \pm 1,00$	$23,0669\pm0,1203$
2741	Strahl	$02.05.11 \ 04:42 - 04:54$	37307	$NeCO_2$ (90:10)	97,9	$11,071 \pm 1$	$502,253 \pm 1$	$727,80 \pm 1,00$	$23,0439\pm0,1201$
2742	Strahl	$02.05.11 \ 04.54 - 05.04$	37192	$NeCO_2$ (90:10)	97,9	$10,563\pm 1$	$501,726\pm1$	$727,80 \pm 1,00$	$23,0448\pm0,1201$
2743	Strahl	$02.05.11 \ 05:04 - 05:15$	37121	$NeCO_2$ (90:10)	98,0	$11,110\pm 1$	$501,471 \pm 1$	$727,80 \pm 1,00$	$23,0825\pm0,1204$
2744	Strahl	$02.05.11 \ 05.15 - 05.25$	37066	$NeCO_2$ (90:10)	98,0	$10,828\pm1$	$502,104\pm1$	$727,80 \pm 1,00$	$23,0395\pm0,1201$
2745	Strahl	$02.05.11 \ 05:25 - 05:35$	37141	$NeCO_2$ (90:10)	98,0	$10,704\pm1$	$501,945 \pm 1$	$727,80 \pm 1,00$	$23,0411\pm0,1201$
2748	Strahl	$02.05.11 \ 05.54 - 06.03$	36952	$NeCO_2$ (90:10)	97,9	$10,766\pm 1$	$501,309\pm1$	$727,80 \pm 1,00$	$23,0739\pm0,1203$
2749	Strahl	$02.05.11\ 06:03 - 06:13$	36859	$NeCO_2$ (90:10)	97,9	$10,546\pm 1$	$501,175\pm1$	$727,80 \pm 1,00$	$23,0699\pm0,1203$
2751	Strahl	$02.05.11 \ 06:32 - 06:44$	36841	$NeCO_2$ (90:10)	97,9	$10,749\pm1$	$500,220\pm1$	$727,80 \pm 1,00$	$23,1245\pm0,1207$
2752	Strahl	$02.05.11\ 06:44 - 06:46$	2620	$NeCO_2$ (90:10)	97,9	$10,428\pm1$	$500,789\pm1$	$727,80 \pm 1,00$	$23,0825\pm0,1204$
2753	Strahl	$02.05.11 \ 06:45 - 06:57$	36820	$NeCO_2$ (90:10)	97,9	$10,246\pm1$	$500,389\pm1$	$727,80 \pm 1,00$	$23,0927\pm0,1204$
2754	Strahl	$02.05.11 \ 06:57 - 07:07$	37841	$NeCO_2 (90:10)$	97,9	$10,412\pm1$	$501,615\pm1$	$727,80 \pm 1,00$	$23,0429\pm0,1201$
2758	Strahl	$02.05.11 \ 07:29 - 07:35$	27926	$NeCO_2 (90:10)$	98,0	$10,419\pm1$	$502,624 \pm 1$	$727,80 \pm 1,00$	$22,9960\pm0,1198$
2765	Strahl	$02.05.11 \ 08:41 - 08:52$	760	$NeCO_2 (90:10)$	98,0	$14,071 \pm 1$	$502,241 \pm 1$	$727,80 \pm 1,00$	$23,1861\pm0,1211$
2766	Strahl	$02.05.11 \ 08:52 - 09:03$	7843	$NeCO_2 (90:10)$	98,0	$10,073 \pm 1$	$501,371 \pm 1$	$727,80 \pm 1,00$	$23,0385\pm0,1201$
2767	Strahl	$02.05.11 \ 09:01 - 09:17$	34613	$NeCO_2 (90:10)$	97,9	$10,115\pm1$	$501,347 \pm 1$	$727,80 \pm 1,00$	$23,0416\pm0,1201$
2768	Strahl	$02.05.11 \ 09:17 - 09:21$	595	$NeCO_2$ (90:10)	98,0	$11,471 \pm 1$	$499,944 \pm 1$	$727,80 \pm 1,00$	$23,1717\pm0,1210$
2769	Strahl	$02.05.11 \ 09:19 - 09:29$	22887	$NeCO_2$ (90:10)	98,0	$10,550\pm 1$	$501,151\pm 1$	$727,80 \pm 1,00$	$23,0712\pm0,1203$
2770	Strahl	$02.05.11 \ 09:35 - 09:38$	7497	$NeCO_2$ (90:10)	97,9	$10,078\pm1$	$502,003\pm1$	$727,80 \pm 1,00$	$23,0091\pm0,1199$
2771	Strahl	$02.05.11 \ 09:38 - 09:43$	8663	$NeCO_2 (90:10)$	97,9	$10,021\pm 1$	$501,254\pm1$	$727,80 \pm 1,00$	$23,0415\pm0,1201$
2772	Strahl	$02.05.11 \ 09:47 - 09:59$	31906	$NeCO_2 (90:10)$	97,9	$10,071 \pm 1$	$501,522 \pm 1$	$727,80 \pm 1,00$	$23,0313\pm0,1200$
2773	Strahl	$02.05.11 \ 10:01 - 10:14$	34741	$NeCO_2 (90:10)$	99,9	$10,055\pm 1$	$501,683 \pm 1$	$727,80 \pm 1,00$	$23,0230\pm0,1200$
2963	kosm. Str.	$02.06.11\ 22:22 - 23:06$	206075	$ArCO_2$ (90:10)	84,0	$9,256\pm1$	$500,025\pm1$	$727,80 \pm 1,00$	$23,0633\pm0,1202$
2964	kosm. Str.	$02.06.11\ 23:06 - 23:10$	22147	$ArCO_2 (90:10)$	84,0	$9,485\pm1$	$499,521 \pm 1$	$727,80 \pm 1,00$	$23,0978\pm0,1205$
2965	kosm. Str.	$02.06.11\ 23:11 - 23:19$	35075	$ArCO_2$ (90:10)	84,0	$4,383\pm1$	$494,356 \pm 1$	$727,80\pm 1,00$	$23,1008\pm0,1205$

Driftgeschwindigkeit	[stt/mm]	$23,0563\pm0,1202$	$23,0579\pm0,1202$	$23,1388\pm0,1208$	$23,0970\pm0,1205$	$23,1106\pm0,1206$	$23,1139\pm0,1206$	$23,1053\pm0,1205$	$23,1014\pm0,1205$	$23,1063\pm0,1205$	$23,2331\pm0,1214$	$23,1890\pm0,1211$	$23,1069\pm0,1205$	$23,2011\pm0,1212$	$23,1212\pm0,1206$	$23,1737\pm0,1210$	$23,2506\pm0,1215$	$23,2883\pm0,1218$	$23,3751\pm0,1224$	$23,3279\pm0,1221$	$23,3270\pm 0,1220$	$23,3111\pm0,1219$	$23,3283 \pm 0,1221$	$23,3271\pm 0,1220$	$23,2697\pm0,1217$	$23,3005\pm0,1219$	$23,3473\pm0,1222$	$14,1550\pm0,2603$	$14,1848\pm 0,2609$	$14,1526\pm 0,2602$	$14,2569\pm0,2623$	$14,1481\pm0,2601$	$14,1746\pm 0,2607$	$14,1147\pm 0,2595$	$14,3309\pm0,2637$	$14,0942\pm0,2591$	$14,4776\pm0,2666$	$14,2964\pm0,2631$	$14,3931\pm0,2650$	$14,3309\pm0,2637$	$14,2881\pm0,2629$	$14 \ 3595 \pm 0 \ 9649$
Driftlänge	[mm]	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80\pm1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80\pm1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80\pm1,00$	$727,80 \pm 1,00$	$262,79 \pm 4,34$	262.79 ± 4.34																	
Kante	Kathode	$500,391 \pm 1$	$500,234 \pm 1$	$498,\!498\pm1$	$499,415 \pm 1$	$499,089\pm1$	$499,282\pm1$	$499,196 \pm 1$	$499,354\pm1$	$499,\!208\pm1$	$495,768 \pm 1$	$496,109 \pm 1$	$498,999\pm 1$	$497,003 \pm 1$	$497,811 \pm 1$	$496,791 \pm 1$	$494,846 \pm 1$	$494,383\pm1$	$492,361 \pm 1$	$493,040 \pm 1$	$493,084\pm1$	$493,\!226\pm1$	$493,132 \pm 1$	$493,\!433\pm1$	$493,560 \pm 1$	$493,930\pm1$	$492,914 \pm 1$	$495,430 \pm 1$	$495,243 \pm 1$	$503,027\pm1$	$502,037 \pm 1$	$499,381 \pm 1$	$496,867 \pm 1$	$495,681 \pm 1$	$446,324 \pm 1$	$496,110 \pm 1$	$492,\!906\pm1$	$492,332\pm1$	$492,283\pm1$	$493,875\pm1$	$494,270\pm1$	494.872 ± 1
Kante	GEM-Folie	$9,473 \pm 1$	$9,350 \pm 1$	$9,330 \pm 1$	$9,363 \pm 1$	$9,324 \pm 1$	$9,587 \pm 1$	$9,320 \pm 1$	$9,396 \pm 1$	$9,353 \pm 1$	$8,586 \pm 1$	$8,000 \pm 1$	$9,157 \pm 1$	$9,148 \pm 1$	$8,271 \pm 1$	$8,361 \pm 1$	$8,031 \pm 1$	$8,357 \pm 1$	$8,138\pm1$	$7,838 \pm 1$	7,862 ± 1	$7,674 \pm 1$	$7,939 \pm 1$	$8,213 \pm 1$	$7,144 \pm 1$	$8,158\pm1$	$8,115\pm1$	$206,704 \pm 1$	$207,125 \pm 1$	$214,253 \pm 1$	$ 215,375 \pm 1$	$ 210,514 \pm 1$	$208,540 \pm 1$	$206,132 \pm 1$	$161,142\pm1$	$206,138 \pm 1$	$210,615 \pm 1$	$206,463 \pm 1$	$208,333 \pm 1$	$208,693 \pm 1$	$208,234 \pm 1$	$210,120 \pm 1$
Driftfeld	$[\% E_{max}^{drift}]$	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	65,0	65,0	65,0	65,0	65,0	64,9	65,0	65,0	66,8	64,1	65,0	65,0	64,9	65,0	65.0
	Gasgemisch	$ArCO_2 (90:10)$	$ArCO_2$ (90:10)	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2$ (90:10)	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2$ (90:10)	$ArCO_2 (90:10)$	$ArCO_2$ (90:10)	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2$ (90:10)	$ArCO_2 (90:10)$	$ArCO_{2}$ (90:10)											
Anzahl	Ereignisse	47729	58069	188396	190138	185581	185329	188261	190762	193102	43288	5409	193	75920	115771	24744	25672	23537	126590	107702	70147	35301	99535	8726	80443	102980	110817	128073	122881	51807	49173	133460	100836	8960	10992	47920	27423	10453	10339	112043	136874	142151
	Datum und Uhrzeit	$03.06.11 \ 00:20 - 00:30$	$03.06.11 \ 00.42 - 00.54$	$03.06.11 \ 00.55 - 01.33$	$03.06.11 \ 01:33 - 02:12$	$03.06.11 \ 02.12 - 02.49$	$03.06.11 \ 02.49 - 03.27$	$03.06.11 \ 03.27 - 04.05$	$03.06.11 \ 04:05 - 04:44$	$03.06.11 \ 04:44 - 05:23$	$03.06.11\ 22.56 - 01.27$	$04.06.11 \ 02.16 - 02.35$	$04.06.11 \ 03:20 - 03:30$	$04.06.11 \ 04:30 - 06:36$	$04.06.11 \ 06:36 - 08:36$	$04.06.11 \ 09:01 - 10:07$	$04.06.11 \ 10.51 - 12.24$	$04.06.11 \ 12:32 - 13:24$	04.06.11 $15:45 - 18:54$	$04.06.11 \ 22:53 - 23:49$	$04.06.11 \ 23:49 - 00:26$	$05.06.11 \ 01:04 - 01:23$	$05.06.11 \ 01:23 - 02:15$	$05.06.11 \ 02.17 - 02.22$	$05.06.11 \ 02:28 - 03:10$	$05.06.11 \ 03:26 - 04:20$	$05.06.11 \ 04:20 - 05:21$	$09.06.11 \ 00.54 - 02.21$	$09.06.11 \ 02:21 - 03:51$	$09.06.11 \ 10.07 - 10.20$	$09.06.11 \ 10:20 - 10:32$	$09.06.11 \ 10:36 - 12:02$	$09.06.11 \ 12:02 - 12:59$	$09.06.11 \ 12.59 - 13.04$	$09.06.11 \ 13.04 - 13.10$	$09.06.11 \ 13.12 - 13.38$	$09.06.11 \ 15:33 - 15:49$	$09.06.11 \ 15:49 - 15:55$	$09.06.11 \ 15.55 - 16:00$	$09.06.11 \ 16:31 - 17:24$	$09.06.11 \ 17:24 - 18:28$	$09.06.11 \ 18:28 - 19:39$
	Runtyp	kosm. Str.	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl								
Run-	Nummer	2968	2974	2975	2976	2977	2978	2979	2980	2981	3030	3031	3032	3033	3034	3035	3036	3038	3039	3050	3051	3058	3059	3060	3061	3062	3063	3178	3179	3185	3186	3188	3189	3190	3191	3192	3196	3197	3198	3199	3200	3201

