Measurement of the beam asymmetry Σ in $\pi^0\text{-}$ and $\eta\text{-photoproduction}$

Farah Noreen Afzal for the CBELSA/TAPS collaboration

HISKP, University of Bonn

20.02.2015

Motivation

- 2 The CBELSA/TAPS experimental setup
- 3 Event selection
- 4 Determination of the beam asymmetry Σ

Preliminary results

Why baryon spectroscopy?

Study dynamics inside atom

Study dynamics of constituents inside the nucleon

Photoproduction reactions

Study of different reaction channels gives access to different resonant structures \Rightarrow Worldwide effort to get high precision data (ELSA, JLab, MAMI,...)

- π^0 -photoproduction
 - high cross section \rightarrow Large statistics

 $\eta\text{-photoproduction}$

- η (T=0) \rightarrow exclusive access to intermediate states N^* with T=1/2
- low contributions from non-resonant terms

Which observables to measure?

- Scattering amplitude $f \leftrightarrow 4$ complex amplitudes (CGLN amplitudes) $f(F_1(W, \cos \theta_{cm}), F_2(W, \cos \theta_{cm}), F_3(W, \cos \theta_{cm}), F_4(W, \cos \theta_{cm}))$
- PWA: $F_1 = \sum_{l=0}^{\infty} (IM_{l+} + E_{l+})P'_{l+1} + [(l+1)M_{l-} + E_{l-}]P'_{l-1}$
 - $E_{l\pm}(W), M_{l\pm}(W)$: Multipoles
 - $P'_{l\pm 1}(\cos \theta_{cm})$: Legendre polynomials
- $\bullet \ \ \mbox{Measurable observables} \leftarrow \to \ \mbox{Multipoles} \leftarrow \to \ \mbox{Resonance parameters}$

The CBELSA/TAPS experiment at ELSA in Bonn

Selection process of $\gamma p \rightarrow \gamma \gamma p$

Selected events had to fulfill kinematic constraints:

- 3 hits in calorimeters $(p+2\gamma)$
- Proton: calculated as missing particle of $\gamma p \rightarrow \gamma \gamma X$
- Angular-cuts:
 - $\bullet\,$ Agreement of missing mass and measured charged particle in $\theta\,$
 - Coplanarity-cut: $\Delta \Phi = |\Phi_{\gamma\gamma} \Phi_p| = 180^\circ$ within 2.5σ
- Beam photon: $E_{\gamma} > E_{prod.threshold}$ and time coincidence with reaction products

Selection process of $\gamma p \rightarrow \gamma \gamma p$

• The $\gamma\gamma$ invariant mass:

- 5.4 \cdot 10⁶ π^{0} -events were selected
- $6.6 \cdot 10^5 \ \eta$ -events were selected

Determination of the beam asymmetry $\boldsymbol{\Sigma}$

• linearly polarized beam, unpolarized liquid hydrogen target

The beam asymmetry Σ in π^0 -photoproduction

The beam asymmetry Σ in π^0 -photoproduction

The beam asymmetry Σ in η -photoproduction

The beam asymmetry Σ in η -photoproduction

The beam asymmetry Σ in η -photoproduction

- The beam asymmetry Σ was determined in π^0 and η -photoproduction
- Results:
 - very precise π^0 data was measured for $E_{\gamma} = 1100 \,\mathrm{MeV}$ $1800 \,\mathrm{MeV}$
 - precise η data was measured for $\mathsf{E}_{\gamma}=\!\!1100\,\mathrm{MeV}$ $1800\,\mathrm{MeV}$
 - η data can not be described by either PWA models
 - data will provide new constraints for the PWA
- More results in other polarization observables
 - \rightarrow See next talk by Jonas Müller

Thank you!

$$\hat{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2+2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

$L_{max} = 0$	$L_{max} = 1$	$L_{max} = 2$	$L_{max} = 3$	$L_{max} = 4$
S-wave	P-wave	D-wave	F-wave	G-wave
S ₁₁ (1535)	P ₁₁ (1440)	D ₁₃ (1520)	$F_{15}(1680)$	G ₁₇ (2190)
S ₁₁ (1650)	P ₁₃ (1720)	D ₁₅ (1675)	F ₃₅ (1905)	
S ₃₁ (1620)	P ₃₃ (1232)	D ₃₃ (1700)	F ₃₇ (1950)	

Measurement of the beam asymmetry Σ in π^0 - and η -photoproduction

$$\hat{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2+2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

$L_{max} = 0$	$L_{max} = 1$	$L_{max} = 2$	$L_{max} = 3$	$L_{max} = 4$
S-wave	P-wave	D-wave	F-wave	G-wave
S ₁₁ (1535)	P ₁₁ (1440)	D ₁₃ (1520)	$F_{15}(1680)$	G ₁₇ (2190)
S ₁₁ (1650)	P ₁₃ (1720)	D ₁₅ (1675)	F ₃₅ (1905)	
S ₃₁ (1620)	P ₃₃ (1232)	D ₃₃ (1700)	F ₃₇ (1950)	

Measurement of the beam asymmetry Σ in π^0 - and η -photoproduction

$$\hat{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2+2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

$L_{max} = 0$	$L_{max} = 1$	$L_{max} = 2$	$L_{max} = 3$	$L_{max} = 4$
S-wave	P-wave	D-wave	F-wave	G-wave
S ₁₁ (1535)	P ₁₁ (1440)	D ₁₃ (1520)	$F_{15}(1680)$	G ₁₇ (2190)
S ₁₁ (1650)	P ₁₃ (1720)	D ₁₅ (1675)	F ₃₅ (1905)	G ₃₇ (2200)?
S ₃₁ (1620)	P ₃₃ (1232)	D ₃₃ (1700)	F ₃₇ (1950)	

Measurement of the beam asymmetry Σ in π^0 - and η -photoproduction

$$\hat{\Sigma}(W,\cos\theta) = \Sigma(W,\cos\theta) \cdot \frac{d\sigma}{d\Omega}(W,\cos\theta) = \sum_{k=2}^{2+2L_{max}} (a_L(W))_k \cdot P_k^2(\cos\theta)$$

$L_{max} = 0$	$L_{max} = 1$	$L_{max} = 2$	$L_{max} = 3$	$L_{max} = 4$
S-wave	P-wave	D-wave	F-wave	G-wave
S ₁₁ (1535)	P ₁₁ (1440)	D ₁₃ (1520)	$F_{15}(1680)$	G ₁₇ (2190)
S ₁₁ (1650)	P ₁₃ (1720)	D ₁₅ (1675)	F ₃₅ (1905)	G ₃₇ (2200)?
S ₃₁ (1620)	P ₃₃ (1232)	D ₃₃ (1700)	F ₃₇ (1950)	

Measurement of the beam asymmetry Σ in π^0 - and η -photoproduction

Linearly polarized photons

- coherent bremsstrahlung produced on diamond crystal
- Bragg: if $\vec{q} = n \cdot \vec{g} \rightarrow$ constructive interference

Circularly polarized photons

- Need longitudinally polarized electrons
- helicity transfer from electrons to photons

- polarize electrons (2.5 T, 300 mK)
- transfer polarization to the protons dynamically via irradiation of microwaves
- "freeze spin" (70 mK) \rightarrow long relaxation times

