Complete Experiments in pseudoscalar meson photoproduction

Yannick Wunderlich

HISKP, University of Bonn

14.04.2015

I. Pseudoscalar meson photoproduction is described by 4 complex amplitudes $\{F_i(W, \theta), i = 1, ..., 4\}$.

- I. Pseudoscalar meson photoproduction is described by 4 complex amplitudes $\{F_i(W, \theta), i = 1, ..., 4\}$.
- II. In order to extract the production amplitudes uniquely up to an overall phase, from the full set of 16 polarization observables

$$\check{\Omega}^{lpha}\left(W, heta
ight)=eta\left[\left(rac{d\sigma}{d\Omega}
ight)^{\left(B_{1},T_{1},R_{1}
ight)}-\left(rac{d\sigma}{d\Omega}
ight)^{\left(B_{2},T_{2},R_{2}
ight)}
ight]=rac{1}{2}\sum_{i,j}F_{i}^{*}\hat{A}_{ij}^{lpha}F_{j}$$

8 carefully chosen ones are needed [Chiang, Tabakin (1996)].

- I. Pseudoscalar meson photoproduction is described by 4 complex amplitudes $\{F_i(W, \theta), i = 1, ..., 4\}$.
- II. In order to extract the production amplitudes uniquely up to an overall phase, from the full set of 16 polarization observables

$$\check{\Omega}^{\alpha}\left(W,\theta\right) = \beta\left[\left(\frac{d\sigma}{d\Omega}\right)^{\left(B_{1},T_{1},R_{1}\right)} - \left(\frac{d\sigma}{d\Omega}\right)^{\left(B_{2},T_{2},R_{2}\right)}\right] = \frac{1}{2}\sum_{i,j}F_{i}^{*}\hat{A}_{ij}^{\alpha}F_{j}$$

8 carefully chosen ones are needed [Chiang, Tabakin (1996)].

- I. Pseudoscalar meson photoproduction is described by 4 complex amplitudes $\{F_i(W, \theta), i = 1, ..., 4\}$.
- II. In order to extract the production amplitudes uniquely up to an overall phase, from the full set of 16 polarization observables

 $\check{\Omega}^{\alpha}(W,\theta) = \beta \left[\left(\frac{d\sigma}{d\Omega} \right)^{(B_1,T_1,R_1)} - \left(\frac{d\sigma}{d\Omega} \right)^{(B_2,T_2,R_2)} \right] = \frac{1}{2} \sum_{i,j} F_i^* \hat{A}_{ij}^{\alpha} F_j$

8 carefully chosen ones are needed [Chiang, Tabakin (1996)].

III. $\phi^F(W, \theta)$ denies access to partial waves upon extraction of the F_i . \rightarrow Study Complete Experiments in a Truncated Partial Wave Analysis [A. S. Omelaenko (1981)] & [V. F. Grushin (1989)].

Definition of the TPWA problem

Desirable for low-energy processes: Truncate the partial wave expansion of the full spin amplitudes at some finite $\ell_{\rm max}$, e.g.

$$F_1(W, heta) = \sum_{\ell=0}^{\ell_{\max}} \Big\{ \left[\ell M_{\ell+} + E_{\ell+}
ight] P_{\ell+1}^{'} \left(\cos heta
ight) + \left[\left(\ell + 1
ight) M_{\ell-} + E_{\ell-}
ight] P_{\ell-1}^{'} \left(\cos heta
ight) \Big\},$$

and insert this truncated expansion into the polarization observables $\{\check{\Omega}^{\alpha}(W,\theta), \alpha = 1, \dots, 16\}$ of pseudoscalar meson photoproduction.

Definition of the TPWA problem

Desirable for low-energy processes: Truncate the partial wave expansion of the full spin amplitudes at some finite ℓ_{max} , e.g.

$$F_1(W, heta) = \sum_{\ell=0}^{\ell_{\max}} \Big\{ \left[\ell M_{\ell+} + E_{\ell+} \right] P_{\ell+1}^{'} \left(\cos heta
ight) + \left[\left(\ell + 1
ight) M_{\ell-} + E_{\ell-}
ight] P_{\ell-1}^{'} \left(\cos heta
ight) \Big\},$$

and insert this truncated expansion into the polarization observables $\{\check{\Omega}^{\alpha}(W,\theta), \alpha = 1, \dots, 16\}$ of pseudoscalar meson photoproduction.