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	[mm/µs]
3202	Strahl	$09.06.11 \ 19:39 - 20:16$	78083	$ArCO_2 (90:10)$	65,0	$201,897 \pm 1$	$495,721 \pm 1$	$262,79 \pm 4,34$	$13,9094 \pm 0,2554$
3203	Strahl	$09.06.11 \ 20.34 - 21.45$	144541	$ArCO_2$ (90:10)	65,0	$206,957 \pm 1$	$495,\!402\pm1$	$262,79 \pm 4,34$	$14,1688\pm0,2605$
3204	Strahl	$09.06.11\ 21:45 - 22:40$	109124	$ArCO_2$ (90:10)	65,0	$207,249 \pm 1$	$493,913\pm1$	$262,79 \pm 4,34$	$14,2568\pm0,2623$
3208	Strahl	$09.06.11 \ 23.14 - 00.23$	148772	$ArCO_{2}$ (90:10)	65,0	$207,870\pm1$	$494,268\pm1$	$262,79\pm 4,34$	$14,2700\pm0,2625$
3209	Strahl	$10.06.11 \ 00:27 - 01:36$	148079	$ArCO_2$ (90:10)	65,0	$208,167 \pm 1$	$494,192\pm1$	$262,79 \pm 4,34$	$14,2886\pm0,2629$
3210	Strahl	$10.06.11 \ 01:36 - 02:50$	148836	$ArCO_2$ (90:10)	65,0	$206,506\pm 1$	$494,\!260\pm1$	$262,79 \pm 4,34$	$14,2028\pm0,2612$
3211	Strahl	$10.06.11 \ 02:50 - 04:00$	149414	$ArCO_2$ (90:10)	65,0	$205,432 \pm 1$	$494,605\pm1$	$262,79 \pm 4,34$	$14,1331\pm0,2598$
3212	Strahl	$10.06.11 \ 04:00 - 05:08$	148229	$ArCO_2$ (90:10)	65,0	$207,003\pm1$	$494,\!412\pm1$	$262,79 \pm 4,34$	$14,2198\pm0,2615$
3213	Strahl	$10.06.11 \ 05.08 - 06:24$	146450	$ArCO_2$ (90:10)	65,0	$205,999\pm 1$	$494,281\pm1$	$262,79 \pm 4,34$	$14,1768\pm0,2607$
3214	Strahl	$10.06.11 \ 06:24 - 07:36$	144843	$ArCO_2$ (90:10)	65,0	$207,704 \pm 1$	$494,133\pm1$	$262,79 \pm 4,34$	$14,2685\pm0,2625$
3215	Strahl	$10.06.11 \ 07:36 - 07:40$	4954	$ArCO_2$ (90:10)	65,0	$213,180 \pm 1$	$494,622\pm1$	$262,79 \pm 4,34$	$14,5213\pm0,2675$
3217	Strahl	$10.06.11\ 07.53 - 09:00$	142052	$ArCO_2$ (90:10)	65,0	$207,119 \pm 1$	$494,\!488\pm1$	$262,79 \pm 4,34$	$14,2218\pm0,2616$
3218	Strahl	$10.06.11 \ 09:00 - 10:09$	142649	$ArCO_2$ (90:10)	65,0	$203,560\pm 1$	$495,748\pm1$	$262,79 \pm 4,34$	$13,9873\pm0,2570$
3219	Strahl	$10.06.11 \ 10.09 - 11.15$	142120	$ArCO_2$ (90:10)	65,0	$204,050 \pm 1$	$494,970\pm1$	$262,79 \pm 4,34$	$14,0482\pm0,2582$
3220	Strahl	$10.06.11 \ 11:15 - 12:20$	143304	$ArCO_2$ (90:10)	65,0	$204,169 \pm 1$	$494,655\pm1$	$262,79 \pm 4,34$	$14,0692\pm0,2586$
3221	Strahl	10.06.11 $12:20 - 13:26$	130166	$ArCO_2 (90:10)$	65,0	$203,754\pm1$	$493,321\pm1$	$262,79 \pm 4,34$	$14,1139\pm0,2595$
3222	Strahl	$10.06.11 \ 13:47 - 14:54$	147924	$ArCO_2$ (90:10)	65,0	$205,505\pm 1$	$491,955\pm1$	$262,79 \pm 4,34$	$14,2674\pm0,2625$
3223	Strahl	10.06.11 $14.54 - 15.59$	148846	$ArCO_2$ (90:10)	65,0	$204,941 \pm 1$	$491,524 \pm 1$	$262,79 \pm 4,34$	$14,2608\pm0,2624$
3224	Strahl	$10.06.11 \ 15.59 - 17.07$	149189	$ArCO_2$ (90:10)	65,0	$201,773\pm1$	$490,365\pm1$	$262,79 \pm 4,34$	$14,1616\pm0,2604$
3225	Strahl	$10.06.11 \ 17:07 - 18:13$	150216	$ArCO_2 (90:10)$	65,0	$200,512 \pm 1$	$489,803\pm1$	$262,79 \pm 4,34$	$14,1273\pm0,2597$
3226	Strahl	$10.06.11 \ 18:13 - 19:17$	146548	$ArCO_2$ (90:10)	65,0	$203,046 \pm 1$	$489,942\pm1$	$262,79 \pm 4,34$	$14,2453\pm0,2620$
3227	Strahl	$10.06.11 \ 19:17 - 19:38$	47677	$ArCO_2$ (90:10)	65,0	$202,372\pm1$	$490,302\pm1$	$262,79 \pm 4,34$	$14,1941\pm0,2610$
3229	Strahl	$10.06.11 \ 20.58 - 21.15$	38845	$ArCO_2$ (90:10)	65,0	$205,002 \pm 1$	$490,\!839\pm1$	$262,79 \pm 4,34$	$14,2980\pm0,2631$
3230	Strahl	$10.06.11 \ 21:24 - 21:26$	4600	$ArCO_2$ (90:10)	65,0	$210,615 \pm 1$	$490,709\pm1$	$262,79 \pm 4,34$	$14,5912\pm0,2689$
3231	Strahl	$10.06.11\ 21:49 - 22:51$	141089	$ArCO_2$ (90:10)	65,0	$203,802 \pm 1$	$490,881\pm1$	$262,79 \pm 4,34$	$14,2362\pm0,2619$
3232	Strahl	$10.06.11 \ 22.51 - 23.17$	61331	$ArCO_2 (90:10)$	65,0	$205,732 \pm 1$	$490,\!660\pm1$	$262,79 \pm 4,34$	$14,3437\pm0,2640$
3233	Strahl	$10.06.11 \ 23:26 - 00:30$	137417	$ArCO_2$ (90:10)	65,0	$203,889\pm1$	$490,632\pm1$	$262,79 \pm 4,34$	$14,2529\pm0,2622$
3234	Strahl	$11.06.11 \ 00:31 - 01:33$	135751	$ArCO_2 (90:10)$	65,0	$206,560\pm 1$	$491,158\pm1$	$262,79 \pm 4,34$	$14,3603\pm0,2643$
3235	Strahl	$11.06.11 \ 01:33 - 02:35$	133405	$ArCO_2 (90:10)$	65,0	$202,913 \pm 1$	$491,\!666\pm1$	$262,79 \pm 4,34$	$14,1537\pm0,2602$
3236	Strahl	$11.06.11\ 02:35 - 03:34$	136282	$ArCO_2$ (90:10)	65,0	$201,371 \pm 1$	$492,124\pm1$	$262,79 \pm 4,34$	$14,0563\pm0,2583$
3237	Strahl	$11.06.11 \ 03:34 - 05:15$	137245	$ArCO_2$ (90:10)	65,0	$207,357 \pm 1$	$492,057\pm1$	$262,79 \pm 4,34$	$14,3551\pm0,2642$
3238	Strahl	$11.06.11 \ 05:15 - 07:31$	16109	$ArCO_2 (90:10)$	65,0	$203,490\pm1$	$493,\!663\pm1$	$262,79 \pm 4,34$	$14,0844\pm0,2589$
3239	Strahl	$11.06.11 \ 07:31 - 08:34$	144653	$ArCO_2 (90:10)$	65,0	$203,516 \pm 1$	$494,\!235\pm1$	$262,79 \pm 4,34$	$14,0579\pm0,2584$
3240	Strahl	$11.06.11 \ 08:34 - 09:35$	139255	$ArCO_2 (90:10)$	65,0	$208,789 \pm 1$	$496,359\pm1$	$262,79 \pm 4,34$	$14,2119\pm0,2614$
3241	Strahl	$11.06.11 \ 09:35 - 10:38$	137696	$ArCO_2$ (90:10)	65,0	$210,149 \pm 1$	$498,507\pm1$	$262,79 \pm 4,34$	$14,1730\pm0,2606$
3242	Strahl	$11.06.11 \ 10:38 - 11:44$	137563	$ArCO_2 (90:10)$	65,0	$207,843\pm1$	$498,881\pm1$	$262,79 \pm 4,34$	$14,0425\pm0,2581$
3243	Strahl	11.06.11 $11:44 - 12:41$	138109	$ArCO_2$ (90:10)	65,0	$208,115\pm 1$	$498,184\pm1$	$262,79 \pm 4,34$	$14,0894\pm0,2590$
3245	Strahl	$11.06.11 \ 13.08 - 14.04$	142310	$ArCO_2$ (90:10)	65,0	$207,152 \pm 1$	$496,399\pm1$	$262,79 \pm 4,34$	$14,1295\pm0,2598$
3246	Strahl	11.06.11 $14:04 - 14:55$	167755	$ArCO_2 (90:10)$	65,0	$207,412 \pm 1$	$495,\!845\pm1$	$262,79 \pm 4,34$	$14,1694\pm0,2606$
3247	Strahl	11.06.11 $14:55 - 15:04$	23701	$ArCO_2 (90:10)$	65,0	$206,772\pm1$	$495,125\pm1$	$262,79 \pm 4,34$	$14,1733\pm0,2606$
3253	Strahl	$11.06.11 \ 19:34 - 19:49$	37721	$ArCO_2$ (90:10)	65,0	$205,366\pm 1$	$491,306\pm1$	$262,79\pm4,34$	$14,2929\pm0,2630$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	[% E ^{drift}]	GEM-Folie	Kathode	[mm]	[mm/µs]
3254	Strahl	$11.06.11 \ 19:49 - 21:11$	147064	$ArCO_2 (90:10)$	65,0	$203,191 \pm 1$	$492,301 \pm 1$	$262,79 \pm 4,34$	$14,1362\pm 0,2599$
3255	Strahl	$11.06.11 \ 21:11 - 22:26$	141643	$ArCO_2$ (90:10)	65,0	$209,272\pm1$	$493,\!237\pm1$	$262,79 \pm 4,34$	$14,3923\pm0,2650$
3256	Strahl	$11.06.11 \ 22:26 - 23:21$	140843	$ArCO_2$ (90:10)	65,0	$204,858\pm1$	$492,894\pm1$	$262,79 \pm 4,34$	$14,1889\pm0,2609$
3257	Strahl	$11.06.11 \ 23:21 - 23:37$	39499	$ArCO_2 (90:10)$	64,9	$206,099\pm1$	$493,575\pm1$	$262,79 \pm 4,34$	$14,2165\pm0,2615$
3258	Strahl	$11.06.11\ 23:38 - 00:35$	129928	$ArCO_2$ (90:10)	65,0	$206,186\pm1$	$494,\!276\pm1$	$262,79 \pm 4,34$	$14,1862\pm0,2609$
3259	Strahl	$12.06.11 \ 00:35 - 01:35$	128238	$ArCO_2$ (90:10)	65,0	$206,374\pm1$	$494,837\pm1$	$262,79 \pm 4,34$	$14,1679\pm0,2605$
3260	Strahl	$12.06.11 \ 01:35 - 02:26$	130696	$ArCO_2$ (90:10)	65,0	$203,594\pm1$	$495,\!409\pm1$	$262,79 \pm 4,34$	$14,0051\pm0,2573$
3261	Strahl	$12.06.11 \ 02:26 - 03:18$	133940	$ArCO_2 (90:10)$	65,0	$206,700\pm1$	$496,075\pm1$	$262,79 \pm 4,34$	$14,1232\pm0,2596$
3262	Strahl	$12.06.11 \ 03.18 - 04.10$	136043	$ArCO_2 (90:10)$	65,0	$207,008\pm1$	$495,048 \pm 1$	$262,79 \pm 4,34$	$14,1887\pm0,2609$
3263	Strahl	$12.06.11 \ 04:10 - 05:02$	136758	$ArCO_2 (90:10)$	65,0	$206,961\pm1$	$494,719 \pm 1$	$262,79 \pm 4,34$	$14,2026\pm0,2612$
3264	Strahl	$12.06.11 \ 05:02 - 05:56$	137142	$ArCO_2$ (90:10)	65,0	$208,\!654\pm1$	$494,475 \pm 1$	$262,79 \pm 4,34$	$14,2988\pm0,2631$
3265	Strahl	$12.06.11 \ 05.56 - 06.49$	137017	$ArCO_2 (90:10)$	65,0	$205,\!479\pm1$	$494,722\pm1$	$262,79 \pm 4,34$	$14,1297\pm0,2598$
3266	Strahl	$12.06.11 \ 06:49 - 07:44$	137608	$ArCO_2$ (90:10)	65,0	$207,275\pm1$	$494,\!437\pm1$	$262,79 \pm 4,34$	$14,2321\pm0,2618$
3267	Strahl	$12.06.11 \ 07:44 - 08:38$	135776	$ArCO_2$ (90:10)	65,0	$205,\!434\pm1$	$495,122 \pm 1$	$262,79 \pm 4,34$	$14,1080\pm0,2593$
3268	Strahl	$12.06.11 \ 08:38 - 09:31$	133401	$ArCO_2$ (90:10)	65,0	$208,100\pm1$	$497,476\pm1$	$262,79 \pm 4,34$	$14,1232\pm0,2596$
3269	Strahl	$12.06.11 \ 09:31 - 10:23$	132920	$ArCO_2 (90:10)$	65,0	$209,037\pm1$	$498,061\pm1$	$262,79 \pm 4,34$	$14,1404\pm0,2600$
3270	Strahl	$12.06.11 \ 10:23 - 11:35$	130409	$ArCO_2 (90:10)$	65,0	$208,524\pm1$	$497,061 \pm 1$	$262,79 \pm 4,34$	$14,1642\pm0,2605$
3271	Strahl	$12.06.11 \ 11:35 - 12:28$	132602	$ArCO_2$ (90:10)	65,0	$205,333\pm1$	$495,152 \pm 1$	$262,79 \pm 4,34$	$14,1016\pm0,2592$
3272	Strahl	12.06.11 $12:28 - 13:23$	133917	$ArCO_2$ (90:10)	65,0	$206, 305\pm1$	$493,\!816\pm1$	$262,79 \pm 4,34$	$14,2148\pm0,2614$
3273	Strahl	$12.06.11 \ 13:23 - 14:17$	135800	$ArCO_2 (90:10)$	65,0	$205,017 \pm 1$	$493,167\pm1$	$262,79 \pm 4,34$	$14,1833\pm0,2608$
3274	Strahl	12.06.11 $14:17 - 15:14$	141080	$ArCO_2 (90:10)$	65,0	$204,558\pm 1$	$492,338\pm1$	$262,79 \pm 4,34$	$14,2015\pm0,2612$
3275	Strahl	12.06.11 $15:14 - 16:14$	136047	$ArCO_2$ (90:10)	65,0	$202,290\pm1$	$491,\!409\pm1$	$262,79 \pm 4,34$	$14,1357\pm0,2599$
3276	Strahl	$12.06.11 \ 16:28 - 16:29$	1581	$ArCO_2$ (90:10)	65,0	$204,\!415\pm1$	$490,\!800\pm1$	$262,79 \pm 4,34$	$14,2707\pm0,2625$
3277	Strahl	$12.06.11 \ 16:32 - 17:29$	142005	$ArCO_2 (90:10)$	65,0	$204,425\pm1$	$490,857 \pm 1$	$262,79 \pm 4,34$	$14,2683\pm0,2625$
3278	Strahl	12.06.11 $17:29 - 18:28$	142169	$ArCO_2$ (90:10)	65,0	$202,898\pm1$	$490,544 \pm 1$	$262,79 \pm 4,34$	$14,2081\pm0,2613$
3279	Strahl	$12.06.11 \ 18:28 - 19:25$	141097	$ArCO_2 (90:10)$	65,0	$202,634 \pm 1$	$490,081 \pm 1$	$262,79 \pm 4,34$	$14,2180\pm0,2615$
3280	Strahl	$12.06.11 \ 19:25 - 20:22$	141951	$ArCO_2$ (90:10)	65,0	$202,560\pm 1$	$490,069\pm1$	$262,79 \pm 4,34$	$14,2149\pm0,2614$
3281	Strahl	$12.06.11 \ 20:22 - 21:23$	139782	$ArCO_2 (90:10)$	65,0	$204,352\pm1$	$490,393 \pm 1$	$262,79 \pm 4,34$	$14,2878\pm0,2629$
3282	Strahl	$12.06.11\ 21:23 - 22:16$	135957	$ArCO_2 (90:10)$	65,0	$203,831 \pm 1$	$491,114 \pm 1$	$262,79 \pm 4,34$	$14,2261\pm0,2617$
3283	Strahl	12.06.11 22:16 - 23:10	132811	$ArCO_2 (90:10)$	65,0	$206, 326\pm 1$	$491,746 \pm 1$	$262,79 \pm 4,34$	$14,3189\pm0,2635$
3284	Strahl	$12.06.11 \ 23:10 - 00:03$	130240	$ArCO_2 (90:10)$	65,0	$206,248 \pm 1$	$492,190 \pm 1$	$262,79 \pm 4,34$	$14,2928\pm0,2630$
3285	Strahl	$13.06.11 \ 00:03 - 01:23$	128661	$ArCO_2 (90:10)$	65,0	$204,879\pm1$	$492,558 \pm 1$	$262,79 \pm 4,34$	$14,2065\pm0,2613$
3286	Strahl	$13.06.11 \ 01:23 - 02:22$	132220	$ArCO_2 (90:10)$	65,0	$203,710\pm1$	$492,672\pm1$	$262,79 \pm 4,34$	$14,1434\pm 0,2600$
3287	Strahl	$13.06.11 \ 02:22 - 03:20$	136577	$ArCO_2 (90:10)$	65,0	$200,760\pm1$	$492,350\pm1$	$262,79 \pm 4,34$	$14,0159\pm0,2575$
3288	Strahl	$13.06.11 \ 03:20 - 04:25$	138000	$ArCO_2 (90:10)$	65,0	$201,646\pm1$	$492,152 \pm 1$	$262,79 \pm 4,34$	$14,0682\pm0,2586$
3289	Strahl	$13.06.11 \ 04:25 - 05:29$	138400	$ArCO_2$ (90:10)	65,0	$205,972\pm1$	$492,098\pm1$	$262,79 \pm 4,34$	$14,2836\pm0,2628$
3290	Strahl	$13.06.11 \ 05:29 - 06:30$	143902	$ArCO_2$ (90:10)	65,0	$202{,}616\pm1$	$492,\!444\pm1$	$262,79 \pm 4,34$	$14,1012\pm0,2592$
3291	Strahl	$13.06.11 \ 06:30 - 07:26$	138362	$ArCO_2$ (90:10)	65,0	$205,858 \pm 1$	$492,957\pm1$	$262,79 \pm 4,34$	$14,2352\pm0,2618$
3292	Strahl	$13.06.11\ 07:26-08:19$	142593	$ArCO_2 (90:10)$	65,0	$204,223\pm1$	$494,475 \pm 1$	$262,79 \pm 4,34$	$14,0806\pm0,2588$
3293	Strahl	$13.06.11 \ 08:19 - 09:03$	125385	$ArCO_2$ (90:10)	65,0	$204,907\pm1$	$494,810 \pm 1$	$262,79 \pm 4,34$	$14,0975\pm0,2591$
3302	Strahl	13.06.11 17:25 - 17:58	102831	$ArCO_2 (90:10)$	63,2	$215,017 \pm 1$	$492,680 \pm 1$	$254,27\pm2,01$	$14,2418\pm0,1622$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	[% Edrift]	GEM-Folie	Kathode	[mm]	[mm/µs]
3303	Strahl	13.06.11 $17:58 - 18:04$	19682	$ArCO_2 (90:10)$	65,0	$214,276 \pm 1$	$492,977 \pm 1$	$254,27\pm 2,01$	$14,1887 \pm 0,1615$
3305	Strahl	$13.06.11 \ 18:25 - 18:49$	74624	$ArCO_2$ (90:10)	65,0	$214,191 \pm 1$	$493,405 \pm 1$	$254,27\pm 2,01$	$14,1626\pm0,1612$
3306	Strahl	$13.06.11 \ 18:49 - 19:14$	74453	$ArCO_2$ (90:10)	65,0	$213,954 \pm 1$	$493,703 \pm 1$	$254,27\pm 2,01$	$14,1356\pm0,1608$
3307	Strahl	$13.06.11 \ 19:14 - 19:47$	76047	$ArCO_{2}$ (90:10)	65,0	$214,920 \pm 1$	$494,024 \pm 1$	$254,27 \pm 2,01$	$14,1682\pm0,1612$
3308	Strahl	$13.06.11 \ 19:47 - 20:12$	75859	$ArCO_{2}$ (90:10)	65,0	$214,286 \pm 1$	$493,852 \pm 1$	$254,27 \pm 2,01$	$14,1448\pm0,1609$
3309	Strahl	$13.06.11\ 20.12 - 20.37$	75863	$ArCO_2$ (90:10)	65,0	$213,891 \pm 1$	$493,946 \pm 1$	$254,27 \pm 2,01$	$14,1201\pm0,1606$
3310	Strahl	$13.06.11\ 20:37 - 21:02$	75354	$ArCO_2$ (90:10)	65,0	$214,056 \pm 1$	$494,012 \pm 1$	$254,27 \pm 2,01$	$14,1251\pm0,1606$
3311	Strahl	$13.06.11\ 21:02 - 21:14$	29181	$ArCO_2$ (90:10)	65,0	$214,330 \pm 1$	$494,097 \pm 1$	$254,27 \pm 2,01$	$14,1346\pm0,1608$
3312	Strahl	$13.06.11\ 22.23 - 22.48$	75311	$ArCO_2$ (90:10)	65,0	$214,697 \pm 1$	$494,843 \pm 1$	$254,27 \pm 2,01$	$14,1155\pm0,1605$
3313	Strahl	$13.06.11\ 22:48 - 23:13$	75532	$ArCO_2$ (90:10)	65,0	$214,256 \pm 1$	$494,515 \pm 1$	$254,27\pm 2,01$	$14,1098\pm0,1604$
3314	Strahl	$13.06.11\ 23.13 - 23.43$	74871	$ArCO_2$ (90:10)	65,0	$214,565 \pm 1$	$494,236 \pm 1$	$254,27 \pm 2,01$	$14,1395\pm0,1608$
3315	Strahl	$13.06.11\ 23:43-00:09$	75367	$ArCO_{2}$ (90:10)	65,0	$214,575 \pm 1$	$494,699\pm1$	$254,27 \pm 2,01$	$14,1166\pm0,1605$
3316	Strahl	$14.06.11\ 00:09-00:11$	6461	$ArCO_2$ (90:10)	65,0	$213,669 \pm 1$	$494,439 \pm 1$	$254,27 \pm 2,01$	$14,0842\pm0,1601$
3317	Strahl	$14.06.11 \ 00:16 - 00:41$	75124	$ArCO_2$ (90:10)	65,0	$214,542 \pm 1$	$494,849 \pm 1$	$254,27 \pm 2,01$	$14,1074\pm0,1604$
3318	Strahl	$14.06.11 \ 00:41 - 01:05$	74971	$ArCO_2$ (90:10)	65,0	$214,939 \pm 1$	$495,\!106\pm1$	$254,27 \pm 2,01$	$14,1145\pm0,1605$
3319	Strahl	$14.06.11\ 01:05 - 01:29$	74914	$ArCO_2$ (90:10)	65,0	$215,372 \pm 1$	$495,828\pm1$	$254,27 \pm 2,01$	$14,0999\pm0,1603$
3320	Strahl	$14.06.11 \ 01:29 - 01:54$	73970	$ArCO_2$ (90:10)	65,0	$215,647 \pm 1$	$495,888 \pm 1$	$254,27\pm 2,01$	$14,1107\pm0,1605$
3321	Strahl	$14.06.11\ 01.54 - 02.20$	74496	$ArCO_2$ (90:10)	65,0	$215,308 \pm 1$	$496,110 \pm 1$	$254,27 \pm 2,01$	$14,0825\pm0,1601$
3322	Strahl	$14.06.11 \ 02:20 - 02:41$	60779	$ArCO_2$ (90:10)	65,0	$215,401 \pm 1$	$496,566 \pm 1$	$254,27\pm 2,01$	$14,0644 \pm 0,1598$
3323	Strahl	$14.06.11 \ 03:02 - 03:27$	72821	$ArCO_2$ (90:10)	65,0	$215,799 \pm 1$	$497,082 \pm 1$	$254,27 \pm 2,01$	$14,0585\pm0,1597$
3324	Strahl	$14.06.11 \ 03:27 - 03:52$	73099	$ArCO_2$ (90:10)	65,0	$215,984 \pm 1$	$497,208 \pm 1$	$254,27\pm 2,01$	$14,0614\pm0,1598$
3325	Strahl	$14.06.11 \ 03.52 - 04.16$	73174	$ArCO_2$ (90:10)	65,0	$216,269 \pm 1$	$497,269 \pm 1$	$254,27 \pm 2,01$	$14,0726\pm0,1599$
3326	Strahl	$14.06.11 \ 04:16 - 04:18$	3828	$ArCO_2$ (90:10)	65,0	$215,502 \pm 1$	$496,128 \pm 1$	$254,27\pm 2,01$	$14,0914\pm0,1602$
3327	Strahl	$14.06.11 \ 04.27 - 04.51$	73748	$ArCO_2$ (90:10)	65,0	$216,151 \pm 1$	$497,031 \pm 1$	$254,27 \pm 2,01$	$14,0786\pm0,1600$
3328	Strahl	$14.06.11 \ 04.51 - 05.20$	73496	$ArCO_2$ (90:10)	65,0	$216,333 \pm 1$	$497,036 \pm 1$	$254,27\pm 2,01$	$14,0875\pm0,1601$
3329	Strahl	$14.06.11 \ 05:20 - 05:46$	74190	$ArCO_2$ (90:10)	65,0	$216,046 \pm 1$	$496,971 \pm 1$	$254,27\pm 2,01$	$14,0764\pm0,1600$
3330	Strahl	$14.06.11 \ 05:46 - 06:10$	74191	$ArCO_2$ (90:10)	65,0	$216,154 \pm 1$	$496,945 \pm 1$	$254,27\pm 2,01$	$14,0831\pm0,1601$
3331	Strahl	$14.06.11\ 06:10 - 06:34$	74130	$ArCO_2 (90:10)$	65,0	$215,975 \pm 1$	$496,939\pm1$	$254,27 \pm 2,01$	$14,0744\pm0,1600$
3332	Strahl	$14.06.11 \ 06:34 - 06:37$	10479	$ArCO_2 (90:10)$	65,0	$216,607 \pm 1$	$496,903 \pm 1$	$254,27\pm 2,01$	$14,1080\pm0,1604$
3333	Strahl	$14.06.11\ 06:46 - 07:20$	68521	$ArCO_2$ (90:10)	65,0	$216,501 \pm 1$	$497,382 \pm 1$	$254,27\pm 2,01$	$14,0786\pm0,1600$
3334	Strahl	$14.06.11\ 07:28 - 07:38$	22243	$ArCO_2 (90:10)$	65,0	$216,366 \pm 1$	$497,606 \pm 1$	$254,27\pm2,01$	$14,0606\pm0,1598$
3346	Strahl	$14.06.11 \ 18:49 - 19:17$	73389	$ArCO_2 (90:10)$	65,0	$216,584 \pm 1$	$497, 193 \pm 1$	$254,27\pm 2,01$	$14,0922\pm0,1602$
3347	Strahl	$14.06.11 \ 19:17 - 19:52$	73129	$ArCO_2 (90:10)$	65,0	$216,253 \pm 1$	$497,686 \pm 1$	$254,27\pm 2,01$	$14,0510\pm0,1596$
3348	Strahl	$14.06.11 \ 19:52 - 20:17$	73131	$ArCO_2$ (90:10)	65,0	$217,114 \pm 1$	$498,029 \pm 1$	$254,27\pm 2,01$	$14,0769\pm0,1600$
3349	Strahl	$14.06.11\ 20:17 - 20:42$	73183	$ArCO_2$ (90:10)	65,0	$217,485 \pm 1$	$499,365 \pm 1$	$254,27\pm 2,01$	$14,0287\pm0,1593$
3350	Strahl	$14.06.11\ 20:42 - 21:16$	68361	$ArCO_2 (90:10)$	65,0	$217,682 \pm 1$	$499,966\pm1$	$254,27\pm 2,01$	$14,0086\pm0,1591$
3351	Strahl	$14.06.11\ 21:19 - 21:28$	16250	$ArCO_2 (90:10)$	65,0	$218,216\pm1$	$500,006 \pm 1$	$254,27\pm 2,01$	$14,0332\pm0,1594$
3352	Strahl	$14.06.11\ 22:00 - 22:37$	113405	$ArCO_2$ (90:10)	65,0	$218,058 \pm 1$	$500,429 \pm 1$	$254,27\pm 2,01$	$14,0043\pm0,1590$
3353	Strahl	$14.06.11\ 22:37 - 23:15$	113069	$ArCO_2$ (90:10)	65,0	$218,561 \pm 1$	$500,989 \pm 1$	$254,27\pm 2,01$	$14,0015\pm0,1590$
3354	Strahl	$14.06.11\ 23.15 - 23.53$	112817	$ArCO_2 (90:10)$	65,0	$218,987 \pm 1$	$501,340 \pm 1$	$254,27\pm 2,01$	$14,0052\pm0,1590$
3355	Strahl	$14.06.11\ 23.53 - 00.31$	112450	$ArCO_2$ (90:10)	65,0	$218,714\pm1$	$501,457\pm1$	$254,27\pm 2,01$	$13,9859\pm0,1588$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	$[mm/\mu s]$
3356	Strahl	$ 15.06.11 \ 00:31 - 01:14$	111918	$ArCO_2 (90:10)$	65,0	$218,436\pm1$	$501,300 \pm 1$	$254,27 \pm 2,01$	$13,9799\pm0,1587$
3357	Strahl	$15.06.11 \ 01:14 - 01:52$	110945	$ArCO_2 (90:10)$	65,0	$218,\!405\pm1$	$501,137 \pm 1$	$254,27\pm 2,01$	$13,9864\pm0,1588$
3358	Strahl	$15.06.11 \ 01.52 - 02.29$	109859	$ArCO_2 (90:10)$	65,0	$218,\!462\pm1$	$501,276 \pm 1$	$254,27\pm 2,01$	$13,9824\pm0,1587$
3359	Strahl	$15.06.11 \ 02:29 - 03:06$	108030	$ArCO_2$ (90:10)	65,0	$218,953\pm1$	$501,881 \pm 1$	$254,27 \pm 2,01$	$13,9767\pm0,1586$
3360	Strahl	$15.06.11 \ 03:06 - 03:43$	107822	$ArCO_2 (90:10)$	65,0	$219,598\pm1$	$502,196\pm1$	$254,27\pm 2,01$	$13,9930\pm0,1589$
3361	Strahl	$15.06.11 \ 03:43 - 04:25$	106442	$ArCO_2 (90:10)$	65,0	$219,162\pm1$	$502,186 \pm 1$	$254,27 \pm 2,01$	$13,9720\pm0,1586$
3362	Strahl	$15.06.11 \ 04.25 - 05.03$	106276	$ArCO_{2}$ (90:10)	65,0	$219,\!425\pm1$	$502,238\pm1$	$254,27 \pm 2,01$	$13,9824\pm0,1587$
3363	Strahl	$15.06.11 \ 05:03 - 05:39$	105736	$ArCO_2 (90:10)$	65,0	$219,389\pm1$	$502,585\pm1$	$254,27\pm 2,01$	$13,9635\pm0,1585$
3364	Strahl	$15.06.11 \ 05:39 - 06:15$	105663	$ArCO_2 (90:10)$	65,0	$219,342\pm1$	$502,750\pm1$	$254,27\pm 2,01$	$13,9531\pm0,1583$
3365	Strahl	$15.06.11 \ 06:15 - 07:00$	104765	$ArCO_2 (90:10)$	65,0	$219,689\pm1$	$503,473\pm1$	$254,27\pm 2,01$	$13,9346\pm0,1581$
3366	Strahl	$15.06.11\ 07:00 - 07:36$	105273	$ArCO_2 (90:10)$	65,0	$220,533\pm 1$	$505,096 \pm 1$	$254,27 \pm 2,01$	$13,8964\pm0,1575$
3367	Strahl	$15.06.11 \ 07:36 - 08:12$	105608	$ArCO_2 (90:10)$	65,0	$220,967\pm1$	$505,450 \pm 1$	$254,27\pm 2,01$	$13,9003\pm0,1576$
3368	Strahl	$15.06.11 \ 08:12 - 08:49$	105787	$ArCO_2 (90:10)$	65,0	$220,924\pm 1$	$505,659 \pm 1$	$254,27\pm 2,01$	$13,8880\pm0,1574$
3369	Strahl	$15.06.11 \ 08:49 - 09:29$	106167	$ArCO_2 (90:10)$	65,0	$221,795\pm1$	$505,546 \pm 1$	$254,27\pm 2,01$	$13,9362\pm0,1581$
3370	Strahl	$15.06.11 \ 09:29 - 10:06$	107481	$ArCO_2 (90:10)$	65,0	$221,371\pm 1$	$506,062 \pm 1$	$254,27 \pm 2,01$	$13,8902\pm0,1575$
3371	Strahl	$15.06.11 \ 10:06 - 11:03$	107708	$ArCO_2 (90:10)$	65,0	$220,573\pm 1$	$504,286\pm1$	$254,27\pm 2,01$	$13,9381\pm0,1581$
3372	Strahl	$15.06.11 \ 11:03 - 11:43$	110105	$ArCO_2 (90:10)$	65,0	$219,697\pm 1$	$503,023\pm1$	$254,27\pm 2,01$	$13,9571\pm0,1584$
3373	Strahl	$15.06.11 \ 11:43 - 12:20$	110349	$ArCO_2 (90:10)$	65,0	$219,506\pm1$	$502,229 \pm 1$	$254,27 \pm 2,01$	$13,9869\pm0,1588$
3374	Strahl	15.06.11 $12:20 - 13:19$	110618	$ArCO_2 (90:10)$	65,0	$219,186\pm1$	$501,957 \pm 1$	$254,27\pm 2,01$	$13,9845\pm0,1587$
3375	Strahl	15.06.11 $13:19 - 13:58$	112268	$ArCO_2 (90:10)$	65,0	$219,251 \pm 1$	$501,786\pm1$	$254,27 \pm 2,01$	$13,9962\pm0,1589$
3376	Strahl	$15.06.11 \ 13:58 - 14:36$	113014	$ArCO_2 (90:10)$	65,0	$218,\!470\pm1$	$501,058 \pm 1$	$254,27\pm 2,01$	$13,9935\pm0,1589$
3377	Strahl	$15.06.11 \ 14:36 - 15:15$	113408	$ArCO_2 (90:10)$	65,0	$218,079\pm1$	$500,769\pm1$	$254,27\pm 2,01$	$13,9885\pm0,1588$
3378	Strahl	15.06.11 $15.15 - 16.03$	113767	$ArCO_2$ (90:10)	65,0	$218,\!202\pm1$	$500,209\pm1$	$254,27 \pm 2,01$	$14,0224\pm0,1593$
3379	Strahl	$15.06.11 \ 16:03 - 16:14$	3204	$ArCO_2 (90:10)$	65,0	$216,860\pm1$	$499,804 \pm 1$	$254,27 \pm 2,01$	$13,9759\pm0,1586$
3402	Strahl	$15.06.11 \ 18:40 - 19:27$	110472	$ArCO_2 (90:10)$	65,0	$215,890\pm1$	$495,971 \pm 1$	$254,27 \pm 2,01$	$14,1188\pm0,1606$
3404	Strahl	$15.06.11 \ 20:06 - 20:44$	113200	$ArCO_2 (90:10)$	65,0	$216,029\pm1$	$496,542 \pm 1$	$254,27 \pm 2,01$	$14,0971\pm0,1603$
3405	Strahl	$15.06.11 \ 20:44 - 21:21$	113901	$ArCO_2 (90:10)$	65,0	$215,991 \pm 1$	$496,612 \pm 1$	$254,27\pm 2,01$	$14,0916\pm0,1602$
3406	Strahl	$15.06.11\ 21:21 - 21:59$	114024	$ArCO_2 (90:10)$	65,0	$215,652\pm1$	$496,398 \pm 1$	$254,27 \pm 2,01$	$14,0854\pm0,1601$
3407	Strahl	$15.06.11\ 21.59 - 22.40$	113912	$ArCO_2 (90:10)$	65,0	$216,239\pm1$	$496,498 \pm 1$	$254,27 \pm 2,01$	$14,1098\pm0,1604$
3408	Strahl	$15.06.11 \ 22:40 - 23:18$	113664	$ArCO_2 (90:10)$	65,0	$216,198\pm1$	$496,591 \pm 1$	$254,27\pm2,01$	$14,1031\pm0,1604$
3409	Strahl	$15.06.11\ 23:18 - 23:56$	114049	$ArCO_2 (90:10)$	65,0	$216, 326 \pm 1$	$496,615 \pm 1$	$254,27 \pm 2,01$	$14,1083\pm0,1604$
3410	Strahl	$15.06.11 \ 23.56 - 00:34$	113732	$ArCO_2 (90:10)$	65,0	$216,459 \pm 1$	$497,045 \pm 1$	$254,27\pm 2,01$	$14,0934\pm0,1602$
3411	Strahl	$16.06.11 \ 00:34 - 01:14$	114219	$ArCO_2 (90:10)$	65,0	$217,032 \pm 1$	$497,535 \pm 1$	$254,27 \pm 2,01$	$14,0976\pm0,1603$
3412	Strahl	$16.06.11 \ 01:14 - 01:52$	113443	$ArCO_2 (90:10)$	65,0	$216,308\pm1$	$497,136 \pm 1$	$254,27 \pm 2,01$	$14,0812\pm0,1601$
3413	Strahl	$16.06.11 \ 01.52 - 02.30$	112951	$ArCO_2 (90:10)$	65,0	$215,682\pm1$	$496,615 \pm 1$	$254,27 \pm 2,01$	$14,0760\pm0,1600$
3414	Strahl	$16.06.11 \ 02:30 - 03:08$	111545	$ArCO_2 (90:10)$	65,0	$215,651\pm1$	$496,417 \pm 1$	$254,27\pm 2,01$	$14,0844\pm0,1601$
3415	Strahl	$16.06.11 \ 03:08 - 03:45$	111074	$ArCO_2 (90:10)$	65,0	$215,857\pm1$	$496,066\pm1$	$254,27\pm 2,01$	$14,1123\pm0,1605$
3416	Strahl	$16.06.11 \ 03:45 - 04:22$	109754	$ArCO_2 (90:10)$	65,0	$215,578\pm1$	$495,874 \pm 1$	$254,27 \pm 2,01$	$14,1080\pm0,1604$
3417	Strahl	$16.06.11 \ 04:22 - 04:59$	109109	$ArCO_2 (90:10)$	65,0	$215,737\pm1$	$496,200 \pm 1$	$254,27\pm2,01$	$14,0996\pm0,1603$
3418	Strahl	$16.06.11 \ 04.59 - 05.42$	108084	$ArCO_2$ (90:10)	65,0	$216,413 \pm 1$	$496,871 \pm 1$	$254,27\pm 2,01$	$14,0998\pm0,1603$
3419	Strahl	$ 16.06.11 \ 05.42 - 06.19 $	107297	$ArCO_2$ (90:10)	65,0	$216,313 \pm 1$	497,111 ± 1	$254,27\pm2,01$	$14,0827\pm0,1601$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Drift geschwindi gkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	[mm/µs]
3420	Strahl	$16.06.11 \ 06.19 - 06.55$	107070	$ArCO_2 (90:10)$	65,0	$217,078 \pm 1$	$498,365\pm1$	$254,27\pm 2,01$	$14,0583 \pm 0,1597$
3421	Strahl	$16.06.11 \ 06.55 - 07.30$	107219	$ArCO_2 (90:10)$	65,0	$217,572 \pm 1$	$499,305\pm1$	$254,27\pm2,01$	$14,0360\pm0,1594$
3422	Strahl	$16.06.11\ 07{:}30-08{:}08$	107512	$ArCO_{2}$ (90:10)	65,0	$217,\!486\pm1$	$499,235\pm1$	$254,27\pm 2,01$	$14,0352\pm0,1594$
3423	Strahl	$16.06.11 \ 08:08 - 08:44$	107620	$ArCO_2 (90:10)$	65,0	$217,072\pm1$	$498,976\pm1$	$254,27\pm 2,01$	$14,0275\pm0,1593$
3424	Strahl	$16.06.11 \ 08:44 - 09:19$	107617	$ArCO_2 (90:10)$	65,0	$217,149 \pm 1$	$498,475 \pm 1$	$254,27\pm 2,01$	$14,0563\pm0,1597$
3425	Strahl	$16.06.11 \ 09:19 - 09:55$	108587	$ArCO_2 (90:10)$	65,0	$216,614 \pm 1$	$497,\!228\pm1$	$254,27\pm 2,01$	$14,0920\pm0,1602$
3426	Strahl	$16.06.11 \ 09.55 - 10.31$	109347	$ArCO_{2}$ (90:10)	65,0	$215,\!866\pm1$	$496,089\pm1$	$254,27\pm 2,01$	$14,1116\pm0,1605$
3427	Strahl	$16.06.11 \ 10:31 - 10:47$	49139	$ArCO_2 (90:10)$	65,0	$215,313\pm1$	$495,\!243\pm1$	$254,27\pm 2,01$	$14,1264\pm0,1607$
3428	Strahl	$16.06.11 \ 11:15 - 11:52$	108920	$ArCO_2 (90:10)$	65,0	$214,744 \pm 1$	$493,771 \pm 1$	$254,27\pm 2,01$	$14,1721\pm0,1613$
3429	Strahl	$16.06.11 \ 11:52 - 12:28$	109623	$ArCO_2$ (90:10)	65,0	$214,421 \pm 1$	$493,728\pm1$	$254,27\pm 2,01$	$14,1579\pm0,1611$
3430	Strahl	16.06.11 $12:28 - 13:05$	108469	$ArCO_2 (90:10)$	65,0	$214,643 \pm 1$	$493,954\pm1$	$254,27\pm 2,01$	$14,1577\pm0,1611$
3431	Strahl	$16.06.11 \ 13:05 - 13:41$	108186	$ArCO_{2}$ (90:10)	65,0	$214,680\pm1$	$494,081\pm1$	$254,27\pm 2,01$	$14,1532\pm0,1610$
3432	Strahl	$16.06.11 \ 13:41 - 14:17$	108747	$ArCO_{2}$ (90:10)	65,0	$214,521 \pm 1$	$493,976\pm1$	$254,27\pm 2,01$	$14,1504\pm0,1610$
3433	Strahl	$16.06.11 \ 14.17 - 14.53$	108354	$ArCO_2 (90:10)$	65,0	$214,397 \pm 1$	$493,745\pm1$	$254,27\pm 2,01$	$14,1558\pm0,1611$
3434	Strahl	$16.06.11 \ 14.53 - 15.01$	24706	$ArCO_2$ (90:10)	65,0	$214,324 \pm 1$	$493,629\pm1$	$254,27 \pm 2,01$	$14,1580\pm0,1611$
3435	Strahl	$16.06.11 \ 15:34 - 16:12$	97376	$ArCO_2 (90:10)$	65,0	$213,922\pm 1$	$493,\!451\pm1$	$254,27\pm 2,01$	$14,1467\pm0,1609$
3436	Strahl	$16.06.11 \ 18:46 - 18:48$	10417	$ArCO_2 (90:10)$	65,0	$215,480 \pm 1$	$495,086\pm1$	$254,27\pm 2,01$	$14,1428\pm0,1609$
3437	Strahl	$16.06.11 \ 19:08 - 19:41$	106548	$ArCO_2 (90:10)$	65,0	$215,302 \pm 1$	$495,287 \pm 1$	$254,27\pm2,01$	$14,1236\pm0,1606$
3438	Strahl	$16.06.11 \ 19:41 - 20:17$	106276	$ArCO_{2}$ (90:10)	65,0	$215,\!420\pm1$	$495,730\pm1$	$254,27\pm 2,01$	$14,1073\pm0,1604$
3439	Strahl	$16.06.11\ 20.17 - 20.50$	104894	$ArCO_2 (90:10)$	65,0	$215,623\pm1$	$496,\!202\pm1$	$254,27\pm 2,01$	$14,0937\pm0,1602$
3440	Strahl	$16.06.11 \ 20.50 - 21.23$	104950	$ArCO_{2}$ (90:10)	65,0	$215,787\pm1$	$496,543\pm1$	$254,27\pm 2,01$	$14,0849\pm0,1601$
3441	Strahl	$16.06.11\ 21:23 - 21:55$	104921	$ArCO_2 (90:10)$	65,0	$216,020\pm1$	$496,301 \pm 1$	$254,27\pm 2,01$	$14,1087\pm0,1604$
3442	Strahl	$16.06.11\ 21.55 - 22.28$	103407	$ArCO_2$ (90:10)	65,0	$215,896\pm1$	$496,181\pm1$	$254,27\pm 2,01$	$14,1085\pm0,1604$
3443	Strahl	$16.06.11\ 22:28-23:00$	103061	$ArCO_2 (90:10)$	65,0	$215,783\pm1$	$496,590\pm1$	$254,27\pm 2,01$	$14,0823\pm0,1601$
3444	Strahl	$16.06.11\ 23:00-23:32$	102682	$ArCO_{2}$ (90:10)	65,0	$216,115\pm 1$	$497,116\pm1$	$254,27\pm 2,01$	$14,0726\pm0,1599$
3445	Strahl	$16.06.11 \ 23:32 - 00:04$	104245	$ArCO_{2}$ (90:10)	65,0	$217,\!029\pm1$	$498,003\pm1$	$254,27\pm 2,01$	$14,0739\pm0,1600$
3446	Strahl	$17.06.11 \ 00:04 - 00:37$	105877	$ArCO_2 (90:10)$	65,0	$216,729\pm1$	$498,121 \pm 1$	$254,27\pm 2,01$	$14,0530\pm0,1597$
3447	Strahl	$17.06.11 \ 00:37 - 01:14$	105375	$ArCO_2 (90:10)$	65,0	$217,\!084\pm1$	$498,575\pm1$	$254,27 \pm 2,01$	$14,0481\pm0,1596$
3448	Strahl	$17.06.11 \ 01.14 - 01.47$	106651	$ArCO_2 (90:10)$	65,0	$216,996 \pm 1$	$498,\!426\pm1$	$254,27\pm 2,01$	$14,0511\pm0,1596$
3449	Strahl	$17.06.11 \ 01:47 - 02:20$	106479	$ArCO_2$ (90:10)	65,0	$217,415 \pm 1$	$498,779\pm1$	$254,27\pm 2,01$	$14,0544\pm0,1597$
3450	Strahl	$17.06.11 \ 02:20 - 02:53$	106515	$ArCO_2 (90:10)$	65,0	$217,648 \pm 1$	$499,107\pm1$	$254,27\pm 2,01$	$14,0497\pm0,1596$
3451	Strahl	$17.06.11 \ 02:53 - 03:48$	99041	$ArCO_2 (90:10)$	65,0	$217,\!894\pm1$	$499,293\pm1$	$254,27\pm 2,01$	$14,0527\pm0,1597$
3452	Strahl	$17.06.11 \ 03:48 - 04:31$	39323	$ArCO_2 (90:10)$	65,0	$217,555 \pm 1$	$499,190\pm1$	$254,27\pm 2,01$	$14,0409\pm0,1595$
3453	Strahl	$17.06.11 \ 04:31 - 05:27$	19110	$ArCO_2 (90:10)$	65,0	$218,948 \pm 1$	$498,796\pm1$	$254,27\pm 2,01$	$14,1306\pm0,1607$
3454	Strahl	$17.06.11 \ 05:28 - 06:01$	118292	$ArCO_2$ (90:10)	65,0	$217,150 \pm 1$	$498,392\pm1$	$254,27\pm 2,01$	$14,0605\pm0,1598$
3455	Strahl	$17.06.11\ 06:01 - 06:37$	115974	$ArCO_2 (90:10)$	65,0	$217,147 \pm 1$	$498,\!862\pm1$	$254,27\pm 2,01$	$14,0369\pm0,1595$
3456	Strahl	$17.06.11 \ 06:37 - 07:05$	99621	$ArCO_2 (90:10)$	65,0	$217,001 \pm 1$	$498,965\pm1$	$254,27\pm 2,01$	$14,0245\pm0,1593$
3457	Strahl	$17.06.11 \ 07.58 - 07.58$	851	$ArCO_2 (90:10)$	65,0	$217,324 \pm 1$	$499,\!436\pm1$	$254,27\pm 2,01$	$14,0172\pm0,1592$
3458	Strahl	$17.06.11 \ 09.54 - 10.23$	74650	$ArCO_{2}$ (90:10)	65,0	$218,328\pm1$	$501,464\pm1$	$254,27\pm 2,01$	$13,9665\pm0,1585$
3459	Strahl	$17.06.11 \ 11:02 - 11:37$	103536	$ArCO_2 (90:10)$	65,0	$217,536\pm1$	$499,462 \pm 1$	$254,27\pm 2,01$	$14,0264\pm0,1593$
3460	Strahl	$17.06.11 \ 11:37 - 12:09$	104726	$ArCO_2 (90:10)$	65,0	$216,933\pm1$	$497,\!644\pm1$	$254,27\pm 2,01$	$14,0871\pm0,1601$

and and a set of the s	Tetras and barries	The main and	Concerning h	107 Eduift1	O PM Polio	Vathado		[
	Datum und Uhrzeit	Ereignisse	Gasgemisch	% Emax	GEM-Folie	Kathode		[mm/µs]
	17.06.11 12:09 $-$ 12:42	105531	$ \operatorname{ArCO}_2(90:10) $	65,0	$216,081\pm1$	$496,229 \pm 1$	$254,27\pm2,01$	$14,1154\pm0,1605$
_	17.06.11 12:42 $-$ 13:09	89264	$ ArCO_2 (90:10) $	65,0	$215,139 \pm 1$	$494,842 \pm 1$	$254,27 \pm 2,01$	$14,1379\pm0,1608$
	17.06.11 13:14 - 13:23	27298	$ ArCO_2 (90:10) $	65,0	$214,242 \pm 1$	$493,912 \pm 1$	$254,27 \pm 2,01$	$14,1395\pm0,1608$
_	17.06.11 13:38 - 14:11	109142	$ ArCO_2 (90:10) $	65,0	$213,\!652\pm1$	$492,890 \pm 1$	$254,27 \pm 2,01$	$14,1614\pm0,1611$
1	17.06.11 14:11 - 14:45	109595	$\operatorname{ArCO}_{2}(90:10)$	65,0	$213,106\pm1$	$491,655\pm1$	$254,27 \pm 2,01$	$14,1964\pm0,1616$
1	$ 17.06.11 \ 14:45 - 15:19$	109621	$ ArCO_2 (90:10) $	65,0	$212,373 \pm 1$	$490,562 \pm 1$	$254,27 \pm 2,01$	$14,2148\pm0,1619$
I	17.06.11 15:19 - 15:53	103618	$ ArCO_2 (90:10) $	65,0	$211,996 \pm 1$	$489,919 \pm 1$	$254,27 \pm 2,01$	$14,2284\pm0,1621$
1	$17.06.11 \ 16:04 - 16:21$	52008	$ArCO_2 (90:10)$	65,0	$211,637\pm1$	$489,196 \pm 1$	$254,27 \pm 2,01$	$14,2471\pm0,1623$
1	17.06.11 19:08 - 19:42	118341	$ArCO_2 (90:10)$	65,0	$210,767 \pm 1$	$487,880 \pm 1$	$254,27 \pm 2,01$	$14,2700\pm0,1626$
Г	$17.06.11 \ 19:42 - 20:19$	111164	$ArCO_2 (90:10)$	65,0	$211,112 \pm 1$	$488,045 \pm 1$	$254,27 \pm 2,01$	$14,2793\pm0,1628$
Ţ	$17.06.11\ 20.19 - 20.49$	83600	$\operatorname{ArCO}_{2}(90:10)$	65,0	$210,611 \pm 1$	$487,798 \pm 1$	$254,27 \pm 2,01$	$14,2662\pm0,1626$
IJ	$17.06.11 \ 22:34 - 23:10$	110687	$ArCO_2$ (90:10)	65,0	$211,293\pm 1$	$488,526 \pm 1$	$254,27 \pm 2,01$	$14,2638\pm0,1625$
lı	$17.06.11\ 23:10-23:46$	111841	$ArCO_2 (90:10)$	65,0	$210,856\pm1$	$488,038 \pm 1$	$254,27 \pm 2,01$	$14,2665\pm0,1626$
l.	$17.06.11 \ 23.46 - 00.20$	110499	$\operatorname{ArCO}_{2}(90:10)$	65,0	$210,924 \pm 1$	$487,906 \pm 1$	$254,27 \pm 2,01$	$14,2768\pm0,1627$
Ч	$18.06.11 \ 00:20 - 00:55$	107646	$ArCO_2 (90:10)$	65,0	$211,015 \pm 1$	$487,986 \pm 1$	$254,27 \pm 2,01$	$14,2773\pm0,1627$
l	$18.06.11 \ 00.55 - 01.29$	108960	$ArCO_2$ (90:10)	65,0	$210,555\pm 1$	$487,786 \pm 1$	$254,27 \pm 2,01$	$14,2639\pm 0,1625$
Ţ	$18.06.11 \ 01:29 - 02:03$	107317	$ArCO_2 (90:10)$	65,0	$210,644 \pm 1$	$487,862\pm1$	$254,27 \pm 2,01$	$14,2646\pm0,1626$
1	$18.06.11 \ 02:03 - 02:37$	106874	ArCO ₂ $(90:10)$	65,0	$210,706\pm1$	$487,595\pm1$	$254,27 \pm 2,01$	$14,2816\pm0,1628$
-I	$18.06.11 \ 02:37 - 03:10$	106136	ArCO ₂ (90:10)	65,0	$210,699\pm 1$	$487,402 \pm 1$	$254,27 \pm 2,01$	$14,2912\pm0,1629$
IJ	$18.06.11 \ 03:10 - 03:43$	105430	$ArCO_2 (90:10)$	65,0	$210,700\pm1$	$487,496\pm1$	$254,27 \pm 2,01$	$14,2864\pm0,1629$
Ţ	$18.06.11 \ 03:43 - 04:16$	106593	$ArCO_2 (90:10)$	65,0	$210,650\pm 1$	$487,\!658\pm1$	$254,27 \pm 2,01$	$14,2754\pm0,1627$
lı	$18.06.11 \ 04:16 - 04:52$	106559	$ArCO_2 (90:10)$	65,0	$210,221 \pm 1$	$487,409 \pm 1$	$254,27 \pm 2,01$	$14,2662\pm 0,1626$
Ιτ	18.06.11 04:52 - 05:26	107750	$ ArCO_2 (90:10) $	65,0	$210,251 \pm 1$	$487,357 \pm 1$	$254,27 \pm 2,01$	$14,2704\pm0,1626$
lu	$18.06.11 \ 05:26 - 06:00$	107487	$ ArCO_2 (90:10) $	65,0	$210,947 \pm 1$	$487,611 \pm 1$	$254,27 \pm 2,01$	$14,2932\pm0,1629$
Ы	$18.06.11 \ 06:00 - 06:38$	105205	$ ArCO_2 (90:10) $	65,0	$210,562\pm 1$	$487,948 \pm 1$	$254,27 \pm 2,01$	$14,2560\pm0,1624$
١٢	$18.06.11 \ 06:38 - 07:18$	102902	$ ArCO_2 (90:10) $	65,0	$211,403 \pm 1$	$488,618 \pm 1$	$254,27 \pm 2,01$	$14,2648\pm0,1626$
Ч	$18.06.11 \ 07:18 - 07:51$	104903	$ ArCO_2 (90:10) $	65,0	$211,927 \pm 1$	$490,080 \pm 1$	$254,27 \pm 2,01$	$14,2167\pm0,1619$
lı	$18.06.11 \ 07:51 - 08:24$	104847	$ ArCO_2 (90:10) $	65,0	$212,671 \pm 1$	$490,793\pm1$	$254,27 \pm 2,01$	$14,2182\pm0,1619$
Id	$18.06.11 \ 08:24 - 08:57$	104846	$ ArCO_2 (90:10) $	65,0	$212,187 \pm 1$	$490,230 \pm 1$	$254,27\pm 2,01$	$14,2223\pm0,1620$
Ы	$18.06.11 \ 08.57 - 09.30$	103902	$ ArCO_2 (90:10) $	65,0	$212,130 \pm 1$	$490,193 \pm 1$	$254,27 \pm 2,01$	$14,2213\pm0,1620$
Ιτ	18.06.11 09:30 - 10:05	103378	$ ArCO_2 (90:10) $	65,0	$212,065 \pm 1$	$490,107 \pm 1$	$254,27 \pm 2,01$	$14,2223\pm0,1620$
Ιſ	$18.06.11 \ 10.05 - 10.38$	103818	$ ArCO_2 (90:10) $	65,0	$212,641 \pm 1$	$490,241 \pm 1$	$254,27\pm 2,01$	$14,2450\pm 0,1623$
١٢	$18.06.11 \ 10:38 - 11:11$	104992	$ ArCO_2 (90:10) $	65,0	$212,382 \pm 1$	$490,600 \pm 1$	$254,27\pm 2,01$	$14,2133\pm0,1619$
lı	18.06.11 11:11 - 11:44	106763	$ ArCO_2 (90:10) $	65,0	$212,693 \pm 1$	$490,985 \pm 1$	$254,27\pm 2,01$	$14,2096\pm0,1618$
Γ	18.06.11 11:44 $-$ 12:18	106839	$ArCO_2 (90:10)$	65,0	$212,104 \pm 1$	$491,068 \pm 1$	$254,27 \pm 2,01$	$14,1753\pm0,1613$
IJ	$18.06.11 \ 12.18 - 12.54$	104337	$ArCO_2$ (90:10)	65,0	$212,550\pm1$	$490,492 \pm 1$	$254,27 \pm 2,01$	$14,2275\pm0,1620$
l.	$18.06.11 \ 12.54 - 13.28$	113155	$ArCO_2 (90:10)$	65,0	$212,\!250\pm 1$	$490,219 \pm 1$	$254,27 \pm 2,01$	$14,2261\pm0,1620$
l.	$18.06.11 \ 13:28 - 14:03$	121883	$ArCO_2 (90:10)$	65,0	$212,064 \pm 1$	$490,188 \pm 1$	$254,27 \pm 2,01$	$14,2181\pm0,1619$
-I	18.06.11 14:03 - 14:36	109158	$ ArCO_2 (90:10) $	65,0	$211,876\pm1$	$490,138\pm1$	$254,27 \pm 2,01$	$14,2111\pm0,1618$
It	18.06.11 14:36 $-$ 15:09	122031	$ ArCO_2 (90:10) $	65,0	$211,991 \pm 1$	$490,022 \pm 1$	$254,27 \pm 2,01$	$14,2229\pm0,1620$
_	18.06.11 15:09 $-$ 15:44	121136	$ ArCO_2 (90:10) $	65,0	$212,074 \pm 1$	$489,513 \pm 1$	$254,27 \pm 2,01$	$14,2532\pm0,1624$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	[% Edrift]	GEM-Folie	Kathode	[mm]	[stl/mm]
3531	Strahl	18.06.11 $15:44 - 16:12$	87748	$ArCO_2 (90:10)$	63,3	$211,578 \pm 1$	$489,241 \pm 1$	$254,27\pm 2,01$	$14,2418\pm0,1622$
3534	Strahl	$18.06.11 \ 18:31 - 18:37$	20843	$ArCO_2$ (90:10)	65,0	$212,926 \pm 1$	$491,348 \pm 1$	$254,27\pm 2,01$	$14,2029\pm0,1617$
3535	Strahl	$18.06.11 \ 18:37 - 18:47$	33837	$ArCO_2$ (90:10)	65,0	$212,951 \pm 1$	$490,151 \pm 1$	$254,27\pm 2,01$	$14,2655\pm0,1626$
3536	Strahl	18.06.11 $18.58 - 19.32$	111429	$ArCO_2$ (90:10)	65,0	$211,792\pm1$	$490,612\pm1$	$254,27\pm 2,01$	$14,1827\pm0,1614$
3537	Strahl	$18.06.11 \ 19:32 - 20:05$	120571	$ArCO_2 (90:10)$	65,0	$212,151 \pm 1$	$491,483 \pm 1$	$254,27\pm 2,01$	$14,1567\pm0,1611$
3538	Strahl	$18.06.11\ 20.05 - 20.38$	109232	$ArCO_{2}$ (90:10)	65,0	$212,\!228\pm 1$	$491,313\pm1$	$254,27\pm 2,01$	$14,1692\pm0,1613$
3539	Strahl	$18.06.11\ 20:38 - 21:10$	108731	$ArCO_2$ (90:10)	65,0	$211,630\pm1$	$490,752\pm1$	$254,27 \pm 2,01$	$14,1673\pm0,1612$
3540	Strahl	$18.06.11 \ 21:10 - 21:44$	107171	$ArCO_2$ (90:10)	65,0	$212,322\pm1$	$490,545\pm1$	$254,27 \pm 2,01$	$14,2131\pm0,1618$
3541	Strahl	$18.06.11 \ 21:44 - 22:16$	108792	$ArCO_2$ (90:10)	65,0	$211,961 \pm 1$	$490,574\pm1$	$254,27\pm 2,01$	$14,1932\pm0,1616$
3542	Strahl	$18.06.11 \ 22:16 - 22:49$	109085	$ArCO_2 (90:10)$	65,0	$212,\!406\pm1$	$490,549 \pm 1$	$254,27\pm 2,01$	$14,2172\pm0,1619$
3543	Strahl	$18.06.11 \ 22:49 - 23:22$	109645	$ArCO_2 (90:10)$	65,0	$211,691 \pm 1$	$490,532\pm1$	$254,27\pm 2,01$	$14,1816\pm0,1614$
3544	Strahl	$18.06.11\ 23:22 - 23:30$	15780	$ArCO_2 (90:10)$	65,0	$211,115 \pm 1$	$490,384\pm1$	$254,27\pm 2,01$	$14,1599\pm0,1611$
3545	Strahl	$18.06.11\ 23:31-00:06$	109375	$ArCO_2 (90:10)$	65,0	$212,095\pm1$	$490,570\pm1$	$254,27\pm 2,01$	$14,2002\pm0,1617$
3546	Strahl	$19.06.11 \ 00:06 - 00:39$	109831	$ArCO_2 (90:10)$	65,0	$211,864 \pm 1$	$490,834 \pm 1$	$254,27\pm 2,01$	$14,1750\pm0,1613$
3547	Strahl	$19.06.11 \ 00:39 - 01:13$	109639	$ArCO_2$ (90:10)	65,0	$212,\!426\pm1$	$491,061\pm1$	$254,27 \pm 2,01$	$14,1921\pm0,1616$
3548	Strahl	$19.06.11 \ 01:13 - 01:50$	109576	$ArCO_2 (90:10)$	65,0	$212,\!205\pm 1$	$490,944\pm1$	$254,27 \pm 2,01$	$14,1868\pm0,1615$
3549	Strahl	$19.06.11 \ 01.51 - 02.24$	109948	$ArCO_2$ (90:10)	65,0	$212,\!408\pm1$	$490,907\pm1$	$254,27\pm 2,01$	$14,1990\pm0,1617$
3550	Strahl	$19.06.11 \ 02:24 - 02:57$	109361	$ArCO_2 (90:10)$	65,0	$212,071 \pm 1$	$490,962\pm1$	$254,27\pm 2,01$	$14,1790\pm0,1614$
3551	Strahl	$19.06.11 \ 02.57 - 03.30$	110235	$ArCO_2 (90:10)$	65,0	$212,324\pm1$	$490,775\pm1$	$254,27\pm 2,01$	$14,2014\pm0,1617$
3552	Strahl	$19.06.11 \ 03:30 - 04:03$	109404	$ArCO_2 (90:10)$	65,0	$211,371 \pm 1$	$490,333\pm 1$	$254,27\pm 2,01$	$14,1754\pm0,1613$
3553	Strahl	$19.06.11 \ 04:03 - 04:41$	107509	$ArCO_{2}$ (90:10)	65,0	$211,870\pm1$	$490,327\pm1$	$254,27\pm 2,01$	$14,2011\pm0,1617$
3554	Strahl	$19.06.11 \ 04:41 - 05:14$	109235	$ArCO_2 (90:10)$	65,0	$211,768 \pm 1$	$490,757\pm1$	$254,27 \pm 2,01$	$14,1741\pm0,1613$
3555	Strahl	$19.06.11 \ 05:14 - 05:47$	109137	$ArCO_2$ (90:10)	65,0	$212,139\pm1$	$490,851\pm1$	$254,27 \pm 2,01$	$14,1881\pm0,1615$
3556	Strahl	$19.06.11 \ 05:47 - 06:20$	109296	$ArCO_2 (90:10)$	65,0	$212,553\pm1$	$491,134\pm1$	$254,27\pm 2,01$	$14,1948\pm0,1616$
3557	Strahl	$19.06.11 \ 06:20 - 06:54$	108962	$ArCO_2$ (90:10)	65,0	$211,951 \pm 1$	$491,\!270\pm1$	$254,27\pm 2,01$	$14,1573\pm0,1611$
3558	Strahl	$19.06.11 \ 06.54 - 07.28$	109090	$ArCO_2$ (90:10)	65,0	$212,024 \pm 1$	$490,987\pm1$	$254,27\pm 2,01$	$14,1754\pm0,1613$
3559	Strahl	$19.06.11 \ 07:28 - 08:01$	109457	$ArCO_2 (90:10)$	65,0	$211,749 \pm 1$	$490,947\pm1$	$254,27\pm 2,01$	$14,1635\pm0,1612$
3560	Strahl	$19.06.11 \ 08:01 - 08:35$	109414	$ArCO_2 (90:10)$	65,0	$212,540\pm1$	$491,\!279\pm1$	$254,27 \pm 2,01$	$14,1868\pm0,1615$
3561	Strahl	$19.06.11 \ 08:35 - 09:08$	109064	$ArCO_2 (90:10)$	65,0	$212,377 \pm 1$	$491,\!456\pm1$	$254,27\pm 2,01$	$14,1695\pm0,1613$
3562	Strahl	$19.06.11 \ 09:08 - 09:41$	107312	$ArCO_2 (90:10)$	65,0	$212,369\pm1$	$491,987\pm1$	$254,27\pm 2,01$	$14,1422\pm0,1609$
3563	Strahl	$19.06.11 \ 09:41 - 10:16$	106745	$ArCO_2 (90:10)$	65,0	$213,623 \pm 1$	$493,081 \pm 1$	$254,27\pm 2,01$	$14,1503\pm0,1610$
3564	Strahl	$19.06.11 \ 10.16 - 10.48$	106802	$ArCO_2 (90:10)$	65,0	$214,473 \pm 1$	$494,187\pm1$	$254,27\pm 2,01$	$14,1373\pm0,1608$
3565	Strahl	$19.06.11 \ 10.48 - 11.21$	106950	$ArCO_2 (90:10)$	65,0	$214,439 \pm 1$	$494,936\pm1$	$254,27\pm 2,01$	$14,0979\pm0,1603$
3566	Strahl	$19.06.11 \ 11:21 - 11:54$	107332	$ArCO_2 (90:10)$	65,0	$214, 313 \pm 1$	$495,126\pm1$	$254,27\pm 2,01$	$14,0820\pm0,1601$
3567	Strahl	$19.06.11 \ 11.54 - 12.27$	106874	$ArCO_2 (90:10)$	65,0	$214,331 \pm 1$	$495,082\pm1$	$254,27\pm 2,01$	$14,0851\pm0,1601$
3568	Strahl	19.06.11 $12:27 - 13:04$	82921	$ArCO_2 (90:10)$	65,0	$214,304\pm1$	$494,\!418\pm1$	$254,27\pm 2,01$	$14,1171\pm0,1605$
3569	Strahl	19.06.11 $14:14 - 14:49$	109050	$ArCO_2 (90:10)$	65,0	$213,431 \pm 1$	$493,704\pm1$	$254,27\pm 2,01$	$14,1091\pm0,1604$
3570	Strahl	19.06.11 $14:49 - 15:22$	108837	$ArCO_2 (90:10)$	65,0	$213,869\pm1$	$493,502\pm1$	$254,27\pm 2,01$	$14,1414\pm0,1609$
3571	Strahl	19.06.11 $15:22 - 15:56$	109717	$ArCO_2 (90:10)$	65,0	$213,391 \pm 1$	$492,943\pm1$	$254,27\pm 2,01$	$14,1455\pm0,1609$
3572	Strahl	19.06.11 $15.56 - 16.02$	20087	$ArCO_2 (90:10)$	65,0	$213,292\pm 1$	$492,930\pm 1$	$254,27\pm 2,01$	$14,1412\pm0,1609$
3598	Strahl	$19.06.11 \ 18:25 - 18:58$	104335	$ArCO_2 (90:10)$	65,0	$213,970\pm1$	$492,\!880\pm1$	$254,27\pm 2,01$	$14,1781\pm0,1614$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$\% E_{max}^{dnft}$	GEM-Folie	Kathode	mm	[mm/µs]
3599	Strahl	$19.06.11 \ 18.58 - 19.30$	105936	$ArCO_{2} (90:10)$	65,0	$213,733\pm1$	$493,533\pm1$	$254,27\pm2,01$	$14,1330\pm0,1608$
3600	Strahl	19.06.11 $19:30 - 20:02$	106170	$ArCO_2$ (90:10)	65,0	$213,639\pm1$	$494,117 \pm 1$	$254,27 \pm 2,01$	$14,0988\pm0,1603$
3601	Strahl	$19.06.11\ 20:02 - 20:35$	106666	$ArCO_2$ (90:10)	65,0	$214,307\pm1$	$494,556\pm1$	$254,27 \pm 2,01$	$14,1103\pm0,1604$
3602	Strahl	$19.06.11\ 20:35 - 21:08$	106485	$ArCO_2$ (90:10)	65,0	$214,726\pm1$	$495,408\pm1$	$254,27 \pm 2,01$	$14,0886\pm0,1602$
3603	Strahl	$19.06.11\ 21:08 - 21:16$	27436	$ArCO_2$ (90:10)	65,0	$214,321\pm1$	$495,571 \pm 1$	$254,27\pm 2,01$	$14,0601\pm0,1598$
3604	Strahl	$19.06.11\ 21:39 - 22:12$	106744	$ArCO_2$ (90:10)	65,0	$214,840\pm 1$	$496,213 \pm 1$	$254,27\pm 2,01$	$14,0540\pm0,1597$
3605	Strahl	$19.06.11\ 22:12 - 22:46$	106617	$ArCO_2 (90:10)$	65,0	$215,191\pm1$	$496,099 \pm 1$	$254,27 \pm 2,01$	$14,0772\pm0,1600$
3606	Strahl	$19.06.11\ 22:46-23:21$	106585	$ArCO_2 (90:10)$	65,0	$215,676\pm1$	$496,652 \pm 1$	$254,27 \pm 2,01$	$14,0738\pm0,1600$
3607	Strahl	$19.06.11\ 23:21 - 23:55$	106608	$ArCO_2 (90:10)$	65,0	$215,255 \pm 1$	$496,581 \pm 1$	$254,27\pm 2,01$	$14,0563\pm0,1597$
3608	Strahl	$19.06.11\ 23.55 - 00.29$	106380	$ArCO_2 (90:10)$	65,0	$215,809\pm1$	$497,865 \pm 1$	$254,27 \pm 2,01$	$14,0199\pm0,1592$
3609	Strahl	$20.06.11 \ 00:29 - 01:03$	106021	$ArCO_2 (90:10)$	65,0	$216,829\pm1$	$499,641 \pm 1$	$254,27\pm 2,01$	$13,9825\pm0,1587$
3610	Strahl	$20.06.11\ 01:03 - 01:37$	106102	$ArCO_2 (90:10)$	65,0	$217,071 \pm 1$	$499,736\pm1$	$254,27\pm 2,01$	$13,9897\pm0,1588$
3611	Strahl	$20.06.11 \ 01:37 - 02:18$	106514	$ArCO_2 (90:10)$	65,0	$216,979\pm1$	$499,229 \pm 1$	$254,27\pm 2,01$	$14,0103\pm0,1591$
3612	Strahl	$20.06.11 \ 02.18 - 02.54$	109333	$ArCO_2$ (90:10)	65,0	$216,871\pm1$	$498,\!609\pm1$	$254,27\pm 2,01$	$14,0358\pm0,1594$
3613	Strahl	$20.06.11 \ 02.54 - 03.29$	106636	$ArCO_2 (90:10)$	65,0	$216,516 \pm 1$	$498,478 \pm 1$	$254,27\pm 2,01$	$14,0246\pm0,1593$
3614	Strahl	$20.06.11 \ 03:29 - 04:05$	107178	$ArCO_2 (90:10)$	65,0	$216,\!466\pm1$	$498,367 \pm 1$	$254,27\pm 2,01$	$14,0276\pm0,1593$
3615	Strahl	$20.06.11 \ 04:05 - 04:41$	107098	$ArCO_2$ (90:10)	65,0	$216,668\pm1$	$498,424 \pm 1$	$254,27\pm 2,01$	$14,0349\pm0,1594$
3616	Strahl	$20.06.11 \ 04:41 - 05:21$	106806	$ArCO_2$ (90:10)	65,0	$216,383\pm1$	$498,100 \pm 1$	$254,27 \pm 2,01$	$14,0368\pm0,1594$
3617	Strahl	$20.06.11 \ 05:21 - 05:57$	106636	$ArCO_2$ (90:10)	65,0	$216,153\pm1$	$498,188\pm1$	$254,27\pm 2,01$	$14,0210\pm0,1592$
3618	Strahl	$20.06.11 \ 05.57 - 06.20$	67125	$ArCO_2 (90:10)$	65,0	$216,016 \pm 1$	$498,510 \pm 1$	$254,27 \pm 2,01$	$13,9982\pm0,1589$
3676	kosm. Str.	$10.11.11 \ 02:11 - 02:13$	6408	$ArCO_2 (90:10)$	85,0	$4,643\pm1$	$499,851 \pm 1$	$727,80 \pm 1,00$	$22,8566\pm0,1188$
3679	kosm. Str.	$10.11.11 \ 02:34 - 04:28$	393234	$ArCO_2$ (90:10)	84,9	$14,167\pm1$	$502,780\pm1$	$727,80 \pm 1,00$	$23,1651\pm 0,1209$
3705	kosm. Str.	$10.11.11 \ 17:10 - 17:12$	11684	$ArCO_2$ (90:10)	85,9	$5,400\pm1$	$499,270 \pm 1$	$727,80 \pm 1,00$	$22,9185\pm0,1193$
3706	kosm. Str.	$10.11.11 \ 17:16 - 18:25$	393967	$ArCO_2 (90:10)$	86,0	$5,342\pm1$	$499,049 \pm 1$	$727,80 \pm 1,00$	$22,9260\pm0,1193$
3707	kosm. Str.	$10.11.11 \ 18:25 - 18:29$	17425	$ArCO_2 (90:10)$	86,0	$5,432\pm1$	$499,219 \pm 1$	$727,80 \pm 1,00$	$22,9223\pm0,1193$
3708	kosm. Str.	$10.11.11\ 22:33 - 22:59$	138421	$ArCO_2 (90:10)$	86,0	$5,459\pm1$	$498,231 \pm 1$	$727,80 \pm 1,00$	$22,9695\pm0,1196$
3709	kosm. Str.	$10.11.11 \ 22:59 - 23:25$	139584	$ArCO_2 (90:10)$	86,0	$5,208\pm1$	$498,370 \pm 1$	$727,80 \pm 1,00$	$22,9514\pm0,1195$
3710	kosm. Str.	$10.11.11 \ 23:25 - 23:52$	141838	$ArCO_2 (90:10)$	86,0	$5,241\pm1$	$498,114 \pm 1$	$727,80 \pm 1,00$	$22,9648\pm0,1196$
3711	kosm. Str.	$10.11.11\ 23.52 - 00.05$	68876	$ArCO_2 (90:10)$	86,0	$5,349\pm1$	$498,115\pm1$	$727,80 \pm 1,00$	$22,9698\pm0,1196$
3774	kosm. Str.	$11.11.11 \ 23:43 - 23:45$	13331	$ArCO_2 (90:10)$	85,9	$5,338\pm1$	$499,834 \pm 1$	$727,80 \pm 1,00$	$22,8895\pm0,1191$
3775	kosm. Str.	$11.11.11 \ 23:45 - 00:06$	116647	$ArCO_2 (90:10)$	85,9	$4,769\pm1$	$499,221 \pm 1$	$727,80 \pm 1,00$	$22,8915\pm0,1191$
3776	kosm. Str.	$12.11.11\ 00:06-00:26$	114929	$ArCO_2$ (90:10)	85,9	$5,160\pm1$	$499,467 \pm 1$	$727,80 \pm 1,00$	$22,8982\pm0,1191$
3777	kosm. Str.	$12.11.11 \ 00:26 - 00:47$	116444	$ArCO_{2}$ (90:10)	85,9	$5,144 \pm 1$	$499,352 \pm 1$	$727,80 \pm 1,00$	$22,9028\pm0,1192$
3778	kosm. Str.	$12.11.11 \ 00:47 - 01:07$	117050	$ArCO_2 (90:10)$	85,9	$5,096\pm1$	$499,273 \pm 1$	$727,80 \pm 1,00$	$22,9042\pm 0,1192$
3779	kosm. Str.	$12.11.11 \ 01:07 - 01:27$	116902	$ArCO_2 (90:10)$	85,9	$5,108\pm1$	$499,730 \pm 1$	$727,80 \pm 1,00$	$22,8836 \pm 0,1190$
3780	kosm. Str.	$12.11.11 \ 01:27 - 01:47$	116724	$ArCO_2$ (90:10)	85,9	$5,227\pm1$	$500,141 \pm 1$	$727,80 \pm 1,00$	$22,8701\pm0,1189$
3781	kosm. Str.	$12.11.11 \ 01:47 - 02:08$	116715	$ArCO_2 (90:10)$	85,9	$5,141\pm1$	$500,066\pm1$	$727,80 \pm 1,00$	$22,8696\pm 0,1189$
3782	kosm. Str.	$12.11.11\ 02:08-02:28$	116300	$ArCO_2 (90:10)$	85,9	$5,051\pm1$	$499,943 \pm 1$	$727,80 \pm 1,00$	$22,8712\pm0,1189$
3783	kosm. Str.	$12.11.11 \ 02:28 - 02:48$	117155	$ArCO_2$ (90:10)	85,9	$5,001\pm1$	$500,137 \pm 1$	$727,80 \pm 1,00$	$22,8599\pm0,1189$
3784	kosm. Str.	$12.11.11 \ 02:48 - 03:08$	117211	$ArCO_2$ (90:10)	85,9	$5,209\pm1$	$500,519 \pm 1$	$727,80 \pm 1,00$	$22,8518\pm0,1188$
3785	kosm. Str.	12.11.11 03:08 $-$ 03:29 $ $	118023	$ \operatorname{ArCO}_2(90:10) $	85,9	$5,142 \pm 1$	$ $ 499,932 ± 1	$727,80 \pm 1,00$	$22,8758\pm0,1190$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Drift geschwindi gkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	[mm/µs]
3786	kosm. Str.	$12.11.11 \ 03:29 - 03:49$	114543	$ArCO_2 (90:10)$	85,9	$5,220\pm1$	$500,886\pm1$	$727,80 \pm 1,00$	$22,8355\pm0,1187$
3787	kosm. Str.	$12.11.11 \ 03:49 - 04:09$	115948	$ArCO_2 (90:10)$	85,9	$5,026\pm1$	$500,008\pm1$	$727,80 \pm 1,00$	$22,8670\pm0,1189$
3788	kosm. Str.	$12.11.11 \ 04:09 - 04:29$	115102	$ArCO_2$ (90:10)	85,9	$5,140\pm1$	$499,724\pm1$	$727,80 \pm 1,00$	$22,8854\pm0,1190$
3789	kosm. Str.	$12.11.11 \ 04:29 - 04:49$	114944	$ArCO_2$ (90:10)	85,9	$5,140\pm1$	$500,170\pm1$	$727,80 \pm 1,00$	$22,8648\pm0,1189$
3790	kosm. Str.	$12.11.11 \ 04:49 - 05:09$	113717	$ArCO_2$ (90:10)	85,9	$4,974\pm1$	$500,588\pm1$	$727,80 \pm 1,00$	$22,8378\pm0,1187$
3791	kosm. Str.	$12.11.11\ 05:09 - 05:30$	116523	$ArCO_2$ (90:10)	85,9	$5,258\pm1$	$500,380\pm1$	$727,80 \pm 1,00$	$22,8605\pm0,1189$
3792	kosm. Str.	$12.11.11\ 05:30-05:51$	118570	$ArCO_2$ (90:10)	85,9	$5,284\pm1$	$500,098\pm1$	$727,80 \pm 1,00$	$22,8747\pm0,1190$
3793	kosm. Str.	$12.11.11\ 05.51 - 06.11$	116900	$ArCO_2$ (90:10)	85,9	$5,216\pm1$	$500,916\pm1$	$727,80 \pm 1,00$	$22,8339\pm 0,1187$
3794	kosm. Str.	$12.11.11\ 06:11 - 06:31$	118171	$ArCO_2$ (90:10)	85,9	$5,379\pm1$	$500,890\pm1$	$727,80 \pm 1,00$	$22,8426\pm0,1187$
3795	kosm. Str.	$12.11.11\ 06:31 - 06:52$	116327	$ArCO_2$ (90:10)	85,9	$5,410\pm1$	$501, 174 \pm 1$	$727,80 \pm 1,00$	$22,8309\pm0,1187$
3796	kosm. Str.	$12.11.11\ 06:52 - 07:12$	117822	$ArCO_2$ (90:10)	85,9	$5,053\pm1$	$500,306\pm1$	$727,80 \pm 1,00$	$22,8545\pm0,1188$
3797	kosm. Str.	$12.11.11\ 07:12-07:33$	117920	$ArCO_2$ (90:10)	85,9	$5,079\pm1$	$500,382\pm1$	$727,80 \pm 1,00$	$22,8521\pm0,1188$
3798	kosm. Str.	$12.11.11\ 07:33 - 07:54$	119084	$ArCO_2$ (90:10)	85,9	$5,343\pm1$	$501, 311 \pm 1$	$727,80 \pm 1,00$	$22,8215\pm0,1186$
3799	kosm. Str.	$12.11.11\ 07.54 - 08.14$	119050	$ArCO_2$ (90:10)	85,9	$5,070\pm1$	$501,263\pm 1$	$727,80 \pm 1,00$	$22,8112\pm0,1185$
3800	kosm. Str.	$12.11.11 \ 08:14 - 08:16$	8752	$ArCO_2$ (90:10)	85,9	$6,339\pm1$	$501,780\pm1$	$727,80 \pm 1,00$	$22,8458\pm0,1188$
3821	kosm. Str.	12.11.11 $12:50 - 13:12$	129903	$ArCO_2 (90:10)$	85,9	$5,213\pm1$	$502,675\pm1$	$727,80 \pm 1,00$	$22,7530\pm0,1181$
3822	kosm. Str.	$12.11.11 \ 13.12 - 13.35$	130043	$ArCO_2 (90:10)$	86,0	$5,231\pm1$	$502,804\pm1$	$727,80 \pm 1,00$	$22,7479\pm0,1181$
3823	kosm. Str.	$12.11.11 \ 13:35 - 13:58$	130047	$ArCO_2 (90:10)$	86,0	$5,445 \pm 1$	$502,506\pm1$	$727,80 \pm 1,00$	$22,7714\pm0,1183$
3824	kosm. Str.	$12.11.11 \ 13.58 - 14.21$	132999	$ArCO_2 (90:10)$	86,0	$5,031\pm1$	$502,780\pm1$	$727,80 \pm 1,00$	$22,7399\pm0,1181$
3825	kosm. Str.	12.11.11 $14:21 - 14:44$	135907	$ArCO_2 (90:10)$	86,0	$5,258\pm1$	$502,777\pm1$	$727,80 \pm 1,00$	$22,7504\pm0,1181$
3826	kosm. Str.	12.11.11 $14:44 - 15:08$	137089	$ArCO_2$ (90:10)	86,0	$5,161\pm1$	$502,649\pm1$	$727,80 \pm 1,00$	$22,7518\pm0,1181$
3827	kosm. Str.	12.11.11 $15:08 - 15:36$	162296	$ArCO_2$ (90:10)	86,0	$5,261\pm1$	$503,329\pm1$	$727,80 \pm 1,00$	$22,7253\pm0,1180$
3828	kosm. Str.	12.11.11 $15:36 - 16:03$	158482	$ArCO_2$ (90:10)	86,0	$5,164\pm1$	$503,377\pm1$	$727,80 \pm 1,00$	$22,7187\pm0,1179$
3829	kosm. Str.	$12.11.11 \ 16:03 - 16:30$	156210	$ArCO_2$ (90:10)	86,0	$5,199\pm1$	$503,137\pm1$	$727,80 \pm 1,00$	$22,7312\pm0,1180$
3830	kosm. Str.	$12.11.11 \ 16:30 - 16:56$	150619	$ArCO_2$ (90:10)	86,0	$5,316\pm1$	$502,940\pm 1$	$727,80 \pm 1,00$	$22,7456\pm0,1181$
3831	kosm. Str.	$12.11.11 \ 16:56 - 17:23$	158772	$ArCO_2$ (90:10)	86,0	$5,268\pm1$	$503,394\pm1$	$727,80 \pm 1,00$	$22,7227\pm0,1179$
3832	kosm. Str.	12.11.11 $17:23 - 17:51$	158968	$ArCO_2$ (90:10)	86,0	$5,091\pm1$	$503,558\pm1$	$727,80 \pm 1,00$	$22,7071\pm0,1178$
3833	kosm. Str.	12.11.11 $17:51 - 18:18$	160019	$ArCO_2 (90:10)$	85,9	$5,216\pm1$	$503,825\pm1$	$727,80 \pm 1,00$	$22,7006\pm0,1178$
3834	kosm. Str.	$12.11.11 \ 18:18 - 18:43$	142523	$ArCO_2$ (90:10)	86,0	$5,229\pm1$	$503,474\pm1$	$727,80 \pm 1,00$	$22,7172\pm0,1179$
3849	kosm. Str.	$12.11.11\ 23:03 - 23:30$	155326	$ArCO_2$ (90:10)	85,9	$5,105\pm1$	$504,304\pm1$	$727,80 \pm 1,00$	$22,6738\pm0,1176$
3850	kosm. Str.	$12.11.11\ 23:30-23:57$	158555	$ArCO_2$ (90:10)	85,9	$4,954\pm1$	$504,144\pm1$	$727,80 \pm 1,00$	$22,6742\pm0,1176$
3851	kosm. Str.	$12.11.11 \ 23.57 - 00.25$	161273	$ArCO_2 (90:10)$	85,9	$5,265\pm1$	$503,\!486\pm 1$	$727,80 \pm 1,00$	$22,7183\pm0,1179$
3852	kosm. Str.	$13.11.11\ 00:25-00:53$	163573	$ArCO_2 (90:10)$	85,9	$5,231\pm1$	$504,132\pm1$	$727,80 \pm 1,00$	$22,6874\pm0,1177$
3853	kosm. Str.	$13.11.11\ 00.53 - 01.21$	165103	$ArCO_2 (90:10)$	85,9	$5,121 \pm 1$	$503,945\pm 1$	$727,80 \pm 1,00$	$22,6909\pm0,1177$
3854	kosm. Str.	$13.11.11\ 01:21-01:49$	165311	$ArCO_2$ (90:10)	85,9	$5,000\pm1$	$503,581\pm1$	$727,80 \pm 1,00$	$22,7019\pm0,1178$
3855	kosm. Str.	$13.11.11\ 01:49-02:18$	164744	$ArCO_2 (90:10)$	85,9	$5,037\pm1$	$503,558\pm1$	$727,80 \pm 1,00$	$22,7047\pm0,1178$
3856	kosm. Str.	$13.11.11\ 02.18 - 02.46$	163980	$ArCO_2$ (90:10)	85,9	$4,934\pm1$	$503,898\pm1$	$727,80 \pm 1,00$	$22,6845\pm0,1177$
3857	kosm. Str.	$13.11.11\ 02:46-03:14$	164563	$ArCO_2 (90:10)$	85,9	$5,195\pm1$	$503,578\pm1$	$727,80 \pm 1,00$	$22,7109\pm0,1179$
3858	kosm. Str.	$13.11.11 \ 03.14 - 03.42$	161893	$ArCO_2$ (90:10)	85,9	$4,961\pm1$	$503,405\pm1$	$727,80 \pm 1,00$	$22,7081\pm0,1178$
3859	kosm. Str.	$13.11.11 \ 03:42 - 04:10$	162821	$ArCO_2 (90:10)$	85,9	$4,959\pm1$	$503,521\pm1$	$727,80 \pm 1,00$	$22,7028\pm0,1178$
3860	kosm. Str.	$13.11.11 \ 04.10 - 04.38$	162330	$ArCO_2 (90:10)$	85,9	$5,151\pm1$	$503,819\pm1$	$727,80 \pm 1,00$	$22,6980\pm 0,1178$