Truncated Partial Wave Analysis

$$\begin{split} \check{\Omega}^{\alpha}\left(W,\theta\right) &= \sin^{\beta_{\alpha}}\theta \left[a_{0}^{\alpha}\left(W\right) + a_{1}^{\alpha}\left(W\right)\cos\theta + a_{2}^{\alpha}\left(W\right)\cos^{2}\theta + \ldots\right] \\ &= \sin^{\beta_{\alpha}}\theta \sum_{k=0}^{2\ell_{\max}+\gamma_{\alpha}}a_{k}^{\alpha}\left(W\right)\cos^{k}\theta, \\ a_{k}^{\alpha}\left(W\right) &= \left\langle \mathcal{M}(W)\right|C_{k}^{\alpha}\left|\mathcal{M}(W)\right\rangle, \ \left|\mathcal{M}\left(W\right)\right\rangle = \left(E_{\ell\pm}\left(W\right), M_{\ell\pm}\left(W\right)\right)^{T} \end{split}$$

→ How many and which observables have to be measured in order to uniquely solve for the multipoles $\{E_{\ell\pm}(W), M_{\ell\pm}(W)\}$?

• The maximal $\cos \theta$ powers in the CGLN amplitudes are:

 $F_1 \sim (\cos \theta)^{\ell_{\max}}, F_2 \sim (\cos \theta)^{\ell_{\max}-1}, F_3 \sim (\cos \theta)^{\ell_{\max}-1}, F_4 \sim (\cos \theta)^{\ell_{\max}-2}.$

• The maximal $\cos \theta$ powers in the CGLN amplitudes are:

 $F_1 \sim (\cos \theta)^{\ell_{\max}}$, $F_2 \sim (\cos \theta)^{\ell_{\max}-1}$, $F_3 \sim (\cos \theta)^{\ell_{\max}-1}$, $F_4 \sim (\cos \theta)^{\ell_{\max}-2}$. \rightarrow Example: differential cross section σ_0

$$\sigma_{0} = \operatorname{Re}\left[|F_{1}|^{2} + |F_{2}|^{2} - 2\cos(\theta)F_{1}^{*}F_{2} + \frac{1}{2}\sin^{2}(\theta)\left\{|F_{3}|^{2} + |F_{4}|^{2} + 2F_{1}^{*}F_{4} + 2F_{2}^{*}F_{3} + 2\cos(\theta)F_{3}^{*}F_{4}\right\}\right].$$

- The maximal $\cos \theta$ powers in the CGLN amplitudes are: $F_1 \sim (\cos \theta)^{\ell_{\max}}$, $F_2 \sim (\cos \theta)^{\ell_{\max}-1}$, $F_3 \sim (\cos \theta)^{\ell_{\max}-1}$, $F_4 \sim (\cos \theta)^{\ell_{\max}-2}$.
- ightarrow Example: differential cross section σ_0

Therefore: $\sigma_0 \sim (\cos \theta)^{2\ell_{\max}}$

- The maximal $\cos \theta$ powers in the CGLN amplitudes are: $F_1 \sim (\cos \theta)^{\ell_{\max}}$, $F_2 \sim (\cos \theta)^{\ell_{\max}-1}$, $F_3 \sim (\cos \theta)^{\ell_{\max}-1}$, $F_4 \sim (\cos \theta)^{\ell_{\max}-2}$.
- ightarrow Example: differential cross section σ_0

Therefore: $\sigma_0 \sim (\cos \theta)^{2\ell_{\max}}$

Count maximal $\cos \theta$ powers for group S and \mathcal{BT} observables: $\sigma_0 \sim (\cos \theta)^{2\ell_{\max}} \quad \check{\Sigma} \sim (\cos \theta)^{2\ell_{\max}-2} \quad \check{T} \sim (\cos \theta)^{2\ell_{\max}-1} \quad \check{P} \sim (\cos \theta)^{2\ell_{\max}-1}$ $\check{E} \sim (\cos \theta)^{2\ell_{\max}} \quad \check{G} \sim (\cos \theta)^{2\ell_{\max}-2} \quad \check{H} \sim (\cos \theta)^{2\ell_{\max}-1} \quad \check{F} \sim (\cos \theta)^{2\ell_{\max}-1}$

Add +1 for $(\cos \theta)^0$ -term in order to obtain:

Number of angular fit coefficients a_k^{α} provided by group S and \mathcal{BT} :

$$\begin{array}{ll} \sigma_0 \sim (2\ell_{\max}+1) & \check{\Sigma} \sim (2\ell_{\max}-1) & \check{T} \sim 2\ell_{\max} & \check{P} \sim 2\ell_{\max} \\ \check{E} \sim (2\ell_{\max}+1) & \check{G} \sim (2\ell_{\max}-1) & \check{H} \sim 2\ell_{\max} & \check{F} \sim 2\ell_{\max} \end{array}$$

Add +1 for $(\cos \theta)^0$ -term in order to obtain:

Number of angular fit coefficients a_k^{α} provided by group S and \mathcal{BT} :

- $\begin{array}{ll} \sigma_0 \sim (2\ell_{\max}+1) & \check{\Sigma} \sim (2\ell_{\max}-1) & \check{T} \sim 2\ell_{\max} & \check{P} \sim 2\ell_{\max} \\ \check{E} \sim (2\ell_{\max}+1) & \check{G} \sim (2\ell_{\max}-1) & \check{H} \sim 2\ell_{\max} & \check{F} \sim 2\ell_{\max} \end{array}$
 - I. The number of real parameters to be determined in a TPWA is:

$$\underbrace{4\ell_{\max}}_{\# \, \mathrm{of}\, \mathcal{M}_\ell} \times \underbrace{2}_{\mathcal{M}_\ell \in \mathbb{C}} - \underbrace{1}_{\mathrm{overall \, phase \, fixed}} = (8\ell_{\max} - 1)$$

Add +1 for $(\cos \theta)^0$ -term in order to obtain:

Number of angular fit coefficients a_k^{α} provided by group S and \mathcal{BT} :

- $\begin{array}{ll} \sigma_0 \sim (2\ell_{\max}+1) & \check{\Sigma} \sim (2\ell_{\max}-1) & \check{T} \sim 2\ell_{\max} & \check{P} \sim 2\ell_{\max} \\ \check{E} \sim (2\ell_{\max}+1) & \check{G} \sim (2\ell_{\max}-1) & \check{H} \sim 2\ell_{\max} & \check{F} \sim 2\ell_{\max} \end{array}$
 - I. The number of real parameters to be determined in a TPWA is:

$$\underbrace{4\ell_{\max}}_{\# \, \mathrm{of}\, \mathcal{M}_\ell} \times \underbrace{2}_{\mathcal{M}_\ell \in \mathbb{C}} - \underbrace{1}_{\mathrm{overall \, phase \, fixed}} = (8\ell_{\max} - 1)$$

II. Compare number of a_k^{α} to the number of varied parameters:

- $\{\sigma_0, \check{\Sigma}, \check{\mathcal{T}}, \check{P}\}$: $8\ell_{\max} \; [a_k^{lpha}] > (8\ell_{\max} - 1)$, however: discrete ambiguities!

Add +1 for $(\cos \theta)^0$ -term in order to obtain:

Number of angular fit coefficients a_k^{α} provided by group S and \mathcal{BT} :

- $\begin{array}{ll} \sigma_0 \sim (2\ell_{\max}+1) & \check{\Sigma} \sim (2\ell_{\max}-1) & \check{T} \sim 2\ell_{\max} & \check{P} \sim 2\ell_{\max} \\ \check{E} \sim (2\ell_{\max}+1) & \check{G} \sim (2\ell_{\max}-1) & \check{H} \sim 2\ell_{\max} & \check{F} \sim 2\ell_{\max} \end{array}$
 - I. The number of real parameters to be determined in a TPWA is:

$$\underbrace{4\ell_{\max}}_{\# \, \mathrm{of}\, \mathcal{M}_\ell} \times \underbrace{2}_{\mathcal{M}_\ell \in \mathbb{C}} - \underbrace{1}_{\mathrm{overall \, phase \, fixed}} = (8\ell_{\max} - 1)$$

II. Compare number of a_k^{α} to the number of varied parameters:

- $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$: $8\ell_{\max} [a_k^{\alpha}] > (8\ell_{\max} - 1)$, however: discrete ambiguities! - $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\} \oplus \check{E}$: $(10\ell_{\max} + 1) [a_k^{\alpha}] > (8\ell_{\max} - 1)$, still discr. ambig.!