Run-	_		Anzahl		Driftfeld	Kante	Kante	Driftlänge	Drift geschwindi gkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	$[mm/\mu s]$
3861	kosm. Str.	$13.11.11 \ 04:38 - 05:06$	163513	$ArCO_2$ (90:10)	85,9	$5,166\pm1$	$503,653\pm1$	$727,80\pm 1,00$	$22,7062\pm0,1178$
3862	kosm. Str.	13.11.11 05:06 - 05:35	163840	$ArCO_2$ (90:10)	85,9	$5,191\pm1$	$503,767\pm1$	$727,80 \pm 1,00$	$22,7021\pm0,1178$
3863	kosm. Str.	$13.11.11 \ 05:35 - 06:04$	164186	$ArCO_{2}$ (90:10)	85,9	$4,936\pm1$	$503,316\pm1$	$727,80 \pm 1,00$	$22,7111 \pm 0,1179$
3864	kosm. Str.	$13.11.11\ 06:04 - 06:33$	165349	$ArCO_2$ (90:10)	85,9	$5,084\pm1$	$503,491\pm1$	$727,80 \pm 1,00$	$22,7099\pm0,1179$
3865	kosm. Str.	$13.11.11\ 06:33 - 07:02$	163812	$ArCO_2$ (90:10)	85,9	$4,460\pm1$	$503,555\pm 1$	$727,80 \pm 1,00$	$22,6786\pm0,1176$
3890	kosm. Str.	13.11.11 11:14 - 11:41	161761	$ArCO_2$ (90:10)	85,9	$5,052\pm1$	$504,180\pm 1$	$727,80 \pm 1,00$	$22,6771\pm0,1176$
3891	kosm. Str.	13.11.11 11:41 - 12:09	165324	$ArCO_2 (90:10)$	85,9	$5,088\pm1$	$503,529\pm1$	$727,80\pm 1,00$	$22,7083\pm0,1178$
3892	kosm. Str.	13.11.11 $12:09 - 12:38$	167259	$ArCO_2 (90:10)$	86,0	$5,038\pm1$	$503,507\pm1$	$727,80\pm1,00$	$22,7070\pm0,1178$
3893	kosm. Str.	13.11.11 $12:38 - 13:06$	169228	$ArCO_2$ (90:10)	86,0	$5,005\pm1$	$502,934\pm 1$	$727,80 \pm 1,00$	$22,7317\pm0,1180$
3894	kosm. Str.	$13.11.11 \ 13.06 - 13.35$	169790	$ArCO_2$ (90:10)	86,0	$5,110\pm1$	$502,589\pm1$	$727,80 \pm 1,00$	$22,7522\pm0,1181$
3895	kosm. Str.	13.11.11 13:35 - 13:56	114725	$ArCO_2$ (90:10)	86,0	$5,185\pm1$	$502,313\pm1$	$727,80 \pm 1,00$	$22,7683\pm0,1182$
3896	kosm. Str.	13.11.11 $14:21 - 15:03$	249912	$ArCO_2$ (90:10)	86,0	$4,953\pm1$	$501,911\pm1$	$727,80 \pm 1,00$	$22,7761\pm0,1183$
3897	kosm. Str.	$13.11.11 \ 15:03 - 15:45$	246804	$ArCO_2$ (90:10)	86,0	$5,078\pm1$	$502,081\pm1$	$727,80 \pm 1,00$	$22,7740\pm0,1183$
3898	kosm. Str.	13.11.11 $15:45 - 16:27$	245679	$ArCO_{2}$ (90:10)	86,0	$5,007\pm1$	$502,167\pm1$	$727,80 \pm 1,00$	$22,7668\pm0,1182$
3899	kosm. Str.	$13.11.11 \ 16:27 - 17:08$	245084	$ArCO_2$ (90:10)	86,0	$5,077\pm1$	$502,083\pm1$	$727,80 \pm 1,00$	$22,7738\pm0,1183$
3900	kosm. Str.	$13.11.11 \ 17:08 - 17:20$	63675	$ArCO_2 (90:10)$	85,9	$4,767\pm1$	$501,175\pm1$	$727,80 \pm 1,00$	$22,8013\pm0,1185$
3901	kosm. Str.	13.11.11 $17:36 - 17:53$	103706	$ArCO_2$ (90:10)	85,9	$5,049\pm1$	$501,930\pm 1$	$727,80 \pm 1,00$	$22,7796\pm0,1183$
3921	kosm. Str.	$13.11.11 \ 20:01 - 20:14$	77254	$ArCO_2 (90:10)$	85,9	$5,346\pm1$	$502,086\pm1$	$727,80 \pm 1,00$	$22,7861\pm0,1184$
3923	kosm. Str.	13.11.11 20:36 $-$ 20:59	121217	$ArCO_2 (90:10)$	85,9	$4,871 \pm 1$	$501,894\pm1$	$727,80\pm 1,00$	$22,7731\pm0,1183$
3924	kosm. Str.	$13.11.11 \ 20.59 - 21:23$	137766	$ArCO_2 (90:10)$	85,9	$4,825\pm1$	$502,265\pm1$	$727,80 \pm 1,00$	$22,7540\pm0,1181$
3925	kosm. Str.	$13.11.11\ 21:23 - 21:48$	150589	$ArCO_2$ (90:10)	85,9	$4,738\pm1$	$502,080\pm 1$	$727,80 \pm 1,00$	$22,7585\pm0,1182$
3926	kosm. Str.	$13.11.11\ 21:48 - 22:15$	160356	$ArCO_2 (90:10)$	85,9	$4,682\pm1$	$501,232\pm1$	$727,80 \pm 1,00$	$22,7948\pm0,1184$
3927	kosm. Str.	$13.11.11 \ 22:15 - 22:44$	167885	$ArCO_2$ (90:10)	85,9	$4,954\pm1$	$501,422 \pm 1$	$727,80 \pm 1,00$	$22,7985\pm0,1184$
3928	kosm. Str.	$13.11.11 \ 22:44 - 23:13$	173121	$ArCO_2 (90:10)$	85,9	$4,910\pm1$	$501,299\pm 1$	$727,80 \pm 1,00$	$22,8022\pm0,1185$
3929	kosm. Str.	$13.11.11\ 23:13 - 23:20$	31896	$ArCO_2$ (90:10)	85,9	$4,125\pm1$	$501,439\pm1$	$727,80 \pm 1,00$	$22,7598\pm0,1182$
3930	kosm. Str.	$13.11.11\ 23.57 - 00:21$	138116	$ArCO_2$ (90:10)	85,9	$4,941 \pm 1$	$501,368\pm1$	$727,80 \pm 1,00$	$22,8004\pm0,1185$
3931	kosm. Str.	$14.11.11 \ 00:25 - 00:25$	4642	$ArCO_2 (90:10)$	85,9	$5,069\pm1$	$501,003\pm1$	$727,80 \pm 1,00$	$22,8231\pm0,1186$
3932	kosm. Str.	$14.11.11 \ 00:25 - 00:54$	165099	$ArCO_2 (90:10)$	85,9	$5,101\pm1$	$501,233\pm1$	$727,80 \pm 1,00$	$22,8140\pm0,1186$
3933	kosm. Str.	$14.11.11 \ 00.54 - 01.21$	163147	$ArCO_2 (90:10)$	85,9	$4,999 \pm 1$	$500,404 \pm 1$	$727,80 \pm 1,00$	$22,8474\pm0,1188$
3934	kosm. Str.	$ 14.11.11 \ 01:21 - 01:49$	164058	$ArCO_2 (90:10)$	85,9	$4,969\pm1$	$500,809\pm1$	$727,80 \pm 1,00$	$22,8274\pm0,1186$
3935	kosm. Str.	$14.11.11 \ 01:49 - 02:18$	167028	$ArCO_2 (90:10)$	85,9	$4,885\pm1$	$500,607 \pm 1$	$727,80 \pm 1,00$	$22,8328\pm0,1187$
3936	kosm. Str.	$14.11.11 \ 02:18 - 02:47$	168717	$ArCO_2 (90:10)$	85,9	$4,937\pm1$	$500,115 \pm 1$	$727,80 \pm 1,00$	$22,8579\pm0,1189$
3937	kosm. Str.	$14.11.11 \ 02:47 - 03:13$	156834	$ArCO_2$ (90:10)	85,9	$4,876\pm1$	$499,952\pm1$	$727,80 \pm 1,00$	$22,8627\pm0,1189$
3938	kosm. Str.	$14.11.11 \ 03:48 - 04:16$	161260	$ArCO_2$ (90:10)	85,9	$4,\!843\pm1$	$501,060\pm 1$	$727,80 \pm 1,00$	$22,8101\pm0,1185$
3939	kosm. Str.	$14.11.11 \ 04:16 - 04:34$	106011	$ArCO_2$ (90:10)	85,9	$4,694 \pm 1$	$500,565\pm1$	$727,80 \pm 1,00$	$22,8260\pm0,1186$
3940	kosm. Str.	$14.11.11 \ 00:48 - 05:10$	154368	$ArCO_2 (90:10)$	85,9	$4,894 \pm 1$	$500,723\pm1$	$727,80 \pm 1,00$	$22,8279\pm0,1186$
3941	kosm. Str.	$14.11.11 \ 05:10 - 05:37$	158011	$ArCO_2 (90:10)$	85,9	$4,962\pm1$	$500,333\pm 1$	$727,80 \pm 1,00$	$22,8490\pm0,1188$
3942	kosm. Str.	$14.11.11 \ 05:37 - 06:04$	157451	$ArCO_2 (90:10)$	85,9	$4,900 \pm 1$	$500,257 \pm 1$	$727,80 \pm 1,00$	$22,8497\pm0,1188$
3943	kosm. Str.	$14.11.11 \ 06:04 - 06:31$	158798	$ArCO_2 (90:10)$	85,9	$4,876\pm1$	$500,692\pm1$	$727,80 \pm 1,00$	$22,8285\pm0,1187$
3944	kosm. Str.	$14.11.11\ 06:31 - 06:58$	156572	$ArCO_2 (90:10)$	85,9	$4,902 \pm 1$	$499,996 \pm 1$	$727,80 \pm 1,00$	$22,8618\pm0,1189$
3984	kosm. Str.	$14.11.11 \ 09:15 - 09:35$	113933	$ArCO_2 (90:10)$	85,9	$5,820\pm1$	$499,393\pm 1$	$727,80 \pm 1,00$	$22,9323\pm0,1194$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Drift geschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	[mm/µs]
3986	kosm. Str.	$14.11.11 \ 09.54 - 10.16$	126633	$ArCO_2 (90:10)$	85,9	$5,232\pm1$	$499,954\pm1$	$727,80\pm 1,00$	$22,8790 \pm 0,1190$
3987	kosm. Str.	$14.11.11 \ 10.16 - 10.38$	130201	$ArCO_2$ (90:10)	85,9	$5,115\pm1$	$500,337\pm1$	$727,80 \pm 1,00$	$22,8559\pm0,1188$
3988	kosm. Str.	$14.11.11 \ 10:38 - 11:01$	132803	$ArCO_2$ (90:10)	85,9	$5,203\pm1$	$499,598\pm1$	$727,80 \pm 1,00$	$22,8941 \pm 0,1191$
3989	kosm. Str.	$14.11.11 \ 11:01 - 11:29$	133608	$ArCO_2$ (90:10)	85,9	$5,266\pm1$	$498,\!829\pm1$	$727,80 \pm 1,00$	$22,9327\pm0,1194$
3990	kosm. Str.	$14.11.11 \ 11:29 - 11:57$	134433	$ArCO_2$ (90:10)	85,9	$5,063\pm1$	$498,322 \pm 1$	$727,80 \pm 1,00$	$22,9469\pm0,1195$
3991	kosm. Str.	$14.11.11 \ 11.57 - 12.26$	59119	$ArCO_2$ (90:10)	85,9	$5,459\pm1$	$498,570\pm1$	$727,80 \pm 1,00$	$22,9537\pm0,1195$
3992	kosm. Str.	14.11.11 $12:40 - 13:01$	124723	$ArCO_2$ (90:10)	85,9	$5,217\pm1$	$497,571\pm1$	$727,80 \pm 1,00$	$22,9890\pm0,1197$
3993	kosm. Str.	$14.11.11 \ 13:01 - 13:15$	47685	$ArCO_2$ (90:10)	85,9	$5,574\pm1$	$497,823\pm1$	$727,80 \pm 1,00$	$22,9939\pm0,1198$
3994	kosm. Str.	$14.11.11 \ 13:28 - 13:50$	121937	$ArCO_2$ (90:10)	85,9	$5,209\pm1$	$497,287\pm1$	$727,80 \pm 1,00$	$23,0019\pm0,1198$
3995	kosm. Str.	$14.11.11 \ 13:50 - 14:10$	121007	$ArCO_2$ (90:10)	85,9	$5,248\pm1$	$496,670\pm1$	$727,80 \pm 1,00$	$23,0327\pm0,1200$
3996	kosm. Str.	14.11.11 $14:10 - 14:31$	119995	$ArCO_2$ (90:10)	85,9	$5,403\pm1$	$497,\!460\pm1$	$727,80 \pm 1,00$	$23,0029\pm0,1198$
3997	kosm. Str.	14.11.11 $14:31 - 14:51$	120616	$ArCO_2$ (90:10)	86,0	$5,\!148\pm1$	$497, 172\pm1$	$727,80 \pm 1,00$	$23,0044\pm0,1198$
3998	kosm. Str.	14.11.11 $14.51 - 15.12$	120742	$ArCO_2$ (90:10)	86,0	$5,408\pm1$	$496,763\pm1$	$727,80 \pm 1,00$	$23,0358\pm0,1201$
3999	kosm. Str.	14.11.11 $15.12 - 15.32$	120218	$ArCO_2$ (90:10)	85,9	$5,410\pm1$	$497,004 \pm 1$	$727,80 \pm 1,00$	$23,0246\pm0,1200$
4000	kosm. Str.	14.11.11 $15:32 - 15:53$	119509	$ArCO_2$ (90:10)	85,9	$5,170\pm1$	$496,735\pm1$	$727,80 \pm 1,00$	$23,0259\pm0,1200$
4001	kosm. Str.	14.11.11 $15.53 - 16.06$	73575	$ArCO_2 (90:10)$	86,0	$5,231\pm1$	$496,\!669\pm1$	$727,80 \pm 1,00$	$23,0319\pm0,1200$
4002	kosm. Str.	$14.11.11 \ 16:06 - 16:18$	69186	$ArCO_2$ (90:10)	85,9	$5,\!425\pm1$	$496,372\pm1$	$727,80 \pm 1,00$	$23,0549\pm0,1202$
4003	kosm. Str.	$14.11.11 \ 16.18 - 16.39$	119543	$ArCO_2$ (90:10)	85,9	$5,202\pm1$	$494,337 \pm 1$	$727,80 \pm 1,00$	$23,1403\pm0,1208$
4004	kosm. Str.	$14.11.11 \ 16:39 - 16:53$	83482	$ArCO_2$ (90:10)	86,0	$5,587\pm1$	$496,157\pm1$	$727,80 \pm 1,00$	$23,0726\pm0,1203$
4005	kosm. Str.	14.11.11 $17:19 - 17:20$	10122	$ArCO_2$ (90:10)	86,0	$5,222\pm1$	$495,937\pm1$	$727,80 \pm 1,00$	$23,0658\pm0,1203$
4006	kosm. Str.	14.11.11 $17:21 - 17:40$	117321	$ArCO_2$ (90:10)	85,9	$5,311\pm1$	$496,\!210\pm1$	$727,80 \pm 1,00$	$23,0572\pm0,1202$
4007	kosm. Str.	14.11.11 $17:40 - 18:02$	117003	$ArCO_2$ (90:10)	85,9	$5,325\pm1$	$495,\!602\pm1$	$727,80 \pm 1,00$	$23,0864\pm0,1204$
4008	kosm. Str.	$14.11.11 \ 18:02 - 18:31$	116906	$ArCO_2$ (90:10)	85,9	$5,036\pm1$	$496,876\pm1$	$727,80 \pm 1,00$	$23,0131\pm0,1199$
4009	kosm. Str.	$14.11.11 \ 18:31 - 18:51$	116344	$ArCO_2$ (90:10)	86,0	$5,187\pm1$	$496,519\pm1$	$727,80 \pm 1,00$	$23,0369\pm0,1201$
4012	kosm. Str.	15.11.11 $15:26 - 15:32$	31079	$NeCO_2$ (90:10)	95,9	$4,702\pm1$	$498,177\pm1$	$727,80 \pm 1,00$	$22,9368\pm0,1194$
4014	kosm. Str.	15.11.11 $15.57 - 16.19$	126680	$NeCO_2$ (90:10)	95,9	$4,908\pm1$	$498,681 \pm 1$	$727,80 \pm 1,00$	$22,9230\pm0,1193$
4015	kosm. Str.	$15.11.11 \ 16.19 - 16.41$	128686	$NeCO_2$ (90:10)	95,9	$4,834\pm1$	$498,\!611\pm1$	$727,80 \pm 1,00$	$22,9228\pm0,1193$
4016	kosm. Str.	$15.11.11 \ 16:41 - 16:57$	82958	$NeCO_2 (90:10)$	95,9	$5,000\pm1$	$499,497\pm1$	$727,80 \pm 1,00$	$22,8894\pm0,1191$
4017	kosm. Str.	15.11.11 $17:07 - 17:15$	47619	$NeCO_2 (90:10)$	95,9	$4,701\pm1$	$499,739\pm1$	$727,80 \pm 1,00$	$22,8644\pm0,1189$
4225	kosm. Str.	22.11.11 $17:39 - 18:03$	147041	$ArCO_2 (90:10)$	85,9	$5,198\pm1$	$494,605\pm1$	$727,80 \pm 1,00$	$23,1275\pm0,1207$
4226	kosm. Str.	$22.11.11 \ 18:03 - 18:11$	46979	$ArCO_2 (90:10)$	86,0	$5,043\pm1$	$496,118 \pm 1$	$727,80 \pm 1,00$	$23,0489\pm0,1201$
4227	kosm. Str.	22.11.11 18:11 - 18:13	11810	$ArCO_2 (90:10)$	86,0	$5,340\pm1$	$495,\!186\pm1$	$727,80 \pm 1,00$	$23,1067\pm0,1205$
4248	kosm. Str.	$22.11.11 \ 21.11 - 21.28$	102249	$ArCO_2 (90:10)$	85,9	$5,023\pm1$	$495,766\pm1$	$727,80\pm 1,00$	$23,0645\pm0,1203$
4249	kosm. Str.	$22.11.11 \ 21:28 - 21:47$	114455	$ArCO_2$ (90:10)	85,9	$4,167\pm1$	$495,368\pm1$	$727,80 \pm 1,00$	$23,0430\pm0,1201$
4250	kosm. Str.	$22.11.11 \ 21:47 - 22:09$	129256	$ArCO_2$ (90:10)	85,9	$4,970\pm1$	$495,174 \pm 1$	$727,80 \pm 1,00$	$23,0899\pm0,1204$
4251	kosm. Str.	22.11.11 $22:09 - 22:33$	140404	$ArCO_2 (90:10)$	85,9	$5,045\pm1$	$495,595\pm1$	$727,80 \pm 1,00$	$23,0736\pm0,1203$
4252	kosm. Str.	22.11.11 $22:33 - 22:40$	42662	$ArCO_2$ (90:10)	85,9	$4,847\pm1$	$495,110\pm1$	$727,80 \pm 1,00$	$23,0871\pm0,1204$
4253	kosm. Str.	22.11.11 $22:42 - 23:06$	143639	$ArCO_2 (90:10)$	85,9	$5,508\pm1$	$493,581\pm1$	$727,80\pm 1,00$	$23,1907\pm0,1211$
4254	kosm. Str.	$22.11.11 \ 23.06 - 23.14$	44758	$ArCO_2$ (90:10)	85,9	$5,278\pm1$	$494,224\pm1$	$727,80 \pm 1,00$	$23,1493\pm0,1208$
4255	kosm. Str.	22.11.11 $23.18 - 23.42$	144288	$ArCO_2$ (90:10)	85,9	$5,008\pm1$	$496,417 \pm 1$	$727,80 \pm 1,00$	$23,0332\pm0,1200$
4256	kosm. Str.	$22.11.11 \ 23:42 - 00:07$	144026	$\operatorname{ArCO}_2(90:10)$	86,0	$5,050\pm1$	$497,335\pm1$	$727,80 \pm 1,00$	$22,9923\pm0,1198$

Turner	-un-	Ļ	Ē	Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
News. St.: 2331111 [0036 - 0133) [13929] ArCO2 (0110) 85.0 6.11141 40.353 ± 1 777.89 ± 100 277.89 ± 100 277.89 ± 100 277.89 ± 100 277.89 ± 100 277.89 ± 100 277.89 ± 100 277.89 ± 100 277.89 ± 100 277.80 \pm 100 277.80 \pm 100	r.	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	% Emax	GEM-Folie	Kathode	mm	mm/µs]
		kosm. Str.	$23.11.11\ 00:10-00:36$	159061	$ArCO_2 (90:10)$	86,0	$4,911 \pm 1$	$492,633 \pm 1$	727,80 \pm 1,00	$23,2074\pm 0,1212$
		kosm. Str.	$23.11.11\ 00:36 - 01:03$	159291	$ArCO_2 (90:10)$	86,0	$5,513\pm1$	$491,505 \pm 1$	$727,80 \pm 1,00$	$23,2900\pm0,1218$
		kosm. Str.	$23.11.11\ 01:05 - 01:33$	163515	$ArCO_2$ (90:10)	85,9	$4,882\pm1$	$494,373 \pm 1$	$727,80 \pm 1,00$	$23,1235\pm0,1207$
		kosm. Str.	$23.11.11\ 01:33 - 02:01$	165934	$ArCO_2 (90:10)$	85,9	$4,996 \pm 1$	$493,890\pm1$	$727,80 \pm 1,00$	$23,1518\pm 0,1208$
Strahl 30.1012 17:36 57:02 ArCO2 90:10 84:0 2.363:41 57:25:84:11 02.23:85:41 02.23:85:85:81 02.23:85:81 02.2		kosm. Str.	$23.11.11 \ 02:01 - 02:15$	84546	$ArCO_2 (90:10)$	85,9	$5,063\pm1$	$494,872 \pm 1$	$727,80 \pm 1,00$	$23,1085\pm 0,1206$
Srahl 30.0.12 Tiffed		Strahl	$30.10.12 \ 17:38 - 17:46$	59702	$ArCO_2 (90:10)$	84,0	$2,377 \pm 1$	$502,815 \pm 1$	$727,80 \pm 1,00$	$22,6177\pm0,1172$
Strahl 30.01.21 Tiff 50 <		Strahl	$30.10.12 \ 17:46 - 17:48$	12495	$ArCO_2 (90:10)$	84,0	$2,000 \pm 1$	$502,392 \pm 1$	$727,80 \pm 1,00$	$22,6198\pm0,1172$
Strahl 30.10.12 IX:30 54941 ArCO2 500:10 84.0 2.369±11 577.89±1.100 226 Strahl 30.10.12 18:16 18:25 64438 ArCO2 500:10 84.0 2.441±1 502.306±11 777.89±1.100 226 Strahl 30.10.12 18:23 ArCO2 500:10 84.0 2.441±1 502.306±11 777.89±1.100 226 Strahl 30.10.12 2230 2230 2306±1 507.36±1 777.89±1.100 227 Strahl 30.10.12 2237 2307 3055±1 501.741 777.89±1.100 227 Strahl 30.10.12 2337 2337 3055±1 507.35±1 777.89±1.100 226 Strahl 30.10.12 2337 2347 302.31 777.89±1.100 226 Strahl 30.10.12 2347 302.41 64.41 777.89±1.100 227 Strahl 30.10.12 2347 302.41 44.41.41 50.27.89±1.100 20.27		Strahl	$30.10.12 \ 17.50 - 17.59$	69922	$ArCO_2 (90:10)$	84,0	$2,358\pm1$	$502,601 \pm 1$	$727,80 \pm 1,00$	$22,6265\pm0,1173$
Strahl 30.10.12 [8:35 - 18:31 65488 ACO2 (90:10) 84,0 2.889±1 577.88±1.10 227.89±1.10 226 Strahl 30.10.12 [8:37 - 18:33 1075 ACO2 (90:10) 84,0 3.23±1 577.89±1.100 226 Strahl 30.10.12 22:37 - 22:43 1073 ACO2 (90:10) 84,0 3.23±1 552.39±1 777.89±1.100 226 Strahl 30.10.12 22:37 - 22:43 1893 ACO2 (90:10) 84,0 3.25±1±1 577.89±1.100 226 Strahl 30.10.12 23:37 - 22:43 1707 ACO2 (90:10) 84,0 3.55±1±1 577.89±1.100 227 Strahl 30.10.12 23:37 - 23:60 1703 ACO2 (90:10) 84,0 3.55±1±1 577.89±1.100 226 Strahl 31.10.12 23:37 - 23:60 1107 ACO2 (90:10) 84,0 3.255±1 277.89±1.100 226 Strahl 31.10.12 23:10 - 22:13 1177 ACO2 (90:10) 84,0 3.257±1 277.89±1.100 226 Strahl 31.10.12 23:14 31.01.12 23:17 3257		Strahl	$30.10.12 \ 17:59 - 18:05$	49241	$ArCO_2 (90:10)$	84,0	$2,037\pm1$	$502,594\pm1$	$727,80\pm 1,00$	$22,6123\pm0,1172$
Strain 30.10.12 Rs34 R551 ArCO ₂ 90:10 84,0 2444.14 752.80 ±1,00 225. Strain 30.10.12 R34.183.5 10705 ArCO ₂ 90:10) 84,0 3,023.41 502.306.41 727.80 ±1,00 226. Strain 30.10.12 22.30 23.06 307.52 177.70 40.01 227. Strain 30.10.12 22.37 77.09 ArCO ₂ 90:10 84,0 3,025.14 177.80 ±1,00 226. Strain 30.10.12 22.377 1803 ArCO ₂ 90:10 84,0 3,025.14 177.80 ±1,00 226. Strain 30.10.12 23.67 33.07 30.91 30.02 23.6 41.04 177.78 ±1.00 226. Strain 31.0.12 23.67 33.07 30.91 30.02 23.6 30.01 23.6 30.01 23.6 30.01 23.6 30.01 23.6 30.01 23.6 30.01 23.6 30.01 23.6		Strahl	$30.10.12 \ 18:16 - 18:25$	68488	$ArCO_2$ (90:10)	84,0	$2,889\pm1$	$502,898\pm1$	$727,80 \pm 1,00$	$22,6371\pm0,1174$
Strail $30.0.12$ 8.34 8.40 3.0032 Λ rCO ₂ 900.10 2278 84.10 3.003 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.0702 3.07012 3.078 1.7758411 277.898 ± 1100 22.75 3.07132 3.07012 3.07612 3.0773341 277.898 ± 1000 22.06 3.0712 3.07612 3.0773341 277.898 ± 1000 22.07 3.07612 3.0773341 277.898 ± 1000 22.07 3.07612 3.07612 3.07612 3.07612 3.07612 3.07612 3.07612 3.07612 3.07612 3.07612 3.076112 3.076112 3.076112 3.076112 3.076112 3.076112 3.076111 3.076811 3.07681100 3.0761100 3.0761100 3.07611000 3.07611000 $3.076110000000000000000000000000000000000$		Strahl	$30.10.12 \ 18:25 - 18:34$	64514	$ArCO_2$ (90:10)	84,0	$2,441 \pm 1$	$502,840 \pm 1$	$727,80 \pm 1,00$	$22,6195\pm0,1172$
Strain 30.10.12 22:20.0 22:03 33022 ArCO2 90:10 84,0 32:05.11 50:27 66:11 77:78 66:11 0 22:65 1 77:78 100 22:75 86:11 77:78 86:1100 22:75 86:110 22:75 86:110 22:75 86:110 22:75 86:110 22:75 86:110 22:75 86:110 22:75 86:1100 <td></td> <td>Strahl</td> <td>$30.10.12 \ 18:34 - 18:35$</td> <td>10705</td> <td>$ArCO_2 (90:10)$</td> <td>84,0</td> <td>$3,023\pm1$</td> <td>$502,399\pm1$</td> <td>$727,80 \pm 1,00$</td> <td>$22,6658\pm0,1176$</td>		Strahl	$30.10.12 \ 18:34 - 18:35$	10705	$ArCO_2 (90:10)$	84,0	$3,023\pm1$	$502,399\pm1$	$727,80 \pm 1,00$	$22,6658\pm0,1176$
Strahl 301.012 22:03 $-22:04$ 3692 ArCO2 90:101 30.07.±11 77.52 ± 11 77.52 ± 11 77.52 ± 11 77.53 ± 11 77.73 ± 11 77.73 ± 110.10 20.77 ± 11 77.73 ± 110.10 20.77 ± 110.10 20.77 ± 110.10 20.77 ± 110.10 20.77 ± 10.100 $20.77\pm110.100.102$ 20		Strahl	$30.10.12\ 22:00 - 22:03$	13032	$ArCO_2$ (90:10)	84,0	$3,296\pm1$	$502,306\pm1$	$727,80 \pm 1,00$	$22,6824\pm0,1177$
Strahl 30.0.12 22:57 $-23:07$ 1899 ArCO ₂ (90:10) 84,0 $-3,571\pm1$ 502,563\pm1 775,86\pm1,100 222,57 Strahl 30.10.12 23:57 -23:07 17030 ArCO ₂ (90:10) 84,0 $-3,577\pm1$ 775,86\pm1,100 22,6 Strahl 30.10.12 23:57 -23:07 17030 ArCO ₂ (90:10) 84,0 $-3,577\pm1$ 775,86\pm1,100 22,7 Strahl 30.10.12 23:67 23:07 13,10 23:16 23:10 23:7 Strahl 31.10.12 22:16 22:19 11977 ArCO ₂ (90:10) 84,0 3.255\pm1 27:36 \pm1,100 23:6 Strahl 31.10.12 22:16 22:19 113 ArCO ₂ (90:10) 84,0 3.255\pm1 494,56 \pm1 77:80 \pm1,100 23:6 Strahl 31.10.12 22:16 22:19 3.255\pm1 494,56 \pm1 77:80 \pm1,00 23:6 Strahl 31.10.12 22:25 22:29 113:8 ArCO ₂ (90:10) 84,0 3.255 \pm1		Strahl	$30.10.12\ 22:03 - 22:04$	3692	$ArCO_2$ (90:10)	84,0	$3,965\pm1$	$501,752\pm1$	$727,80 \pm 1,00$	$22,7381\pm0,1180$
		Strahl	$30.10.12\ 22:47 - 22:48$	1899	$ArCO_2$ (90:10)	84,0	$3,071 \pm 1$	$502,684 \pm 1$	$727,80 \pm 1,00$	$22,6550\pm0,1175$
		Strahl	$30.10.12\ 22:57 - 23:02$	17070	$ArCO_2$ (90:10)	84,0	$3,527\pm1$	$502,857\pm1$	$727,80 \pm 1,00$	$22,6679\pm0,1176$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Strahl	$30.10.12\ 23:02-23:07$	17039	$ArCO_2$ (90:10)	84,0	$3,521\pm1$	$502,773\pm1$	$727,80 \pm 1,00$	$22,6714\pm0,1176$
Strahl $30.10.12$ $33.10.12$ $33.10.12$ $33.10.12$ 33.554 $727,80\pm1,00$ 23.35 Strahl $31.10.12$ 22.915 1177 $ArCO_2$ 90.10 $84,0$ 3.146 ± 1 $496,577\pm1$ $727,80\pm1,00$ 23.35 Strahl $31.10.12$ $22.10-22.15$ 1177 $ArCO_2$ 90.10 $84,0$ 3.235 ± 1 $494,356\pm1$ $727,80\pm1,00$ 23.35 Strahl $31.10.12$ $22.12-22.15$ 12388 $ArCO_2$ 90.10 $84,0$ 3.235 ± 1 $494,356\pm1$ $727,80\pm1,00$ 23.35 Strahl $31.10.12$ $22.229-22.22$ 12343 $ArCO_2$ 90.10 $84,0$ 3.235 ± 1 $494,356\pm1$ $727,80\pm1,00$ $23,60$ Strahl $31.10.12$ $22.229-22.22$ 11972 $ArCO_2$ 90.10 $84,0$ 3.255 ± 1 $494,356\pm1$ $727,80\pm1,00$ $23,60$ Strahl $31.10.12$ $22.229-22.25$ 11972 $ArCO_2$ 90.10 $84,0$ 3.255 ± 1 $494,356\pm1$ $727,80\pm1,00$ $23,60$ Strahl $31.10.12$ $22.229-22.25$ 11972 $ArCO_2$ 90.10 $84,0$ 3.255 ± 1 $494,36\pm1$ $727,80\pm1,00$ $23,60$ Strahl $31.10.12$ $22.229-22.23$ 11972 $ArCO_2$ 90.10 $84,0$ 3.226 ± 1 $494,36\pm1$ $727,80\pm1,00$ Strahl $31.10.12$ $22.229-22.23$ 11972 $ArCO_2$ 90.10 $84,0$ 3.236 ± 1 $727,80\pm1,00$ $23,6$ Strahl $31.10.12$ $22.229-22.23$ 11972		Strahl	$30.10.12\ 23:07 - 23:09$	1833	$ArCO_2$ (90:10)	84,0	$3,994\pm1$	$502,575 \pm 1$	$727,80 \pm 1,00$	$22,7019\pm0,1178$
Strahl31.10.1219:1519:1619:17 $ArCO_2$ (90:10)80,0 $4,146\pm1$ $496,577\pm1$ $727,80\pm1,00$ 22.5 Strahl31.10.1222:1022:1111907 $ArCO_2$ (90:10)84,0 $3,255\pm1$ $494,461\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:1222:1922:1922:143 $ArCO_2$ (90:10)84,0 $3,255\pm1$ $494,461\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:1922:2222:2212:143 $ArCO_2$ (90:10) $84,0$ $3,255\pm1$ $494,461\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:2222:2211972 $ArCO_2$ (90:10) $84,0$ $3,255\pm1$ $494,461\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:2222:2311972 $ArCO_2$ (90:10) $84,0$ $3,255\pm1$ $494,461\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:2222:3511972 $ArCO_2$ (90:10) $84,0$ $3,255\pm1$ $494,36\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:3222:3711978 $ArCO_2$ (90:10) $84,0$ $3,255\pm1$ $494,36\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:3711978 $ArCO_2$ (90:10) $84,0$ $3,259\pm1$ $494,36\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:3622:3611978 $ArCO_2$ (90:10) $84,0$ $3,259\pm1$ $494,36\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:36<		Strahl	$30.10.12\ 23:43 - 23:50$	22476	$ArCO_2$ (90:10)	92,8	$4,119\pm1$	$488,\!026\pm1$	$727,80 \pm 1,00$	$23,3903\pm0,1225$
Strahl 31.10.12 22:09 $-22:12$ 11717 ΛrCO_2 $60:10$ $84,0$ $3,295\pm1$ $494,451\pm1$ $72,80\pm1,00$ $23,0$ $23,0$ $31.10.12$ $22:15-22:15$ 1200 $31.00.12$ $22:15-22:22$ 1213 ΛrCO_2 $60:10$ $84,0$ $3,255\pm1$ $494,455\pm1$ $77,80\pm1,00$ $23,0$ Strahl 31.10.12 22:22 22:22 12238 ΛrCO_2 $60:10$ $84,0$ $3,255\pm1$ $494,355\pm1$ $77,80\pm1,00$ $23,0$ Strahl 31.10.12 22:22 22:23 11972 ΛrCO_2 $60:10$ $84,0$ $3,257\pm1$ $494,355\pm1$ $77,80\pm1,00$ $23,0$ $23,0$ $23,0$ $31,0,12$ $22:22-22:22$ $22:33$ $137,012$ $22:47$ $22:30$ $23,0$ $31,0,12$ $22:47$ $22:30$ $23,0$ $32,05\pm1$ $494,30\pm1$ $72,780\pm1,00$ $23,0$ $31,012$ $22:47-22:56$ $12,03$ $12,04,30\pm1$ $72,780\pm1,00$ $23,0$ $32,05\pm1$ $494,50\pm1$ $72,780\pm1,00$		Strahl	$31.10.12 \ 19:15 - 19:17$	5694	$ArCO_2 (90:10)$	80,0	$4,146\pm1$	$496,577 \pm 1$	$727,80 \pm 1,00$	$22,9854\pm0,1197$
Strahl 31.10.12 22:12 $22:15$ 11907 ArCO2 $90:10$ $84,0$ 3.232 ± 11 $494,451\pm1$ $727,80\pm1,00$ $23,0$ Strahl 31.10.12 22:12 $22:12$ 1238 ArCO2 $90:10$ $84,0$ 3.232 ± 11 $494,35\pm1$ $727,80\pm1,00$ $23,0$ Strahl 31.10.12 $22:22$ $22:28$ 11878 ArCO2 $90:10$ $84,0$ 3.255 ± 11 $494,35\pm1$ $727,80\pm1,00$ $23,0$ Strahl 31.10.12 $22:22$ $22:28$ 11972 ArCO2 $90:10$ $84,0$ 3.255 ± 11 $494,35\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:32$		Strahl	$31.10.12\ 22:09 - 22:12$	11717	$ArCO_2$ (90:10)	84,0	$3,295\pm1$	$494,404\pm1$	$727,80 \pm 1,00$	$23,0473\pm0,1201$
Strahl 311.10.12 22:15 $22:22$ 12288 ArCO ₂ $90:10$ $84,0$ $3,255\pm1$ $494,355\pm1$ $77,80\pm1,00$ $23,0$ $23,0$ $23,0$ $23,0$ $23,025\pm1$ $494,365\pm1$ $727,80\pm1,00$ $23,0$ $23,025\pm1$ $494,365\pm1$ $727,80\pm1,00$ $23,02,02,03,02,03$ $31,0.0.12$ $22:22$ $22:22$ 11972 $ArCO_2$ $90:100$ $84,0$ $3,255\pm1$ $494,36\pm1$ $727,80\pm1,00$ $23,02,03,03,03,03,03,03,03,03,03,03,03,03,03,$		Strahl	$31.10.12\ 22:12 - 22:15$	11907	$ArCO_2 (90:10)$	84,0	$3,282\pm1$	$494,538 \pm 1$	$727,80 \pm 1,00$	$23,0404\pm0,1201$
Strahl31.10.1222:19 $-22:22$ 12143ArCO2 $90:10$) $84,0$ $3,259\pm1$ $494,471\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:22 $-22:22$ 11972ArCO2 $90:10$) $84,0$ $3,255\pm1$ $494,342\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:22 $-22:22$ 11972ArCO2 $90:10$) $84,0$ $3,255\pm1$ $494,36\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:22 $-22:23$ 11972ArCO2 $90:10$) $84,0$ $3,255\pm1$ $494,36\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1222:32 $-22:35$ 11918ArCO2 $90:10$) $84,0$ $3,291\pm1$ $494,38\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.12 $22:47-22:50$ 11918ArCO2 $90:10$) $84,0$ $3,291\pm1$ $494,38\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.12 $22:57-22:57-22:30$ 11809ArCO2 $90:10$) $84,0$ $3,291\pm1$ $494,38\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.12 $22:57-22:57-22:30$ 11809ArCO2 $90:10$) $84,0$ $3,30\pm11$ $494,356\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.12 $22:56-22:56-22:0611877ArCO290:10)84,03,30\pm11494,356\pm1727,80\pm1,0023,0Strahl31.10.1222:66-23:085955ArCO290:10)84,03,30\pm11494,356\pm1727,80\pm1,0023,0$		Strahl	$31.10.12\ 22:15-22:19$	12288	$ArCO_2 (90:10)$	84,0	$3,252\pm1$	$494,356 \pm 1$	$727,80 \pm 1,00$	$23,0476\pm0,1201$
Strahl31.10.1222:2222:2512008ArCO290:10)84,0 $3,297\pm1$ 494,365\pm1 $727,80\pm1,00$ 23,0Strahl31.10.1222:2222:2811972ArCO290:10)84,0 $3,255\pm1$ 494,342\pm1 $727,80\pm1,00$ 23,0Strahl31.10.1222:32-22:3511972ArCO290:10)84,0 $3,255\pm1$ 494,342\pm1 $727,80\pm1,00$ 23,0Strahl31.10.1222:33-22:4712031ArCO290:10)84,0 $3,296\pm1$ 494,534\pm1 $727,80\pm1,00$ 23,0Strahl31.10.1222:43-22:5311918ArCO290:10)84,0 $3,296\pm1$ 494,536\pm1727,80\pm1,0023,0Strahl31.10.1222:55-22:5711918ArCO290:10)84,0 $3,306\pm1$ 494,536\pm1727,80\pm1,0023,0Strahl31.10.1222:55-22:5711869ArCO290:10)84,0 $3,306\pm1$ 494,536\pm1727,80\pm1,0023,0Strahl31.10.1222:57-23:0011987ArCO290:10)84,0 $3,306\pm1$ 494,536\pm1727,80\pm1,0023,0Strahl31.10.1222:57-23:0011137ArCO290:10)84,0 $3,306\pm1$ 494,558\pm1727,80\pm1,0023,0Strahl31.10.1223:0623:063,306\pm1494,558\pm1727,80\pm1,0023,03,558±1494,558\pm1727,80\pm1,0023,0Strahl31.10.1223:0623:063,306		Strahl	$31.10.12\ 22:19 - 22:22$	12143	$ArCO_2 (90:10)$	84,0	$3,259\pm1$	$494,471 \pm 1$	$727,80 \pm 1,00$	$23,0425\pm0,1201$
Strahl $31.10.12$ $22:25 - 22:28$ 11888 $ArCO_2$ (90:10) $84,0$ $3,255\pm1$ $494,342\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:28 - 22:35$ 11972 $ArCO_2$ (90:10) $84,0$ $3,255\pm1$ $494,334\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:32 - 22:35$ 11972 $ArCO_2$ (90:10) $84,0$ $3,296\pm1$ $494,33\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:47 - 22:50$ 11918 $ArCO_2$ (90:10) $84,0$ $3,296\pm1$ $494,483\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:47 - 22:50$ 11938 $ArCO_2$ (90:10) $84,0$ $3,330\pm1$ $494,483\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:57 - 22:0$ 11987 $ArCO_2$ (90:10) $84,0$ $3,30\pm1$ $494,33\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:57 - 23:00$ 11987 $ArCO_2$ (90:10) $84,0$ $3,30\pm1$ $494,330\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:57 - 23:00$ 11737 $ArCO_2$ (90:10) $84,0$ $3,30\pm1$ $494,536\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $22:30 - 22:31$ 11887 $ArCO_2$ (90:10) $84,0$ $3,30\pm1$ $494,536\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $23:00 - 22:30$ 11737 $ArCO_2$ (90:10) $84,0$ $3,30\pm1$ $494,556\pm1$ $727,80\pm1,00$ $23,0$ Strahl $31.10.12$ $23:02 - 23:23$ <td< td=""><td></td><td>Strahl</td><td>$31.10.12\ 22:22 - 22:25$</td><td>12008</td><td>$ArCO_2 (90:10)$</td><td>84,0</td><td>$3,297\pm1$</td><td>$494,365 \pm 1$</td><td>$727,80 \pm 1,00$</td><td>$23,0492\pm0,1201$</td></td<>		Strahl	$31.10.12\ 22:22 - 22:25$	12008	$ArCO_2 (90:10)$	84,0	$3,297\pm1$	$494,365 \pm 1$	$727,80 \pm 1,00$	$23,0492\pm0,1201$
Strahl31.10.1222:28 $-22:32$ 11972ArCO2 (90:10) $84,0$ $3,257\pm11$ $494,36\pm11$ $727,80\pm1,00$ $23,023,023,023,023,023,023,023,023,023,0$		Strahl	$31.10.12\ 22:25 - 22:28$	11888	$ArCO_2 (90:10)$	84,0	$3,255\pm1$	$494,342 \pm 1$	$727,80 \pm 1,00$	$23,0483\pm0,1201$
Strahl31.10.1222:32 $-22:35$ 10554 ArCO2 (90:10) $84,0$ $3,257\pm1$ $494,134\pm1$ $727,80\pm1,00$ $23,035$ Strahl31.10.12 $22:47 - 22:50$ 11918ArCO2 (90:10) $84,0$ $3,296\pm1$ $494,534\pm1$ $727,80\pm1,00$ $23,035$ Strahl31.10.12 $22:47 - 22:50$ 11918ArCO2 (90:10) $84,0$ $3,291\pm1$ $494,586\pm1$ $727,80\pm1,00$ $23,035$ Strahl31.10.12 $22:55 - 22:53$ 11883ArCO2 (90:10) $84,0$ $3,300\pm1$ $494,586\pm1$ $727,80\pm1,00$ $23,036$ Strahl31.10.12 $22:55 - 22:00$ 11883ArCO2 (90:10) $84,0$ $3,300\pm1$ $494,330\pm1$ $727,80\pm1,00$ $23,036$ Strahl31.10.12 $22:55 - 22:30$ 11872ArCO2 (90:10) $84,0$ $3,396\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,036$ Strahl31.10.12 $22:0 - 22:30$ 11877ArCO2 (90:10) $84,0$ $3,396\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,036$ Strahl31.10.12 $22:0 - 22:30$ 23:06 11737 ArCO2 (90:10) $84,0$ $3,251\pm1$ $494,205\pm1$ $727,80\pm1,00$ $23,036$ Strahl31.10.12 $23:10 - 23:13$ 11881ArCO2 (90:10) $84,0$ $3,251\pm1$ $494,205\pm1$ $727,80\pm1,00$ $23,036$ Strahl31.10.12 $23:10 - 23:13$ 11881ArCO2 (90:10) $84,0$ $3,251\pm1$ $494,205\pm1$ $727,80\pm1,00$ $23,036$ Strahl31.10.12 $23:13 - 23:15$ 5551 ArCO2		Strahl	$31.10.12\ 22:28 - 22:32$	11972	$ArCO_2$ (90:10)	84,0	$3,281\pm1$	$494,\!206\pm1$	$727,80 \pm 1,00$	$23,0559\pm0,1202$
Strahl31.10.1222:4712031ArCO2(90:10) $84,0$ $3,296\pm11$ $494,544\pm11$ $727,80\pm1,00$ $23,023,023,023,023,023,033,0000Strahl31.10.1222:5722:57-22:5011918ArCO2(90:10)84,03,291\pm11494,586\pm11727,80\pm1,0023,023,023,03,0000,000,00,00,00,00,00,00,00,00,00$		Strahl	$31.10.12\ 22:32 - 22:35$	10554	$ArCO_2 (90:10)$	84,0	$3,257\pm1$	$494, 134 \pm 1$	$727,80 \pm 1,00$	$23,0582\pm0,1202$
Strahl31.10.1222:5711918ArCO2(90:10) $84,0$ $3,291\pm1$ $494,433\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1222:550-22:5311809ArCO2(90:10) $84,0$ $3,316\pm1$ $494,586\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1222:557-22:5711858ArCO2(90:10) $84,0$ $3,316\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1222:57-23:0311852ArCO2(90:10) $84,0$ $3,306\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1223:0023:0323:0611737ArCO2(90:10) $84,0$ $3,396\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1223:0623:0611737ArCO2(90:10) $84,0$ $3,259\pm1$ $494,432\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1223:1023:16 $3,251\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1223:1623:15 5551 $ArCO2$ $90:10$ $84,0$ $3,251\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,025$ Strahl31.10.1223:1623:15 5551 $ArCO2$ $90:10$ $84,0$ $3,251\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,0555$ Strahl31.10.1223:18 $23:222-23:22$ 11733 $ArCO2$ $90:10$ $84,0$ $3,295\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,05555$ Strahl		Strahl	$31.10.12\ 22:43 - 22:47$	12031	$ArCO_2 (90:10)$	84,0	$3,296\pm1$	$494,544 \pm 1$	$727,80 \pm 1,00$	$23,0408\pm0,1201$
Strahl31.10.1222:50-22:5311809ArCO2(90:10) $84,0$ $3,316\pm1$ $494,586\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1222:57-22:5711858ArCO2(90:10) $84,0$ $3,300\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1222:57-23:0311857ArCO2(90:10) $84,0$ $3,300\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1222:00-23:0311857ArCO2(90:10) $84,0$ $3,996\pm1$ $494,530\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:0611737ArCO2(90:10) $84,0$ $3,996\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,056$ Strahl31.10.1223:0623:06(90:10) $84,0$ $3,251\pm1$ $494,302\pm1$ $727,80\pm1,00$ $23,056$ Strahl31.10.1223:1023:16 $84,0$ $3,251\pm1$ $494,305\pm1$ $727,80\pm1,00$ $23,056$ Strahl31.10.1223:1323:1323:13 $23:13$ $23:16$ $23:26,023:13$ $23:16,03,00$ $33,251\pm1$ $494,305\pm1$ $727,80\pm1,00$ $23,066$ Strahl31.10.1223:1323:13 $23:12,022:23:1211733ArCO2,90:1084,03,251\pm1494,505\pm1727,80\pm1,0023,066,03,000Strahl31.10.1223:1323:12,022:22:22:22:22:22:22:22:22:22:22:22:22:$		Strahl	$31.10.12\ 22:47 - 22:50$	11918	$ArCO_2 (90:10)$	84,0	$3,291 \pm 1$	$494,483 \pm 1$	727,80 \pm 1,00	$23,0434\pm0,1201$
Strahl31.10.1222:53 $-22:57$ 11858ArCO2 (90:10)84,03,300±1494,390±1727,80±1,0023,0Strahl31.10.1222:57 $-23:00$ 11987ArCO2 (90:10)84,03,308±1494,530±1727,80±1,0023,0Strahl31.10.1222:57 $-23:00$ 11987ArCO2 (90:10)84,03,396±1494,530±1727,80±1,0023,0Strahl31.10.1223:00 $-23:03$ 11737ArCO2 (90:10)84,03,996±1494,4302±1727,80±1,0023,0Strahl31.10.1223:06 $-23:08$ 5955ArCO2 (90:10)84,03,296±1494,198±1727,80±1,0023,0Strahl31.10.1223:10 $-23:13$ 11881ArCO2 (90:10)84,03,251±1494,198±1727,80±1,0023,0Strahl31.10.1223:10 $-23:13$ 11881ArCO2 (90:10)84,03,251±1494,205±1727,80±1,0023,0Strahl31.10.1223:13 $-23:15$ 5551ArCO2 (90:10)84,03,20±1494,505±1727,80±1,0023,0Strahl31.10.1223:18±2 $-23:22$ $-23:25$ -11733 ArCO2 (90:10)84,03,995±1494,409±1727,80±1,0023,0Strahl31.10.12 $23:12$ $-23:22$ -11777 -1702 $90:10$ 84,03,995±1494,409±1727,80±1,0023,0Strahl31.10.12 $23:22-23:22$ -11777 -1002		Strahl	$31.10.12\ 22:50 - 22:53$	11809	$ArCO_2 (90:10)$	84,0	$3,316\pm1$	$494,586 \pm 1$	$727,80 \pm 1,00$	$23,0397\pm0,1201$
Strahl31.10.1222:57 $-23:00$ 11987ArCO2 $(90:10)$ $84,0$ $3,308\pm11$ $494,530\pm11$ $727,80\pm1,00$ $23,02$ Strahl31.10.12 $23:00-23:03$ 11852ArCO2 $(90:10)$ $84,0$ $3,996\pm11$ $494,530\pm11$ $727,80\pm1,00$ $23,03,03$ Strahl31.10.12 $23:00-23:03$ 11737ArCO2 $(90:10)$ $84,0$ $3,996\pm11$ $494,530\pm11$ $727,80\pm1,00$ $23,03,03,03,03,03,03,03,03,03,03,03,03,03$		Strahl	$31.10.12\ 22.53 - 22.57$	11858	$ArCO_2 (90:10)$	84,0	$3,300\pm1$	$494,390 \pm 1$	$727,80 \pm 1,00$	$23,0482\pm0,1201$
Strahl31.10.1223:0023:0311852ArCO2(90:10) $84,0$ $3,897\pm1$ $494,258\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:0323:0611737ArCO2(90:10) $84,0$ $3,996\pm1$ $494,302\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:0623:085955ArCO2(90:10) $84,0$ $3,289\pm1$ $494,198\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:1023:11ArCO2(90:10) $84,0$ $3,251\pm1$ $494,198\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:1323:155551ArCO2(90:10) $84,0$ $3,251\pm1$ $494,205\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:1323:155551ArCO2(90:10) $84,0$ $3,220\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:1823:2223:2223:22 $23:22-23:25$ 11733 ArCO2 $90:10$ $84,0$ $3,995\pm1$ $494,409\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:2523:2523:25 $23:25-23:25$ 11777 $ArCO2,90:10$ $84,0$ $3,995\pm1$ $494,409\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:2523:25 $23:25-23:25$ $23:25-23:25-23:28$ 11777 $ArCO2,90:10$ $84,0$ $3,318\pm1$ $494,595\pm1$ $727,80\pm1,00$ $23,0$ Strahl31.10.1223:25-23:28 11777 $ArCO2,90:10$ 84		Strahl	$31.10.12\ 22:57-23:00$	11987	$ArCO_2$ (90:10)	84,0	$3,308\pm1$	$494,530\pm1$	$727,80 \pm 1,00$	$23,0420\pm0,1201$
Strahl31.10.1223:03-23:0611737ArCO2(90:10) $84,0$ $3,996\pm1$ $494,302\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:0623:085955ArCO2(90:10) $84,0$ $3,289\pm1$ $494,198\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:1023:1311881ArCO2(90:10) $84,0$ $3,251\pm1$ $494,198\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:1323:155551ArCO2(90:10) $84,0$ $3,220\pm1$ $494,205\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:1323:1323:1323:1323:12 $23:13-23:12$ 11733 ArCO2 $90:10)$ $84,0$ $3,290\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:13-23:1211733ArCO2 $90:10)$ $84,0$ $3,995\pm1$ $494,505\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:22-23:2511846ArCO2 $90:10)$ $84,0$ $3,995\pm1$ $494,409\pm1$ $727,80\pm1,00$ $23,05$ Strahl31.10.1223:25-23:2811777ArCO2 $90:10)$ $84,0$ $3,318\pm1$ $494,595\pm1$ $727,80\pm1,00$ $23,03,03,03,03,00$ Strahl31.10.1223:25-23:2811777ArCO2 $90:10)$ $84,0$ $3,318\pm1$ $494,595\pm1$ $727,80\pm1,00$ $23,03,03,03,03,00,00$		Strahl	$31.10.12\ 23:00 - 23:03$	11852	$ArCO_2$ (90:10)	84,0	$3,897\pm1$	$494,258 \pm 1$	$727,80 \pm 1,00$	$23,0825\pm0,1204$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Strahl	$31.10.12\ 23.03 - 23.06$	11737	$ArCO_2$ (90:10)	84,0	$3,996\pm1$	$494,302 \pm 1$	$727,80 \pm 1,00$	$23,0851\pm0,1204$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Strahl	$31.10.12\ 23:06 - 23:08$	5955	$ArCO_2$ (90:10)	84,0	$3,289\pm1$	$494,198 \pm 1$	$727,80 \pm 1,00$	$23,0567\pm0,1202$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Strahl	$31.10.12\ 23:10-23:13$	11881	$ArCO_2$ (90:10)	84,0	$3,251\pm1$	$494,205\pm1$	$727,80 \pm 1,00$	$23,0546\pm0,1202$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Strahl	$31.10.12\ 23:13 - 23:15$	5551	$ArCO_2$ (90:10)	84,0	$3,320\pm1$	$494,\!267\pm1$	$727,80 \pm 1,00$	$23,0549\pm0,1202$
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		Strahl	$31.10.12\ 23:18-23:22$	11733	$ArCO_2 (90:10)$	84,0	$3,289\pm1$	$494,515 \pm 1$	$727,80 \pm 1,00$	$23,0418\pm0,1201$
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $		Strahl	$31.10.12\ 23:22 - 23:25$	11846	$ArCO_2 (90:10)$	84,0	$3,995\pm1$	$494,409 \pm 1$	$727,80 \pm 1,00$	$23,0800\pm0,1204$
		Strahl	$31.10.12\ 23:25-23:28$	11777	$ArCO_2 (90:10)$	84,0	$3,318\pm1$	$494,595 \pm 1$	$727,80 \pm 1,00$	$23,0394\pm0,1201$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	[mm/ms]
4378	Strahl	$31.10.12\ 23:28 - 23:31$	11757	$ArCO_2 (90:10)$	84,0	$3,307\pm1$	$494,495\pm1$	$727,80 \pm 1,00$	$23,0436\pm0,1201$
4379	Strahl	$31.10.12\ 23:31 - 23:32$	2730	$ArCO_2$ (90:10)	84,0	$3,279\pm1$	$494,311 \pm 1$	$727,80 \pm 1,00$	$23,0509\pm0,1202$
4384	Strahl	$01.11.12\ 21.36 - 21.37$	5321	$ArCO_2$ (90:10)	84,0	$4,026\pm1$	$485,797\pm1$	$727,80 \pm 1,00$	$23,4941\pm0,1232$
4387	Strahl	$01.11.12\ 21:47 - 21:58$	11615	$ArCO_2$ (90:10)	84,0	$3,971\pm1$	$486,397\pm1$	$727,80 \pm 1,00$	$23,4621\pm0,1230$
4388	Strahl	$01.11.12\ 21.58 - 22.00$	5728	$ArCO_2$ (90:10)	84,0	$4,011 \pm 1$	$486,\!229\pm1$	$727,80 \pm 1,00$	$23,4723\pm0,1230$
4389	Strahl	$01.11.12\ 22:03 - 22:06$	11675	$ArCO_2$ (90:10)	84,0	$3,996\pm1$	$486,\!401\pm1$	$727,80 \pm 1,00$	$23,4631\pm0,1230$
4390	Strahl	$01.11.12\ 22:06-22:09$	11642	$ArCO_2$ (90:10)	84,0	$4,009\pm1$	$486,332\pm1$	$727,80 \pm 1,00$	$23,4671\pm0,1230$
4391	Strahl	$01.11.12\ 22:09 - 22:11$	9494	$ArCO_2$ (90:10)	84,0	$3,967\pm1$	$486,383\pm1$	$727,80 \pm 1,00$	$23,4626\pm0,1230$
4392	Strahl	$01.11.12 \ 22.12 - 22.15$	11776	$ArCO_2$ (90:10)	84,0	$3,973\pm1$	$486,062\pm1$	$727,80 \pm 1,00$	$23,4785\pm0,1231$
4393	Strahl	$01.11.12\ 22:15 - 22:19$	12810	$ArCO_2$ (90:10)	84,0	$3,995\pm1$	$486,071 \pm 1$	$727,80 \pm 1,00$	$23,4792\pm0,1231$
4394	Strahl	01.11.1222:19 - 22:20	3633	$ArCO_2$ (90:10)	84,0	$3,911 \pm 1$	$486,189\pm1$	$727,80 \pm 1,00$	$23,4694\pm0,1230$
4395	Strahl	$01.11.12\ 22:21-22:24$	11744	$ArCO_2$ (90:10)	84,0	$3,959\pm1$	$486,\!257\pm1$	$727,80 \pm 1,00$	$23,4683\pm0,1230$
4396	Strahl	$01.11.12\ 22.24 - 22.27$	11680	$ArCO_2$ (90:10)	84,0	$4,019\pm1$	$486,\!250\pm1$	$727,80 \pm 1,00$	$23,4716\pm0,1230$
4397	Strahl	01.11.1222:27 - 22:28	1889	$ArCO_2$ (90:10)	84,0	$3,872\pm1$	$485,926\pm1$	$727,80 \pm 1,00$	$23,4802\pm0,1231$
4399	Strahl	$01.11.12\ 22:39 - 23:17$	164493	$ArCO_2$ (90:10)	84,0	$5,216\pm1$	$487,\!228\pm1$	$727,80 \pm 1,00$	$23,4823\pm0,1231$
4400	Strahl	$01.11.12\ 23:17 - 23:56$	164386	$ArCO_2$ (90:10)	84,0	$5,197\pm1$	$487,788\pm1$	$727,80 \pm 1,00$	$23,4541\pm0,1229$
4414	kosm. Str.	02.11.12 11:44 - 12:06	145172	$ArCO_2$ (90:10)	84,0	$4,956\pm1$	$491,915\pm1$	$727,80 \pm 1,00$	$23,2437\pm0,1215$
4415	kosm. Str.	$02.11.12 \ 12:06 - 12:27$	137993	$ArCO_2$ (90:10)	84,0	$4,940 \pm 1$	$491,609 \pm 1$	$727,80 \pm 1,00$	$23,2576\pm0,1216$
4416	kosm. Str.	$02.11.12 \ 12:27 - 12:49$	144840	$ArCO_2$ (90:10)	84,0	$4,869\pm1$	$491,\!886\pm1$	$727,80 \pm 1,00$	$23,2410\pm0,1215$
4418	kosm. Str.	$02.11.12 \ 13:22 - 13:25$	19728	$ArCO_2$ (90:10)	84,0	$5,023\pm1$	$491,960\pm1$	$727,80 \pm 1,00$	$23,2448\pm0,1215$
4419	kosm. Str.	$02.11.12 \ 13:29 - 13:51$	142925	$ArCO_2$ (90:10)	84,0	$4,899\pm1$	$492,935\pm1$	$727,80 \pm 1,00$	$23,1924\pm0,1211$
4421	kosm. Str.	$02.11.12 \ 13.53 - 14.13$	135439	$ArCO_2$ (90:10)	84,0	$4,956\pm1$	$492,\!610\pm1$	$727,80 \pm 1,00$	$23,2106\pm0,1213$
4422	kosm. Str.	$02.11.12 \ 14:13 - 14:16$	18498	$ArCO_2$ (90:10)	83,9	$5,077\pm1$	$493,364\pm1$	$727,80 \pm 1,00$	$23,1805\pm0,1210$
4423	kosm. Str.	$02.11.12 \ 14.17 - 14.38$	139392	$ArCO_2$ (90:10)	84,0	$4,945\pm1$	$491,655\pm1$	$727,80 \pm 1,00$	$23,2556\pm0,1216$
4424	kosm. Str.	$02.11.12 \ 16:17 - 16:31$	96021	$ArCO_2$ (90:10)	84,0	$5,055\pm1$	$490,983\pm1$	$727,80 \pm 1,00$	$23,2930\pm0,1218$
4425	kosm. Str.	$02.11.12 \ 16:40 - 16:48$	53622	$ArCO_2$ (90:10)	84,0	$5,026\pm1$	$491,004\pm1$	$727,80 \pm 1,00$	$23,2907\pm0,1218$
4426	kosm. Str.	$02.11.12 \ 16:50 - 17:15$	176481	$ArCO_2$ (90:10)	84,0	$4,809\pm1$	$490,590\pm1$	$727,80 \pm 1,00$	$23,3001\pm0,1219$
4427	kosm. Str.	$02.11.12 \ 17:15 - 17:23$	50394	$ArCO_2 (90:10)$	84,0	$4,967\pm1$	$491,\!405\pm1$	$727,80 \pm 1,00$	$23,2686\pm0,1216$
4428	kosm. Str.	$02.11.12 \ 17:24 - 17:50$	175464	$ArCO_2 (90:10)$	84,0	$4,404 \pm 1$	$489,875\pm1$	$727,80 \pm 1,00$	$23,3150\pm0,1220$
4429	kosm. Str.	$02.11.12 \ 17:50 - 18:05$	106930	$ArCO_2$ (90:10)	83,9	$4,861\pm1$	$490,267\pm1$	$727,80 \pm 1,00$	$23,3181\pm0,1220$
4430	kosm. Str.	$02.11.12 \ 18:18 - 18:44$	176521	$ArCO_2$ (90:10)	84,0	$5,017\pm1$	$489,872\pm1$	$727,80 \pm 1,00$	$23,3446\pm 0,1222$
4431	kosm. Str.	$02.11.12 \ 18:45 - 19:10$	177658	$ArCO_2$ (90:10)	84,0	$4,876\pm1$	$489,\!437\pm1$	$727,80 \pm 1,00$	$23,3588\pm0,1223$
4432	kosm. Str.	$02.11.12 \ 19:10 - 19:35$	177909	$ArCO_2$ (90:10)	84,0	$4,123\pm1$	$488,843\pm1$	$727,80 \pm 1,00$	$23,3511\pm0,1222$
4433	kosm. Str.	$02.11.12 \ 19:35 - 19:52$	115100	$ArCO_2$ (90:10)	84,0	$4,858\pm1$	$489,006\pm1$	$727,80 \pm 1,00$	$23,3787\pm0,1224$
4434	kosm. Str.	$02.11.12 \ 19:56 - 20:21$	176204	$ArCO_2$ (90:10)	84,0	$4,824\pm1$	$493,326\pm1$	$727,80 \pm 1,00$	$23,1703\pm0,1210$
4435	kosm. Str.	$02.11.12 \ 20:21 - 20:46$	174669	$ArCO_2$ (90:10)	84,0	$4,959\pm1$	$493,\!428\pm1$	$727,80 \pm 1,00$	$23,1719\pm0,1210$
4436	kosm. Str.	$02.11.12 \ 20.52 - 21.17$	177334	$ArCO_2$ (90:10)	84,0	$4,879\pm1$	$493,197\pm1$	$727,80 \pm 1,00$	$23,1790\pm0,1210$
4437	kosm. Str.	$02.11.12\ 21:17 - 21:42$	175672	$ArCO_2 (90:10)$	84,0	$4,973 \pm 1$	$492,881\pm1$	$727,80 \pm 1,00$	$23,1985\pm 0,1212$
4438	kosm. Str.	$02.11.12\ 21:43 - 22:09$	176736	$ArCO_2$ (90:10)	84,0	$4,905\pm1$	$493,\!217\pm1$	$727,80 \pm 1,00$	$23,1793\pm0,1210$
4439	kosm. Str.	$02.11.12\ 22:10 - 22:20$	69976	$ArCO_2 (90:10)$	84,0	$4,812\pm1$	$492,669\pm1$	$727,80 \pm 1,00$	$23,2010\pm0,1212$
4440	kosm. Str.	$02.11.12 \ 22:23 - 22:38$	107122	$ArCO_2$ (90:10)	84,0	$4,932\pm1$	$492,\!862\pm1$	$727,80 \pm 1,00$	$23,1975\pm0,1212$