Add +1 for $(\cos \theta)^0$ -term in order to obtain:

Number of angular fit coefficients a_k^{α} provided by group S and \mathcal{BT} :

- $\begin{array}{ll} \sigma_0 \sim (2\ell_{\max}+1) & \check{\Sigma} \sim (2\ell_{\max}-1) & \check{T} \sim 2\ell_{\max} & \check{P} \sim 2\ell_{\max} \\ \check{E} \sim (2\ell_{\max}+1) & \check{G} \sim (2\ell_{\max}-1) & \check{H} \sim 2\ell_{\max} & \check{F} \sim 2\ell_{\max} \end{array}$
 - I. The number of real parameters to be determined in a TPWA is:

$$\underbrace{4\ell_{\max}}_{\# \, \mathrm{of}\, \mathcal{M}_\ell} \times \underbrace{2}_{\mathcal{M}_\ell \in \mathbb{C}} - \underbrace{1}_{\mathrm{overall \, phase \, fixed}} = (8\ell_{\max} - 1)$$

II. Compare number of a_k^{α} to the number of varied parameters:

 $\begin{array}{l} - \left\{ \sigma_{0}, \check{\Sigma}, \check{T}, \check{P} \right\} : 8\ell_{\max} \left[a_{k}^{\alpha} \right] > (8\ell_{\max} - 1), \text{ however: discrete ambiguities!} \\ - \left\{ \sigma_{0}, \check{\Sigma}, \check{T}, \check{P} \right\} \oplus \check{E} : (10\ell_{\max} + 1) \left[a_{k}^{\alpha} \right] > (8\ell_{\max} - 1), \text{ still discr. ambig.!} \\ - \left\{ \sigma_{0}, \check{\Sigma}, \check{T}, \check{P} \right\} \oplus \check{F} : (10\ell_{\max}) \left[a_{k}^{\alpha} \right] > (8\ell_{\max} - 1), \text{ complete set.} \end{array}$

Add +1 for $(\cos \theta)^0$ -term in order to obtain:

Number of angular fit coefficients a_k^{α} provided by group S and \mathcal{BT} :

- $\begin{array}{ll} \sigma_0 \sim (2\ell_{\max}+1) & \check{\Sigma} \sim (2\ell_{\max}-1) & \check{T} \sim 2\ell_{\max} & \check{P} \sim 2\ell_{\max} \\ \check{E} \sim (2\ell_{\max}+1) & \check{G} \sim (2\ell_{\max}-1) & \check{H} \sim 2\ell_{\max} & \check{F} \sim 2\ell_{\max} \end{array}$
 - I. The number of real parameters to be determined in a TPWA is:

$$\underbrace{4\ell_{\max}}_{\#\,\mathrm{of}\,\mathcal{M}_\ell}\times\underbrace{2}_{\mathcal{M}_\ell\in\mathbb{C}}-\underbrace{1}_{\mathrm{overall\,phase\,fixed}}=(8\ell_{\max}-1)$$

II. Compare number of a_k^{α} to the number of varied parameters:

- $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\}$: $8\ell_{\max} [a_k^{\alpha}] > (8\ell_{\max} - 1)$, however: discrete ambiguities! - $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\} \oplus \check{E}$: $(10\ell_{\max} + 1) [a_k^{\alpha}] > (8\ell_{\max} - 1)$, still discr. ambig.! - $\{\sigma_0, \check{\Sigma}, \check{T}, \check{P}\} \oplus \check{F}$: $(10\ell_{\max}) [a_k^{\alpha}] > (8\ell_{\max} - 1)$, complete set.

→ Comparison of real degrees of freedom seems promising!

Complete sets of observables

Study of the theoretical ambiguities of the group S observables $\left\{ \left(\frac{d\sigma}{d\Omega} \right)_0, \Sigma, P, T \right\}$ according to [A. S. Omelaenko (1981)] (see also [Wunderlich/Beck/Tiator (2014)])

Results of Ambiguity diagrams:

- I. the double ambiguity can be predicted for all orders in ℓ_{\max} and for all energies E_{γ}
- II. accidential ambiguities can occur randomly in each energy bin, but cannot be predicted

Complete sets of observables

Study of the theoretical ambiguities of the group S observables $\left\{ \left(\frac{d\sigma}{d\Omega} \right)_0, \Sigma, P, T \right\}$ according to [A. S. Omelaenko (1981)] (see also [Wunderlich/Beck/Tiator (2014)])

Results of Ambiguity diagrams:

- I. the double ambiguity can be predicted for all orders in ℓ_{max} and for all energies E_{γ}
- II. accidential ambiguities can occur randomly in each energy bin, but cannot be predicted

→ Double polarization observables capable of resolving the ambiguities: \mathcal{BT} : {*F*, *G*}, \mathcal{BR} : {*O*_{x'}, *O*_{z'}, *C*_{x'}, *C*_{z'}}, \mathcal{TR} : {*T*_{x'}, *T*_{z'}, *L*_{x'}, *L*_{z'}}

- \rightarrow Examples of complete sets: $\{\sigma_0, \Sigma, T, P, F\}$ or $\{\sigma_0, \Sigma, T, P, G\}$
- \rightarrow Can these predictions be verified using numerical TPWA fits?

Two step method:

1. Fit the angular distributions of observables, parametrized by

$$\check{\Omega}^{\alpha}(W,\theta) = \frac{q}{k} \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} (a_{L})_{k}^{\alpha}(W) P_{k}^{\beta_{\alpha}}(\cos\theta)$$

 $\Rightarrow \mathsf{Angular} \text{ fit parameters } \left(a_L^{\mathrm{Fit}}\right)_k^\alpha \,\&\, \mathsf{errors} \,\,\Delta\left(a_L^{\mathrm{Fit}}\right)_k^\alpha$

- Absorb $\sin^{\beta_{\alpha}} \theta$ factors into the fitting functions $P_{k}^{\beta_{\alpha}}(\cos \theta)$
- ${\cal P}_k^{eta_lpha}\left(\cos heta
 ight)$ have the advantage of being orthogonal for $\cos heta\in[-1,1]$

Two step method:

1. Fit the angular distributions of observables, parametrized by

$$\check{\Omega}^{\alpha}(W,\theta) = \frac{q}{k} \sum_{k=\beta_{\alpha}}^{2\ell_{\max}+\beta_{\alpha}+\gamma_{\alpha}} (a_{L})_{k}^{\alpha}(W) P_{k}^{\beta_{\alpha}}(\cos\theta)$$

 $\Rightarrow \mathsf{Angular} \text{ fit parameters } \left(a_L^{\mathrm{Fit}}\right)_k^\alpha \,\&\, \mathsf{errors} \,\, \Delta \left(a_L^{\mathrm{Fit}}\right)_k^\alpha$

- Absorb $\sin^{\beta_{\alpha}} \theta$ factors into the fitting functions $P_k^{\beta_{\alpha}}(\cos \theta)$
- $\mathcal{P}_{k}^{eta_{lpha}}(\cos heta)$ have the advantage of being orthogonal for $\cos heta\in[-1,1]$
- 2. Minimize the functional:

$$\Phi_{\mathcal{M}}\left(\mathcal{M}_{\ell}
ight) = rac{1}{N_{F,P.} - N_{V.M.}} \sum_{lpha, k} \left(rac{\left(\left(a_{l}^{\mathrm{Fit}}
ight)_{k}^{lpha} - \langle \mathcal{M}_{\ell} | (C_{l})_{k}^{lpha} | \mathcal{M}_{\ell}
ight)
ight)}{\Delta\left(a_{l}^{\mathrm{Fit}}
ight)_{k}^{lpha}}
ight)^{2}$$

using the MATHEMATICA method FindMinimum [$\Phi_{\mathcal{M}}(\mathcal{M}_{\ell})$, {{Re [E_{0+}], (x_1)₀},..., {Im [$M_{\ell_{max}-}$], (y_n)₀}] and varying the real and imaginary parts of the (possibly phase constrained) multipoles in the fit.

Y. Wunderlich

Details on the multipole fit procedure II

<u>Question</u>: How to choose the start parameters $\{(x_1)_0, \ldots, (y_n)_0\}$?

<u>Ansatz</u>: Use the total cross section $\sigma(W)$. Example: $\ell \leq \ell_{\max} = 1$, phase constraint $\operatorname{Im} \left[\tilde{E}_{0+} \right] = 0 \& \operatorname{Re} \left[\tilde{E}_{0+} \right] > 0$:

$$\begin{aligned} \sigma(W) &\approx 4\pi \frac{q}{k} \left(\operatorname{Re} \left[\tilde{E}_{0+} \right]^2 + 6\operatorname{Re} \left[\tilde{E}_{1+} \right]^2 + 6\operatorname{Im} \left[\tilde{E}_{1+} \right]^2 + 2\operatorname{Re} \left[\tilde{M}_{1+} \right]^2 \\ &+ 2\operatorname{Im} \left[\tilde{M}_{1+} \right]^2 + \operatorname{Re} \left[\tilde{M}_{1-} \right]^2 + \operatorname{Im} \left[\tilde{M}_{1-} \right]^2 \right) \end{aligned}$$

Details on the multipole fit procedure II

<u>Question</u>: How to choose the start parameters $\{(x_1)_0, \ldots, (y_n)_0\}$?