Run-			Anzahl		Driftfeld	Kante	Kante	Driftlänge	Driftgeschwindigkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	[stt/mm]
4442	Strahl	$02.11.12\ 22.58 - 22.59$	1900	$ArCO_2 (90:10)$	84,0	$4,009\pm1$	$493,606\pm1$	$727,80 \pm 1,00$	$23,1185 \pm 0,1206$
4443	Strahl	$02.11.12 \ 23.05 - 23.08$	13001	$ArCO_2$ (90:10)	84,0	$3,847\pm1$	$493,\!812\pm1$	$727,80 \pm 1,00$	$23,1011\pm0,1205$
4444	Strahl	$02.11.12\ 23.08 - 23.11$	11751	$ArCO_2$ (90:10)	84,0	$3,861\pm1$	$493,\!847\pm1$	$727,80 \pm 1,00$	$23,1001\pm0,1205$
4445	Strahl	$02.11.12 \ 23:11 - 23:14$	12178	$ArCO_2$ (90:10)	84,0	$3,998\pm1$	$493,705\pm1$	$727,80 \pm 1,00$	$23,1133\pm0,1206$
4446	Strahl	$02.11.12 \ 23.14 - 23.17$	11631	$ArCO_2$ (90:10)	84,0	$3,833\pm1$	$493,838\pm1$	$727,80 \pm 1,00$	$23,0992\pm0,1205$
4447	Strahl	$02.11.12\ 23:17 - 23:20$	11575	$ArCO_2$ (90:10)	84,0	$4,000\pm1$	$493,795\pm1$	$727,80 \pm 1,00$	$23,1091\pm0,1206$
4448	Strahl	$02.11.12 \ 23:20 - 23:23$	11056	$ArCO_2$ (90:10)	84,0	$3,847 \pm 1$	$493,\!870\pm1$	$727,80 \pm 1,00$	$23,0984\pm0,1205$
4449	Strahl	$02.11.12 \ 23:23 - 23:26$	11237	$ArCO_2$ (90:10)	84,0	$3,997\pm1$	$493,908\pm1$	$727,80 \pm 1,00$	$23,1037\pm0,1205$
4450	Strahl	$02.11.12 \ 23:26 - 23:28$	10009	$ArCO_2$ (90:10)	84,0	$3,996\pm1$	$493,769\pm1$	$727,80 \pm 1,00$	$23,1102\pm0,1206$
4451	Strahl	$02.11.12\ 23:33 - 23:37$	12685	$ArCO_2$ (90:10)	84,0	$4,004 \pm 1$	$493,952\pm1$	$727,80 \pm 1,00$	$23,1019\pm0,1205$
4452	Strahl	$02.11.12 \ 23:37 - 23:39$	11144	$ArCO_2$ (90:10)	84,0	$4,097\pm1$	$493,969\pm1$	$727,80 \pm 1,00$	$23,1055\pm0,1205$
4453	Strahl	$02.11.12 \ 23:39 - 23:42$	12202	$ArCO_2$ (90:10)	84,0	$3,798\pm1$	$493,898\pm1$	$727,80 \pm 1,00$	$23,0947\pm0,1205$
4454	Strahl	$02.11.12 \ 23.42 - 23.45$	11277	$ArCO_2$ (90:10)	84,0	$3,780\pm1$	$494,007\pm1$	$727,80 \pm 1,00$	$23,0888\pm0,1204$
4455	Strahl	$02.11.12 \ 23:45 - 23:48$	12362	$ArCO_2$ (90:10)	84,0	$3,992\pm1$	$494,097\pm1$	$727,80 \pm 1,00$	$23,0946\pm0,1205$
4456	Strahl	$02.11.12\ 23:48 - 23:48$	218	$ArCO_2$ (90:10)	84,0	$3,671 \pm 1$	$493,756\pm1$	$727,80 \pm 1,00$	$23,0955\pm0,1205$
4458	Strahl	$03.11.12 \ 02.05 - 02.08$	12101	$ArCO_2 (90:10)$	84,0	$3,995\pm1$	$492,\!473\pm1$	$727,80 \pm 1,00$	$23,1715\pm0,1210$
4459	Strahl	$03.11.12 \ 02:08 - 02:10$	7750	$ArCO_2$ (90:10)	84,0	$3,880\pm1$	$492,\!495\pm1$	$727,80 \pm 1,00$	$23,1650\pm 0,1209$
4460	Strahl	$03.11.12 \ 02:12 - 02:16$	12866	$ArCO_2 (90:10)$	84,0	$3,992\pm1$	$492,\!466\pm1$	$727,80 \pm 1,00$	$23,1717\pm0,1210$
4461	Strahl	$03.11.12 \ 02:16 - 02:19$	12310	$ArCO_2 (90:10)$	84,0	$3,810\pm1$	$492,692\pm1$	$727,80 \pm 1,00$	$23,1523\pm0,1209$
4462	Strahl	$03.11.12 \ 02.19 - 02.22$	11682	$ArCO_2 (90:10)$	84,0	$3,881 \pm 1$	$492,549 \pm 1$	$727,80 \pm 1,00$	$23,1624\pm0,1209$
4463	Strahl	$03.11.12 \ 02:22 - 02:25$	11653	$ArCO_2$ (90:10)	84,0	$3,998\pm1$	$492,\!633\pm1$	$727,80 \pm 1,00$	$23,1640\pm0,1209$
4465	Strahl	$03.11.12 \ 02:26 - 02:31$	11750	$ArCO_2$ (90:10)	84,0	$3,838\pm1$	$492,\!282\pm1$	$727,80 \pm 1,00$	$23,1731\pm0,1210$
4466	Strahl	$03.11.12 \ 02:31 - 02:33$	11471	$ArCO_2 (90:10)$	84,0	$3,844 \pm 1$	$492,\!263\pm1$	$727,80 \pm 1,00$	$23,1742\pm0,1210$
4467	Strahl	$03.11.12 \ 02:33 - 02:36$	11589	$ArCO_2 (90:10)$	84,0	$3,889\pm1$	$492,\!259\pm1$	$727,80 \pm 1,00$	$23,1766\pm0,1210$
4469	Strahl	$03.11.12 \ 02:41 - 02:45$	12956	$ArCO_2 (90:10)$	84,0	$3,904\pm1$	$491,889\pm1$	$727,80 \pm 1,00$	$23,1949\pm0,1211$
4470	Strahl	$03.11.12 \ 02:45 - 02:48$	11671	$ArCO_2 (90:10)$	84,0	$3,993\pm1$	$492,022\pm1$	$727,80 \pm 1,00$	$23,1928\pm0,1211$
4472	Strahl	03.11.12 $02:51 - 02:54$	11560	$ArCO_2 (90:10)$	84,0	$3,856 \pm 1$	$491,903\pm1$	$727,80 \pm 1,00$	$23,1919\pm0,1211$
4473	Strahl	03.11.12 $02.54 - 02.57$	11627	$ArCO_2 (90:10)$	84,0	$3,994\pm1$	$491,989\pm1$	$727,80 \pm 1,00$	$23,1944\pm 0,1211$
4475	Strahl	03.11.12 $02:59 - 03:03$	12941	$ArCO_2 (90:10)$	84,0	$3,986\pm1$	$491,401 \pm 1$	$727,80 \pm 1,00$	$23,2220\pm0,1213$
4476	Strahl	$03.11.12 \ 03.03 - 03.06$	12456	$ArCO_2 (90:10)$	84,0	$3,993\pm1$	$491,389\pm1$	$727,80 \pm 1,00$	$23,2229\pm0,1213$
4477	Strahl	$03.11.12 \ 03.06 - 03.09$	11588	$ArCO_2 (90:10)$	84,0	$3,883\pm1$	$491,421 \pm 1$	$727,80 \pm 1,00$	$23,2161\pm0,1213$
4478	Strahl	$03.11.12 \ 03.09 - 03.13$	13385	$ArCO_2 (90:10)$	84,0	$3,853\pm1$	$491,\!412\pm1$	$727,80 \pm 1,00$	$23,2151\pm0,1213$
4479	Strahl	$03.11.12 \ 03.13 - 03.16$	12742	$ArCO_2 (90:10)$	84,0	$3,977\pm1$	$491,\!421\pm1$	$727,80 \pm 1,00$	$23,2206\pm0,1213$
4481	Strahl	$03.11.12 \ 03.23 - 03.25$	11507	$ArCO_2 (90:10)$	84,0	$3,820\pm1$	$491,003\pm1$	$727,80 \pm 1,00$	$23,2330\pm0,1214$
4482	Strahl	$03.11.12 \ 03.25 - 03.25$	1211	$ArCO_2 (90:10)$	84,0	$3,749\pm1$	$491,064 \pm 1$	$727,80 \pm 1,00$	$23,2268\pm0,1214$
4484	Strahl	$03.11.12 \ 03.31 - 03.35$	13494	$ArCO_2 (90:10)$	84,0	$3,784\pm1$	$491,094\pm1$	$727,80 \pm 1,00$	$23,2270\pm0,1214$
4485	Strahl	$03.11.12 \ 03.35 - 03.38$	12353	$ArCO_2 (90:10)$	84,0	$3,806\pm1$	$491,025\pm1$	$727,80 \pm 1,00$	$23,2314\pm0,1214$
4487	Strahl	$03.11.12 \ 03.41 - 03.42$	135	$ArCO_2 (90:10)$	84,0	$4,034\pm1$	$491,393\pm1$	$727,80 \pm 1,00$	$23,2247\pm0,1213$
4488	Strahl	$03.11.12 \ 03.42 - 03.45$	11711	$ArCO_2$ (90:10)	84,0	$4,000\pm1$	$491,108 \pm 1$	$727,80 \pm 1,00$	$23,2366\pm0,1214$
4490	Strahl	$03.11.12 \ 03.49 - 03.52$	11653	$ArCO_2 (90:10)$	84,0	$3,851 \pm 1$	$490,397\pm1$	$727,80 \pm 1,00$	$23,2635\pm0,1216$
4491	Strahl	$03.11.12 \ 03.52 - 03.55$	11773	$ArCO_2 (90:10)$	84,0	$3,814 \pm 1$	$490,461 \pm 1$	$727,80 \pm 1,00$	$23,2586\pm0,1216$

Run-	_		Anzahl		Driftfeld	Kante	Kante	Driftlänge	Drift geschwindi gkeit
Nummer	Runtyp	Datum und Uhrzeit	Ereignisse	Gasgemisch	$[\% E_{max}^{drift}]$	GEM-Folie	Kathode	[mm]	$[mm/\mu s]$
4492	Strahl	$03.11.12 \ 03.55 - 03.58$	11595	$ArCO_2 (90:10)$	84,0	$3,821 \pm 1$	$490,385\pm1$	$727,80\pm 1,00$	$23,2626\pm0,1216$
4493	Strahl	$03.11.12 \ 03.58 - 04:00$	11078	$ArCO_2$ (90:10)	84,0	$3,858\pm1$	$490,369\pm1$	$727,80 \pm 1,00$	$23,2651\pm0,1216$
4494	Strahl	$03.11.12 \ 04:04 - 04:04$	2436	$ArCO_2$ (90:10)	84,0	$3,916\pm1$	$491,\!212\pm1$	$727,80 \pm 1,00$	$23,2277\pm0,1214$
4495	Strahl	$03.11.12 \ 04:04 - 04:10$	11966	$ArCO_{2}$ (90:10)	84,0	$3,997\pm1$	$491,118\pm1$	$727,80 \pm 1,00$	$23,2360\pm 0,1214$
4497	Strahl	$03.11.12 \ 04:13 - 04:15$	10762	$ArCO_2$ (90:10)	84,0	$3,993\pm1$	$491,077 \pm 1$	$727,80 \pm 1,00$	$23,2378\pm0,1214$
4498	Strahl	$03.11.12 \ 04.17 - 04.17$	68	$ArCO_2$ (90:10)	84,0	$3,863\pm1$	$491,544 \pm 1$	$727,80 \pm 1,00$	$23,2093\pm0,1212$
4500	Strahl	$03.11.12 \ 04.25 - 04.28$	12263	$ArCO_2$ (90:10)	84,0	$3,853\pm1$	$491,083\pm1$	$727,80 \pm 1,00$	$23,2308\pm0,1214$
4503	Strahl	$03.11.12 \ 04:35 - 04:37$	11848	$ArCO_{2}$ (90:10)	84,0	$3,823\pm1$	$491,\!269\pm1$	$727,80 \pm 1,00$	$23,2205\pm0,1213$
4504	Strahl	$03.11.12 \ 04:37 - 04:41$	14381	$ArCO_{2}$ (90:10)	84,0	$3,829\pm1$	$491,093\pm1$	$727,80 \pm 1,00$	$23,2292\pm0,1214$
4505	Strahl	$03.11.12 \ 04:41 - 04:42$	3153	$ArCO_2$ (90:10)	84,0	$4,004 \pm 1$	$490,884 \pm 1$	$727,80 \pm 1,00$	$23,2475\pm0,1215$
4506	Strahl	$03.11.12 \ 04:45 - 04:45$	2137	$ArCO_2$ (90:10)	84,0	$3,874\pm1$	$490,886\pm1$	$727,80 \pm 1,00$	$23,2412\pm0,1215$
4507	Strahl	03.11.12 $17:21 - 17:33$	11372	$ArCO_{2}$ (90:10)	84,0	$4,011 \pm 1$	$490,595\pm1$	$727,80 \pm 1,00$	$23,2616\pm0,1216$
4509	Strahl	$03.11.12 \ 19:15 - 19:24$	43372	$ArCO_2$ (90:10)	84,0	$4,691 \pm 1$	$491,885\pm1$	$727,80 \pm 1,00$	$23,2325\pm0,1214$
4510	Strahl	$03.11.12 \ 19:25 - 19:26$	8026	$ArCO_2$ (90:10)	84,0	$4,925\pm1$	$492,\!296\pm1$	$727,80 \pm 1,00$	$23,2241\pm0,1213$
4512	Strahl	$03.11.12 \ 19:27 - 19:33$	10993	$ArCO_2$ (90:10)	84,0	$3,867\pm1$	$491,559\pm1$	$727,80 \pm 1,00$	$23,2088\pm0,1212$
4513	Strahl	$03.11.12 \ 19:33 - 19:34$	2082	$ArCO_2 (90:10)$	84,0	$3,834\pm1$	$491,503\pm1$	$727,80 \pm 1,00$	$23,2099\pm0,1212$
4514	Strahl	$03.11.12 \ 19:34 - 19:40$	10321	$ArCO_2 (90:10)$	84,0	$3,992 \pm 1$	$491,\!436\pm1$	$727,80 \pm 1,00$	$23,2206\pm0,1213$
4515	Strahl	$03.11.12 \ 19:40 - 19:44$	9755	$ArCO_2$ (90:10)	84,0	$3,879\pm1$	$491,202\pm1$	$727,80 \pm 1,00$	$23,2263\pm0,1214$
4516	Strahl	$03.11.12 \ 19:44 - 19:47$	8046	$ArCO_2$ (90:10)	84,0	$3,989\pm1$	$491,364 \pm 1$	$727,80 \pm 1,00$	$23,2239\pm0,1213$
4517	Strahl	$03.11.12 \ 20:03 - 20:04$	1207	$ArCO_2$ (90:10)	84,0	$3,998\pm1$	$491,333\pm1$	$727,80 \pm 1,00$	$23,2258\pm0,1214$
4521	Strahl	$03.11.12\ 21:15 - 21:33$	16542	$ArCO_2$ (90:10)	81,2	$4,097 \pm 1$	$492,\!498\pm1$	$727,80 \pm 1,00$	$23,1751\pm0,1210$
4522	Strahl	$03.11.12\ 21:38 - 21:59$	20767	$ArCO_2$ (90:10)	84,0	$3,963\pm1$	$491,958\pm1$	$727,80 \pm 1,00$	$23,1944\pm0,1211$
4559	Strahl	$09.11.12 \ 11:56 - 12:05$	36135	$ArCO_2$ (90:10)	84,0	$3,946\pm1$	$502,719\pm1$	$727,80 \pm 1,00$	$22,6932\pm0,1177$
4562	Strahl	$09.11.12 \ 12:47 - 12:49$	7480	$ArCO_2$ (90:10)	84,0	$3,631\pm1$	$503,145\pm1$	$727,80 \pm 1,00$	$22,6595\pm0,1175$
4563	Strahl	$09.11.12 \ 12.54 - 13.00$	17741	$ArCO_2$ (90:10)	92,9	$3,815\pm1$	$503,301\pm1$	$727,80 \pm 1,00$	$22,6608\pm0,1175$
4568	kosm. Str.	$10.11.12 \ 11:31 - 12:37$	221878	$ArCO_2$ (90:10)	83,9	$4,958\pm1$	$504,500\pm 1$	$727,80 \pm 1,00$	$22,6582\pm0,1175$
4570	kosm. Str.	$10.11.12 \ 14:13 - 14:38$	84131	$ArCO_2$ (90:10)	83,9	$4,971 \pm 1$	$503,382\pm1$	$727,80 \pm 1,00$	$22,7097\pm0,1179$
4572	Strahl	10.11.12 $15:31 - 15:43$	53275	$ArCO_2 (90:10)$	84,0	$3,757\pm1$	$502,373\pm1$	$727,80 \pm 1,00$	$22,7003\pm0,1178$
4573	Strahl	$10.11.12 \ 15:43 - 15:45$	6075	$ArCO_2 (90:10)$	84,0	$3,845\pm1$	$501,759\pm 1$	$727,80 \pm 1,00$	$22,7323\pm0,1180$
4574	Strahl	10.11.12 $15:50 - 15:51$	3351	$ArCO_2$ (90:10)	84,0	$3,862\pm1$	$502,397\pm1$	$727,80 \pm 1,00$	$22,7040\pm0,1178$
4576	Strahl	$10.11.12 \ 16:02 - 16:15$	58036	$ArCO_2 (90:10)$	84,0	$3,730\pm1$	$502,845\pm1$	$727,80\pm 1,00$	$22,6776\pm0,1176$
4577	Strahl	$10.11.12 \ 16:17 - 16:21$	17843	$ArCO_2 (90:10)$	84,0	$3,044\pm1$	$501,857\pm1$	$727,80 \pm 1,00$	$22,6913\pm0,1177$
4578	Strahl	$10.11.12 \ 16:21 - 16:26$	22449	$ArCO_2 (90:10)$	84,0	$2,753\pm1$	$502,467\pm1$	$727,80 \pm 1,00$	$22,6504\pm0,1175$
4579	Strahl	$10.11.12 \ 16:26 - 16:31$	22133	$ArCO_2$ (90:10)	84,0	$2,715\pm1$	$502,325\pm1$	$727,80 \pm 1,00$	$22,6551\pm0,1175$
4580	Strahl	$10.11.12 \ 16:31 - 16:34$	13114	$ArCO_2$ (90:10)	84,0	$2,768\pm1$	$502,403\pm1$	$727,80 \pm 1,00$	$22,6540\pm0,1175$
4582	Strahl	$10.11.12 \ 16:43 - 16:46$	14504	$ArCO_2 (90:10)$	84,0	$3,426\pm1$	$502,961\pm1$	$727,80 \pm 1,00$	$22,6586\pm0,1175$
4583	Strahl	$10.11.12 \ 16:52 - 17:07$	64928	$ArCO_2 (90:10)$	84,0	$3,701 \pm 1$	$502, 311 \pm 1$	$727,80\pm 1,00$	$22,7006\pm0,1178$
4584	Strahl	$10.11.12 \ 17:07 - 17:19$	49879	$ArCO_2 (90:10)$	84,0	$3,607\pm1$	$502,448\pm1$	$727,80 \pm 1,00$	$22,6901\pm0,1177$
4585	Strahl	10.11.12 $17:19 - 17:29$	42171	$ArCO_2 (90:10)$	84,0	$3,792\pm1$	$501,989\pm 1$	$727,80\pm 1,00$	$22,7194\pm0,1179$
4586	Strahl	$10.11.12 \ 17:29 - 17:32$	13866	$ArCO_2 (90:10)$	84,0	$3,867\pm1$	$502,062\pm1$	$727,80 \pm 1,00$	$22,7195\pm0,1179$
4587	Strahl	10.11.12 $17:32 - 17:47$	62190	$ArCO_2 (90:10)$	84,0	$3,681 \pm 1$	$502,328\pm1$	$727,80 \pm 1,00$	$22,6989\pm0,1178$

Driftgeschwindigkeit	[mm/µs]	$22,6961 \pm 0,1178$	$22,6888\pm0,1177$	$22,6981\pm0,1178$	$22,7096\pm 0,1179$	$22,6930\pm 0,1177$	$22,6661\pm0,1176$	$22,6573\pm0,1175$	$22,6905\pm0,1177$	$22,7522\pm0,1181$	$22,7301\pm0,1180$	$22,7246\pm0,1180$	$22,7251\pm0,1180$
Driftlänge	[mm]	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$	$727,80 \pm 1,00$
Kante	Kathode	$502,062 \pm 1$	$503, 338 \pm 1$	$503,103\pm1$	$502,083\pm1$	$502,408 \pm 1$	$502,362 \pm 1$	$502,675 \pm 1$	$502,480 \pm 1$	$502,123 \pm 1$	$502,551 \pm 1$	$502,567 \pm 1$	$502,527 \pm 1$
Kante	GEM-Folie	$3,354 \pm 1$	$4,469 \pm 1$	$4,439 \pm 1$	$3,672\pm1$	$3,632 \pm 1$	$2,994 \pm 1$	$3,111\pm 1$	$3,649 \pm 1$	$4,645 \pm 1$	$4,588 \pm 1$	$4,484 \pm 1$	$4,454 \pm 1$
Driftfeld	[% E ^{drift}]	84,0	83,9	83,9	84,0	84,0	84,0	84,0	84,0	84,0	84,0	84,0	83,8
	Gasgemisch	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2$ (90:10)	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_2 (90:10)$	$ArCO_{2}$ (90:10)				
Anzahl	Ereignisse	25854	22502	28522	34303	32621	29421	330	36915	22785	26218	24202	15087
	Datum und Uhrzeit	$10.11.12 \ 18:12 - 18:17$	$11.11.12 \ 13:43 - 13:51$	$11.11.12 \ 13.52 - 14.03$	11.11.12 14:04 - 14:13	11.11.12 14:13 - 14:23	11.11.12 14:23 - 14:32	11.11.12 14:32 - 14:34	$11.11.12 \ 15:21 - 15:48$	11.11.12 18:16 - 18:21	11.11.12 18:21 - 18:27	11.11.12 18:27 - 18:33	11.11.12 18:33 - 18:37
	Runtyp	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl	Strahl
Run-	Nummer	4589	4610	4611	4612	4613	4614	4615	4623	4629	4630	4631	4632

 Tabelle E.1: Rekonstruierte Driftgeschwindigkeiten.

Abbildungsverzeichnis

1.1	${\rm Zeitachse} $																			1
1.2	Elementarteilchen																			2
1.3	Die starke Kopplungskonstante .																			3
1.4	Emissionsspektrum Argon																			4
1.5	Totaler Wirkungsquerschnitt																			4
1.6	Resonanzbeiträge																			5
1.7	Die Elektronen-Stretcher-Anlage																			6
1.8	Der CBELSA/TAPS-Aufbau																			7
1.9	Das Goniometer																			8
1.10	Der Tagger																			9
1.11	Das polarisierte Target																			10
1.12	Das Flüssig-Wasserstoff-Target .																			11
1.13	Der Crystal-Barrel-Detektor																			11
1.14	Crystal-Barrel-Kristall																			12
1.15	MiniTAPS																			13
1.16	Der Innendetektor																			14
1.17	Der Gas-Čerenkov-Detektor																			15
1.18	GIM und FluMo																			16
1.19	Triggereffizienz																			17
1.20	Kristall-Hütchen																			18
1.21	Zeichnung GEM-TPC																			19
2.1	Maße des Spurdetektors	•	•	•	•	•	•		•	•	• •	•	•	•	• •		•	•	•	23
2.2	Funktionsprinzip einer TPC	·	•	•	•	·	•	• •	•	·		•	•	•	• •		•	·	•	24
2.3	Foto einer GEM-Folie	•	•	•	•	•	•		•	•		•	•	•	• •		•	•	•	24
2.4	Feldverlauf an einer GEM-Folie .	•	•	•	•	•	•		•	•		•	•	•	• •		•	•	•	24
2.5	Funktionsweise einer GEM-Folie.	·		•	•	•	•			•			•	•				•		25
2.6	Energieverlust dE/dx	·		•	•	•	•			•			•	•				•		27
2.7	Foto der TestBench	·		•	•	•	•			•			•	•				•		31
2.8	Szintillationsdetektoren				•	•	•			•			•							32
2.9	Siliziumstreifendetektoren		•		•		•			•			•				•	•	•	32
2.10	Planare GEM-Detektoren		•		•		•			•			•				•	•	•	33
2.11	Test-TPC		•		•		•			•			•				•	•	•	34
2.12	Test-TPC: Pad-Ausleseebene				•	•	•			•			•							35
2.13	Ereignis in der Test-TPC				•	•	•			•			•							35
2.14	GEM-TPC: Feldkäfig				•		•													36
2.15	GEM-TPC: GEM-Flansch						•													37
2.16	$GEM-TPC: PadPlane . \ . \ . \ .$						•													37
2.17	GEM-TPC: Media-Flansch \ldots																			38
2.18	GEM-TPC																			39
2.19	FOPI-Experiment																			40
2.20	Ereignis in der GEM-TPC																			40
2.21	Gassystem mit Kr83-Quelle $\ .$.																			41
2.22	Kr83-Eichung: Ausgleichsfaktoren																			42

2.23	Kr83-Eichung: Energieauflösung	42
2.24	GEM-TPC im Crystal-Barrel-Detektor	43
2.25	Rückfürjochs des Asterix-Experiments	44
2.26	Vorgeschlagene Konfiguration des supraleitenden Magneten	45
2.27	Magnetfeldsimulation: Schnitt durch den Crystal-Barrel-Detektor	45
2.28	Magnetfeldsimulation: Das Rückführioch im CBELSA/TAPS-Aufbau	46
2.29	Magnetfeldsimulation: gesamter CBELSA/TAPS-Aufbau	46
2.20		10
3.1	GUI zur Erstellung von Magboltz-Eingabedateien	48
3.2	Simulation: Longitudinale Diffusion mit B-Feld	50
3.3	Simulation: Longitudinale Diffusion ohne B-Feld	51
3 4	Simulation: transversale Diffusion mit B-Feld	52^{-1}
3.5	Simulation: transversale Diffusion ohne B-Feld	53
3.6	Simulation: Drift geschwindigkeit mit B Feld	54
3.0	Simulation: Driftgeschwindigkeit ahne B Feld	54
ປ.1 ງິດ	Simulation. D'ingeschwindigkeit onne D-Feid	04 55
3.ð 2.0	Simulation: Temperaturabinangigkeit in $ArCO_2$	00 50
3.9	Simulation: Temperaturabhangigkeit in NeCO ₂ \ldots \ldots \ldots	50
3.10	Simulation: Druckabhangigkeit in ArCO_2	57
3.11	Simulation: Druckabhängigkeit in $NeCO_2$	58
3.12	Simulation: Konzentrationabhängigkeit in $ArCO_2$	59
3.13	Simulation: Konzentrationabhängigkeit in $NeCO_2$	59
3.14	Simulation: Verunreinigungen mit Sauerstoff in $ArCO_2$	60
3.15	Simulation: Verunreinigungen mit Sauerstoff in $NeCO_2$	60
3.16	Simulation: Verunreinigungen mit Wasser in $ArCO_2$	61
3.17	Simulation: Verunreinigungen mit Wasser in $NeCO_2$	61
4.1	W-IE-NE-R MPOD-Crate	64
4.2	iseg $HPn300$	64
4.3	Auslese der Pt100-Sensoren	66
4.4	Umrechnung der Pt100-Widerstandswerte in Temperaturen	67
4.5	HUBER Unichiller UC080T-H	67
4.6	Kühlungsring der Front-End-Karten	67
4.7	Dual-XPort-Platine	68
4.8	Gassensoren am Media-Flansch	69
49	Labornetzgeräte EA-PS 3016-20B und HAMEG 4040	70
4 10	SPS	71
1.10	Aufbau des Gassystems für die TestBench	73
4 19	Consustom für die TestBench	74
4.12	MKC 647h Cooffuga /Drugh Controllen	74
4.10	First des Commentants für die Test TDC	70
4.14	Foto des Gasmesssystems für die Test-TPC	61
5.1	SlowControl: Flussdiagramm des Hauptprogramms	81
59	SlowControl-Web-Oberfläche: Startseite	88
5.2 5.2	SlowControl CIII CEM TPC Registerbarte (TPC UV)	<u>80</u>
0.0 5 /	Dup Detenbenk CUL Degisterkerte (DDD)	09
0.4	nun-Datenbank-GUI. Registerkarte 'Rundb'	91
6.1	Langzeitstabilität Spannung	95
6.2	Langzeitstabilität Temperatur	95
0.4	ZanOseresensurate temperature i i i i i i i i i i i i i i i i i i i	00

6.3	Langzeitstabilität Druck	96
7.1	Driftgeschwindigkeit Übersicht	100
7.2	Analog-Ring-Speicher	100
7.3	Analyse: Schnitte	103
7.4	Analyse: Position der Kanten	104
7.5 7.0	Analyse: Position der Kanten und Targets	105
1.0	Analyse: Position der Kante und des largets	107
1.1	Ergebnisse: Driftgeschwindigkeit	108
7.8	Ergebnisse: Driftgeschwindigkeit Pion-Strahlzeit	109
7.9	Ergebnisse: Temperaturabhangigkeit	110
7.10	Ergebnisse: Temperaturabhangigkeit	111
7 10	Ergebnisse: Positionsabnangigkeit	112
7 12	Ergebnisse: Temperaturabhangigkeit	110
7 14	Ergebnisse: Autosung X	114
(.14	Ergebnisse: Spuranpassung TPC-CDC	110
7.10	Ergebnisse: Aunosung Z	110
(.10	Ergebnisse: Energieverlust	110
A.1	Schaltplan der Pt100-Ausleseplatine	119
A.2	Design der Pt100-Ausleseplatine	120
A 3	Design der Dual-XPort-Platine	120
A 4	Schaltplan der Dual-XPort-Platine	120
11.1		
C.1	SlowControl-Web-Oberfläche: Startseite	123
C.2	SlowControl-Web-Oberfläche: Letzte Werte	124
C.3	SlowControl-Web-Oberfläche: Alte Werte	125
C.4	SlowControl-Web-Oberfläche: Änderungen	125
C.5	SlowControl-Web-Oberfläche: Einstellungen	126
C.6	SlowControl-Web-Oberfläche: Logbuch	128
C.7	SlowControl-Web-Oberfläche: Übersicht	129
C.8	SlowControl-GUI GEM-TPC: Registerkarte 'TPC - HV'	131
C.9	SlowControl-GUI GEM-TPC: Registerkarte 'TPC - Graphs'	134
C.10	SlowControl-GUI GEM-TPC: Registerkarte 'TPC - Special Ops'	135
C.11	SlowControl-GUI GEM-TPC: Registerkarte 'Sensors'	136
C.12	SlowControl-GUI GEM-TPC: Registerkarte 'Logbook'	137
C.13	SlowControl-GUI GEM-TPC: Registerkarte 'Ancient Values'	138
C.14	Ausgabe alter Werte mit der GUI	139
C.15	SlowControl-GUI TestBench: Registerkarte 'TPC - HV' (TestBench)	140
C.16	SlowControl-GUI TestBench: Registerkarte 'MPOD Crate' (TestBench) .	141
C.17	SlowControl-GUI TestBench: Registerkarte 'Low Voltage' (TestBench)	142
C.18	SlowControl-GUI TestBench: Registerkarte 'Gas+Temperature' (Test-	
	Bench)	143
C.19	Run-Datenbank-GUI: Registerkarte 'RunDB'	145
C.20	Run-Datenbank-GUI: Registerkarte 'RunDB Graph'	147
C.21	Run-Datenbank-GUI: Registerkarte 'Logbook'	148
C.22	Run-Datenbank-GUI: Registerkarte 'Errors'	148

Tabellenverzeichnis

1.1	Polarisationsobservablen
2.1	Parameter der GEM-TPC
3.1	Eigenschaften verschiedener Gasgemische
4.1	Gaskorrekturfaktoren
6.1	Leistungsfähigkeit der SlowControl-Komponenten
B.1 B.2	Kalibrierung der Pt100-Auslese 1122Kalibrierung der Pt100-Auslese 2122
E.1	Driftgeschwindigkeiten
Literaturverzeichnis

- [1] THOMSON, J.J.: Cathode Rays. The Philosophical Magazine, 44(293), 1897.
- [2] RUTHERFORD, ERNEST: Collision of alpha Particles with Light Atoms; An Anomalous Effect in Nitrogen. The Philosophical Magazine, 37(222):537-87, 1897.
- [3] CHADWICK, J.: The Existence of a Neutron. Proc. Roy. Soc., 136(830):692-708, 1932.
- BOHR, NILS: On the Constitution of Atoms and Molecules, Part I. The Philosophical Magazine, 26(1):1-25, 1913.
- [5] FRISCH, R. und STERN, O.: Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. I. Zeitschrift für Physik, 85(1-2):4-16, 1933.
- [6] ESTERMANN, I. und STERN, O.: Über die magnetische Ablenkung von Wasserstoffmolekülen und das magnetische Moment des Protons. II. Zeitschrift für Physik, 85(1-2):17-24, 1933.
- [7] ANDERSON, H.L., FERMI, E., LONG, E.A. und NAGLE, D.E.: Total Cross Sections of Positive Pions in Hydrogen. Phys. Rev., 85:936-936, Mar 1952.
- [8] MCALLISTER, R.W. und HOFSTADTER, R.: Elastic Scattering of 188-Mev Electrons from the Proton and the Alpha Particle. Phys. Rev., 102:851-856, May 1956.
- [9] HAND, L.N., MILLER, D.G. und WILSON, R.: Electric and Magnetic Form Factors of the Nucleon. Rev. Mod. Phys., 35:335-349, Apr 1963.
- [10] GELL-MANN, MURRAY: A schematic model of baryons and mesons. Physics Letters, 8(3):214-215, 1964.
- [11] ZWEIG, GEORGE: An SU₃ model for strong interaction symmetry and its breaking: Part I. (CERN-TH-401):24 p, 1964.
- [12] ZWEIG, GEORGE: An SU₃ model for strong interaction symmetry and its breaking: Part II. (CERN-TH-412):80 p, 1964.
- [13] STEIN, S., ATWOOD, W.B., BLOOM, E.D., COTTRELL, R.L., DESTAEBLER, H.C. et al.: Electron Scattering at 4-Degrees with Energies of 4.5-GeV - 20-GeV. Phys.Rev., D12:1884, 1975.
- [14] BERINGER, J. et al.: Review of Particle Physics. Phys. Rev. D, 86:010001, 2012.
- [15] GREENBERG, OSCAR W.: Spin and unitary-spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett., 13:598, 1964.
- [16] GROSS, DAVID J. und WILCZEK, FRANK: Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett., 30:1343-1246, 1973.
- [17] WIKIMEDIA COMMONS: Emissionsspektrum Argon. http://commons.wikimedia .org/wiki/File:Argon_Spectrum.jpg, 2010. (abgerufen am 26. November 2013).

- [18] NAKAMURA, K. et al.: *Review of particle physics*. J. Phys., G(37):075021, 2010.
- [19] VAN PEE, HARALD et al.: Photoproduction of π^0 -mesons off protons from the $\Delta(1232)$ region to $E(\gamma) = 3$ GeV. The European Physical Journal A, 31(1):61-77, 2007.
- [20] CREDÉ, VOLKER et al.: Photoproduction of η -Mesons off Protons for 0.75 GeV $> E(\gamma) > 3$ GeV. Phys. Rev. Lett., 94:012004, 2005.
- [21] LÖRING, ULRICH, METSCH, BERNARD C. und PETRY, HERBERT R.: The light baryon spectrum in a relativistic quark model with instanton-induced quark forces: The non-strange baryon spectrum and ground-states. Eur. Phys. J., A 10:395-446, 2001.
- [22] TIATOR, LOTHAR et al.: pers. Komm., 2013.
- [23] ANISOVICH, A.V., KLEMPT, E., NIKONOV, V.A., SARANTSEV, A.V. und THO-MA, U.: Nucleon resonances in the fourth resonance region. Eur. Phys. J., A 47:153, 2011.
- [24] BARKER, I.S., DONNACHIE, A. und STORROW, J.K.: Complete experiments in pseudoscalar photoproduction. Nucl. Phys., B 95:347–356, 1975.
- [25] CHIANG, W. und TABAKIN, F.: Completeness rules for spin observables in pseudoscalar meson photoproduction. Phys. Rev. C, 55:2054–2066, 1997.
- [26] THIEL, ANNIKA: Bestimmung der Doppelpolarisationsobservablen G in π^0 -Photoproduktion. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2012.
- [27] GOTTSCHALL, MANUELA: Bestimmung der Doppelpolarisationsobservablen E für die Reaktion $\gamma p \rightarrow p\pi^0$ am CBELSA/TAPS-Experiment. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2012.
- [28] MÜLLER, JONAS: Messung der Doppelpolarisationsobservablen E in der Reaktion $\gamma p \rightarrow p\eta 0$ mit dem CBELSA/TAPS-Experiment. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2013. in Vorbereitung.
- [29] HARTMANN, JAN. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2013. in Vorbereitung.
- [30] SEIFEN, TOBIAS. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2013. in Vorbereitung.
- [31] HILLERT, WOLFGANG: The Bonn Electron Stretcher Accelerator ELSA: Past and future. Eur. Phys. J., A 28(s01):139–148, 2006.
- [32] FROMMBERGER, FRANK: Elektronen-Stretcher-Anlage ELSA. http://www-els a.physik.uni-bonn.de/Beschleuniger/ELSA-2013-1.gif, 2013. (abgerufen am 26. November 2013).
- [33] BGO-OD EXPERIMENT. http://bgo-od.physik.uni-bonn.de.
- [34] WALTHER, DIETER: pers. Komm., 2013.
- [35] KAMMER, SUSANNE: Strahlpolarimetrie am CBELSA/TAPS Experiment. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2010.

- [36] FROMMBERGER, FRANK: pers. Komm., 2013.
- [37] FORNET-PONSE, KATHRIN: Die Photonenmarkierungsanlage fuer das Crystal-Barrel/TAPS-Experiment an ELSA. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2009.
- [38] BRADTKE, CHRISTIAN et al.: A new frozen-spin target for 4π detection. Nucl. Instrum. Meth., A 436:430, 1999.
- [39] HAMMANN, CHRISTIAN: Aufbau eines Flüssigwasserstofftargets zur Durchführung von Kalibrationsmessungen am Crystal-Barrel-Experiment an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2009.
- [40] FLEMMING, HOLGER: Entwurf und Aufbau eines Zellularlogik-Triggers für das Crystal-Barrel-Experiment an der Elektronenbeschleunigeranlage ELSA. Dissertation, Ruhr-Universität Bochum, 2001.
- [41] AKER, E. et al.: The Crystal Barrel spectrometer at LEAR. Nucl. Instrum. Meth., A 321:69-108, 1992.
- [42] BÖSE, SABINE: Modifikation und Test des Lichtpulsersystems für den Crystal-Barrel-Aufbau an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2006.
- [43] FUNKE, CHRISTIAN: Untersuchungen zur Energieauflösung von CsI-Kristallen mit Hochgeschwindigkeits-ADCs. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2002.
- [44] WENDEL, CHRISTOPH: Design und Aufbau eines Szintillationsdetektors zur Identifizierung geladener Teilchen im Crystal-Barrel-Vorwärtsdetektor. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2008.
- [45] FÖSEL, ANGELA: Entwicklung und Bau eines Innendetektors für das Crystal-Barrel-Experiment an ELSA/Bonn. Dissertation, Friedrich-Alexander-Universität Erlangen, 2001.
- [46] GRÜNER, MARCUS: Modifikation und Test des Innendetektors f
 ür das Crystal-Barrel-Experiment. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universit
 ät Bonn, 2006.
- [47] HARTMANN, JAN: Zeitkalibrierung und Photonenflussbestimmung für das Crystal-Barrel-Experiment an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2008.
- [48] KAISER, DAVID: Aufbau und Test des Gas-Čerenkov-Detektors f
 ür den Crystal-Barrel-Aufbau an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universit
 ät Bonn, 2007.
- [49] KONRAD, MICHAEL: Ortssensitiver Detektor f
 ür hochenergetische Photonen bei h
 öchsten Raten. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universit
 ät Bonn, 2001.

- [50] DIELMANN, JESSICA: Entwicklung, Aufbau und Test eines Detektors zur Bestimmung des Photonenflusses an der Bonner Photonenmarkierungsanlage. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2008.
- [51] WINNEBECK, ALEXANDER: Entwicklung und Implementierung eines universellen, FPGA basierten Triggermoduls für das Crystal-Barrel-Experiment an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2006.
- [52] HONISCH, CHRISTIAN: Untersuchungen zu einer neuen Avalanche-Photodioden-Auslese für das Crystal-Barrel-Kalorimeter. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 209.
- [53] URBAN, MARTIN: Compensation of the Temperature Dependence of Avalanche Photodiodes for a new Readout of the Crystal Barrel Calorimeter. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2011.
- [54] VAN PEE, HARALD: pers. Komm., 2013.
- [55] DRINHAUS, JORRIT: Aufbau und Test einer 3x3-CsI(Tl)-Kristallmatrix am getaggten Photonenstrahl an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2012.
- [56] WINNEBECK, ALEXANDER: Design Studies for a Tracking Upgrade of the Crystal Barrel Experiment at ELSA and Installation of a Tracking Test Bench. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2009.
- [57] SCHMITZ, ROMAN: Simulationen zum Nachweis geladener Teilchen f
 ür das Crystal-Barrel-Experiment an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2008.
- [58] FABBIETTI, LAURA et al.: The PANDA GEM-based TPC Prototype. Nucl. Instr. Meth. A, 628:204-208, 2011.
- [59] KETZER, BERNHARD: The PANDA experiment at FAIR. Int. J. Mod. Phys. A, 21:5675-5685, 2006.
- [60] ÄYSTÖ, L. et al.: An International Accelerator Facility for Beams of Ions and Antiprotons, 2001. Conceptual Design Report.
- [61] NYGREN, DAVID: The Time-Projection Chamber A new 4π detector for charged particles. In: PEP Summer Study, Seiten 58–78, 08 1974. PEP-144.
- [62] NYGREN, DAVID R. und MARX, JAY N.: The Time Projection Chamber. Phys. Today, 31:46-53, 1978.
- [63] WENIG, SIEGFRIED: Performance of the large-scale TPC system in the CERN heavy ion experiment NA49. Nucl. Instr. Meth. A, 409:100–104, 1998.
- [64] ACKERMANN, K. H. et al.: The STAR time projection chamber. Nucl. Phys. A, 661:681-685, 1999.
- [65] THE ALICE COLLABORATION: ALICE Technical Design Report: Time Projection Chamber. Technischer Bericht, 2000.

- [66] ALME, J. et al.: The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events. Nucl. Instr. Meth. A, 622:316–367, 2010.
- [67] KAPPLER, STEFFEN G.: Part II of II: Development of a GEM-based TPC Readout for Future Collider Experiments. Dissertation, Karlsruher Institut f
 ür Technologie, 2007. IEKP-KA/2004-17.
- [68] SOBLOHER, BLANKA: Simulationsstudien zu GEM-Folien f
 ür die Auslese einer TPC. Diplomarbeit, Rheinisch-Westphälische Technische Hochschule Aachen, 2002.
- [69] SAULI, FABIO: GEM: A new concept for electron amplification in gas detectors. Nucl. Instr. Meth. A, 386:531-534, 1997.
- [70] BALL, M., BÖHMER, F.V., DØRHEIM, S., HÖPPNER, C., KETZER, B., KONO-ROV, I., NEUBERT, S., PAUL, S., RAUCH, J., UHL, S., VANDENBROUCKE, M., BERGER, M., BERGER-CHEN, J.-C., CUSANNO, F., FABBIETTI, L., MÜNZER, R., ARORA, R., FRÜHAUF, J., KIŠ, M., LEIFELS, Y., KLEIPA, V., HEHNER, J., KUNKEL, J., KURZ, N., PETERS, K., RISCH, H., SCHMIDT, C. J., SCHMITT, L., SCHWAB, S., SOYK, D., VOSS, B., WEINERT, J., BECK, R., KAISER, D., LANG, M., SCHMITZ, R., WALTHER, D., BÜHLER, P., MÜLLNER, P., ZMESKAL, J. und HERMANN, N.: Technical Design Study for the PANDA Time Projection Chamber. ArXiv e-prints, 2012.
- [71] KETZER, B., BACHMANN, S., CAPEÁNS, M., DEUTEL, M., FRIEDRICH, J., KAPPLER, S., KONOROV, I., PAUL, S., PLACCI, A., REISINGER, K., ROPELEW-SKI, L., SHEKHTMAN, L. und SAULI, F.: *GEM detectors for COMPASS*. IEEE Trans. Nucl. Sci., 48:1065–1069, 2001.
- [72] KETZER, B., ALTUNBAS, M.C., DEHMELT, K., EHLERS, J., FRIEDRICH, J., GRUBE, B., KAPPLER, S., KONOROV, I., PAUL, S., PLACCI, A., ROPELEWSKI, L., SAULI, F., SCHMITT, L. und SIMON, F.: *Triple GEM tracking detectors for COMPASS*. IEEE Trans. Nucl. Sci., 49:2403–2410, 2002. CERN-OPEN-2002-004.
- [73] BENCIVENNI, G. et al.: A triple GEM detector with pad readout for high rate charged particle triggering. Nucl. Instr. Meth. A, 488:493-502, 2002.
- [74] BENCIVENNI, G. und DOMENICI, D.: An ultra-light cylindrical GEM detector as inner tracker at KLOE-2. Nucl. Instr. Meth. A, 581:221–224, 2007.
- [75] ABBANEO, D. et al.: Characterization of GEM Detectors for Application in the CMS Muon Detection System. 2010.
- [76] KLEINKNECHT, KONRAD: Detektoren für Teilchenstrahlung. Teubner Studienbücher: Physik, 3rd Auflage, 1992.
- [77] HAUSCHILD, M., HEUER, R.D., KLEINWORT, C., LUDWIG, J., MOHR, W. et al.: Particle identification with the OPAL jet chamber. Nucl. Instr. Meth. A, 314:74– 85, 1992.
- [78] BLUM, WALTER, RIEGLER, WERNER und ROLANDI, LUIGI: Particle Detection with Drift Chambers. Springer, 1st Auflage, 1993.

- [79] NEUBERT, SEBASTIAN: A GEM-based TPC for PANDA Detector Simulations and Prototype Design. Diplomarbeit, Techn. Univ. München, 2005.
- [80] LOTZE, SVEN: Ion Backdrift Minimisation in a GEM-Based TPC Readout. Dissertation, Rheinisch-Westphälische Technische Hochschule Aachen, 2006.
- [81] WEITZEL, QUIRIN: Precision Meson Spectroscopy: Diffractive Production at COMPASS and Development of a GEM-based TPC for PANDA. Dissertation, Techn. Univ. München, 2008.
- [82] GRUPEN, C.: Teilchendetektoren. BI-Wiss.-Verlag, 1st Auflage, 1993.
- [83] BACHMANN, S., A. BRESSAN, KETZER, B., DEUTEL, M., ROPELEWSKI, L., SAULI, F., BONDAR, A.E., BUZULUTSKOV, A.F., SHEKHTMAN, L.I., SOKOLOV, A., TATARINOV, A.A., VASILEV, A., KAPPLER, S. und SCHULTE, E.C.: Performance of GEM detectors in high intensity particle beams. Nucl. Instrum. Methods Phys. Res., A, 470(CERN-EP-2000-116. 3):548-561, Aug 2000.
- [84] DØRHEIM, SVERRE: Track Reconstruction in a Setup for the Characterization of a GEM-TPC at ELSA. Diplomarbeit, Techn. Univ. München, 2009.
- [85] BAUM, G., KYYNÄRÄINEN, J. und TRIPET, A.: COMPASS: a proposal for a common muon and proton apparatus for structure and spectroscopy. Technischer Bericht CERN-SPSLC-96-14. SPSLC-P-297, CERN, Geneva, 1996.
- [86] MALLOT, G.K.: The COMPASS spectrometer at CERN. Nucl. Instr. Meth. A, 518(1-2):121-124, 2004.
- [87] VANDENBROUCKE, MAXENCE: Development and Characterization of Micro-Pattern Gas Detectors for Intense Beams of Hadrons. Dissertation, Techn. Univ. München, 2012.
- [88] HILDENBRAND, K.D.: One year of operating 'FOPI': Results and status of the 4 pi detector facility at SIS / ESR. GSI Nachr., 91-02:6-16, Mar 1992.
- [89] HARTMANN, OLAF N.: The FOPI Experiment at GSI-SIS. http://www-fopi.gsi .de/pub//conf/olaf_oepg2010.pdf. Presented at the 60th Annual Meeting of the Austrian Physical Society; University Salzburg, Austria, september 10th, 2010.
- [90] RYU, M.S., HONG, B., KANG, T.I. und FOPI KOLLABORATION: FOPI Detector for Heavy-ion Collision Experiment at SIS/GSI. Journal of the Korean Physical Society, 59(2):1605–1608, 2011.
- [91] SCHMITZ, ROMAN et al.: Calibration of the GEM-TPC prototype with ^{83m}Kr. JINST, 2014.
- [92] DYDAK, F.: Analysis of HARP TPC krypton data. HARP memo, 04-103, Apr 2004. 10 June 2004.
- [93] KOCH, H., AMSLER, C., AKER, E. und ARMSTRONG, T.: Proposal: the crystal barrel. oai:cds.cern.ch:725507. Technischer Bericht CERN-PSCC-85-56. PSCC-P-90, CERN, Genf, Schweiz, 1985.

- [94] HOBL, A. und MEYER-REUMERS, M.: Barrel-Magnet-Studie, Project-No. 1812. Technischer Bericht 1812-BP-7432-0, ACCEL (jetzt Bruker EST), Bergisch Gladbach, 2007.
- [95] CST COMPUTER SIMULATION TECHNOLOGY. http://www.cst.com/.
- [96] BIAGI, STEPHEN FRANCIS: A multiterm Boltzmann analysis of drift velocity, diffusion, gain and magnetic-field effects in Argon-Methane-water-vapour mixtures. Nucl. Instr. Meth. A, 283:716-722, 1989.
- [97] BÖHMER, FELIX VALENTIN: A High-Rate Time Projection Chamber for PANDA - Simulation Studies and GPU-based Track Finding. Diplomarbeit, Techn. Univ. München, 2009.
- [98] BIAGI, STEPHEN FRANCIS: MAGBOLTZ Transport parameters computation program (Data base for the cross sections of gases 30 gases). Nucl. Instr. Meth. A, 273:1-2, 1988.
- [99] BIAGI, STEPHEN FRANCIS: MAGBOLTZ, Program to compute gas transport parameters. CERN, http://ref.web.cern.ch/ref/CERN/CNL/2000/001/magboltz. Version 8.9.7.
- [100] VEENHOF, ROB: Choosing a gas mixture for the ALICE TPC. ALICE-INT-2003-29, 2003.
- [101] SHARMA, ARCHANA: Properties of some gas mixtures used in tracking detectors. 1998.
- [102] BREZINA, CHRISTOPH: A GEM based Time Projection Chamber with pixel readout. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, 2013.
- [103] W-IE-NE-R: MPOD HV&LV Power Supply System Technical Manual, 2011.
- [104] ISEG SPEZIALELEKTRONIK GMBH: High Voltage Power Supply EHS 80 vvx Operator's manual, 2006.
- [105] ISEG SPEZIALELEKTRONIK GMBH. http://www.iseg-hv.com/de/.
- [106] W-IE-NE-R, PLEIN & BAUS GMBH. http://www.wiener-d.de/.
- [107] ISEG SPEZIALELEKTRONIK GMBH: 19"/1HE Hochspannungs-Netzgerät der Baureihe HPS 300 W und 800 W - Bedienungsanleitung, 2006.
- [108] SYSTEMDESIGNSOFTWARE NI LABVIEW. http://www.ni.com/labview/d/.
- [109] HUBER: Betriebsanleitung Unichiller im Towergehäuse mit CC-Pilot, 2009.
- [110] LANTRONIX: XPort/XChip SoC User Guide, 2007.
- [111] MÜLLNER, PHILIPP: GEM based Time Projection Chamber prototype for the PAN-DA experiment - Gas system development and forward tracking studies. Dissertation, Stefan-Meyer-Institut der Universität Wien, 2012.
- [112] SENSIRION AG: ASF1400 Bidirectional Mass Flow Meter Manual, 2008.
- [113] MEASUREMENT SPECIALTIES: M5100 Heavy Industrial Pressure Transducer Manual, 2010.

- [114] POLLIN ELECTRONIC GMBH: AVR-NET-IO-Board Handbuch, 2008.
- [115] SIEMENS: SIMATIC Automatisierungssysteme S7-300, ET 200M Ex- Peripheriebaugruppen Gerätehandbuch, 2007.
- [116] MKS INSTRUMENTS: Multi Channel Flow Ratio/Pressure Controller Type 647B -Instruction Manual, 1999.
- [117] TELEDYNE ANALYTICAL INSTRUMENTS: OPERATING INSTRUCTIONS FOR Model 3190 Series Trace Oxygen Analyzer, 1999.
- [118] AUSTREGESILO, A.: Kompaktes Gasmesssystem für TPC-Prototyp von PANDA. Technischer Bericht, München, 2006.
- [119] THIEL, ANNIKA: Aufbau einer computergesteuerten Experimentüberwachung für den Crystal-Barrel-Aufbau an ELSA. Diplomarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn, 2006.
- [120] POSTGRESQL. http://www.postgresql.org/.
- [121] HAMEG INSTRUMENTS GMBH: Powersupply HMP 4030 / HMP 4040 Handbuch / Manual, 2009.
- [122] SLOWCONTROL-WEBSEITE DER GEM-TPC. http://dldcs01.gsi.de/slowcon trol/.
- [123] SLOWCONTROL-WEBSEITE DER TESTBENCH. http://tbslow.cb.uni-bonn.d e/slowcontrol/.
- [124] QT PROJECT HOSTING: Qt Project. http://qt-project.org/.
- [125] GNU: GNU Lesser General Public License (LGPL). http://www.gnu.org/licen ses/lgpl-3.0.de.html.
- [126] MUSA, L. und SAFARIK, K.: Letter of Intent for the Upgrade of the ALICE Experiment. Technischer Bericht CERN-LHCC-2012-012. LHCC-I-022, CERN, Geneva, Aug 2012.
- [127] KETZER, BERNHARD, FÜR DIE GEM-TPC und ALICE TPC KOLLABORA-TIONEN: A time projection chamber for high-rate experiments: Towards an upgrade of the {ALICE} {TPC}. Nucl. Instr. Meth. A, 732(0):237-240, 2013. <ce:title>Vienna Conference on Instrumentation 2013</ce:title>.
- [128] RENFORDT, RAINER: pers. Komm., 2013.
- [129] AL-TURANY, M., BERTINI, D., KARABOWICZ, R., KRESAN, D., MALZACHER, P., STOCKMANNS, T. und UHLIG, F.: *The FairRoot framework*. Journal of Physics: Conference Series, 396(2):022001, 2012.
- [130] BRUN, RENE und RADEMAKERS, FONS: ROOT An object orientated data analysis framework. Nucl. Instr. Meth. A, 389(1-2):81-86, 1997.
- [131] BÖHMER, FELIX VALENTIN et al.: First Measurement of dE/dx with a large GEMbased TPC. Nucl. Instr. Meth. A, 2013.

- [132] RAUCH, JOHANNES: Pattern recognition in a high-rate GEM-TPC. Journal of Physics: Conference Series, 396(2):022042, 2012.
- [133] HÖPPNER, C., NEUBERT, S., KETZER, B. und PAUL, S.: A Novel Generic Framework for Track Fitting in Complex Detector Systems. Nucl. Instr. Meth. A, 620:518-525, 2010.

Danksagung

Eine solche Arbeit ist alleine nicht zu schaffen, daher möchte ich mich abschließend bei allen danken, die mir beim Gelingen dieser Doktorarbeit geholfen haben.

Ganz herzlich danke ich meinem Chef, Prof. Reinhard Beck. Er hat mir in den letzten Jahren die Möglichkeit gegeben, an diesem spannenden und vielfältigen Thema zu arbeiten und dadurch neue Erfahrungen und Einblicke zu bekommen.

Prof. Klaus Desch danke ich sehr für die Übernahme des Zweitgutachtens, ebenso wie Prof. Ulf-G. Meißner und PD Dr.-Ing. Axel Nothnagel als weiteren Mitgliedern meiner Promotionskommission.

Ein großer Dank geht an Bernhard Ketzer, Sverre Dœrheim, Martin Berger, Felix Böhmer und die anderen Kollegen der GEM-TPC-Kollaboration fürs Fördern und Fordern, schlaflose Nächte, frustrierende Tage und trotzdem jeder Menge Spaß in Genf, Darmstadt und Bonn.

Michael Lang, Dieter Walther, Christian Funke, Hans-Georg Zaunick und Bernd Voss haben mir bei zahlreichen technischen Fragen helfen können und hatten immer ein offenes Ohr für mich.

Meinen Zimmernachbarn Roman Schmitz und Martin Urban danke ich sehr für die gemeinsame Zeit und dass sie mich (und die Kaffeemaschine) so lange ertragen haben.

Christoph Brezina, Eric Gutz und Manuela Gottschall bin ich sehr dankbar für die vergossene rote Tinte und ihre hilfreichen Bemerkungen und Anregungen.

Den Kollegen der Arbeitsgruppe Beck / Thoma möchte ich für die nette Atmosphäre danken, in der das Arbeiten auch nach vielen Jahren noch Spaß machte und man jederzeit auch über Themen außerhalb der Physik reden kann.

Auf die Unterstützung meiner Familie und Freunde konnte ich mich immer verlassen, ebenso wie auf deren Ablenkung zur richtigen Zeit.

Mein größter Dank geht an meine Frau Christina: Für einfach Alles, vor allem aber für ihren Glauben an mich und ihre Geduld.