<u>Ansatz</u>: Use the total cross section $\sigma(W)$. Example: $\ell \leq \ell_{\max} = 1$, phase constraint $\operatorname{Im} \left[\tilde{E}_{0+} \right] = 0 \& \operatorname{Re} \left[\tilde{E}_{0+} \right] > 0$:

$$\begin{split} \sigma(W) &\approx 4\pi \frac{q}{k} \Big(\operatorname{Re} \left[\tilde{E}_{0+} \right]^2 + 6\operatorname{Re} \left[\tilde{E}_{1+} \right]^2 + 6\operatorname{Im} \left[\tilde{E}_{1+} \right]^2 + 2\operatorname{Re} \left[\tilde{M}_{1+} \right]^2 \\ &+ 2\operatorname{Im} \left[\tilde{M}_{1+} \right]^2 + \operatorname{Re} \left[\tilde{M}_{1-} \right]^2 + \operatorname{Im} \left[\tilde{M}_{1-} \right]^2 \Big) \end{split}$$

• $\sigma(W)$ constrains the intervals of the multipoles:

$$\operatorname{Re}\left[\tilde{E}_{0+}\right] \in \left[0, \sqrt{\frac{k}{q} \frac{\sigma(W)}{4\pi}}\right], \dots, \operatorname{Im}\left[\tilde{M}_{1-}\right] \in \left[-\sqrt{\frac{k}{q} \frac{\sigma(W)}{4\pi}}, \sqrt{\frac{k}{q} \frac{\sigma(W)}{4\pi}}\right]$$

• The total cross section, being quadratic form in the multipoles, also defines an ellipsoid in the multipole space.

1. The total cross section $\sigma(W)$ constrains the $(8\ell_{\max} - 1)$ -dimensional multipole space \mathcal{M}_{ℓ} .

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[E_{0+}]$$

- 1. The total cross section $\sigma(W)$ constrains the $(8\ell_{\max} - 1)$ -dimensional multipole space \mathcal{M}_{ℓ} .
- 2. $\sigma(W)$ defines an $(8\ell_{\max} 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .

 $\mathcal{M}_\ell \setminus \operatorname{Re}[\textit{E}_{0+}]$

- 1. The total cross section $\sigma(W)$ constrains the $(8\ell_{\max} - 1)$ -dimensional multipole space \mathcal{M}_{ℓ} .
- 2. $\sigma(W)$ defines an $(8\ell_{\max} 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .
- 3. Solutions to the TPWA problem lie on the ellipsoid defined by $\sigma(W)$.

 $\mathcal{M}_\ell \setminus \operatorname{Re}[\textit{E}_{0+}]$

- 1. The total cross section $\sigma(W)$ constrains the $(8\ell_{\max} - 1)$ -dimensional multipole space \mathcal{M}_{ℓ} .
- 2. $\sigma(W)$ defines an $(8\ell_{\max} 2)$ dimensional ellipsoid in \mathcal{M}_{ℓ} .
- 3. Solutions to the TPWA problem lie on the ellipsoid defined by $\sigma(W)$.
- 4. The start values for the FindMinimum-Fit are chosen randomly on the $\sigma(W)$ -ellipsoid.
 - \Rightarrow Monte Carlo sampling of the multipole space.

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[\mathcal{E}_{0+}]$$

5. A FindMinimum-minimization is performed for each of the randomly generated start configurations.

 $\Rightarrow N_{MC} = \# \text{ of M.C. start}$ configurations = # of (possibly redundant)solutions

$$\mathcal{M}_{\ell} \setminus \operatorname{Re}[\mathcal{E}_{0+}]$$

- Loop through N_{MC} Levenberg Marquardt solutions for each energy bin.
- Determine solution with the best $\Phi_{\mathcal{M}}$, i.e. $\Phi_{\mathcal{M}}^{\rm best}$ as well as the corresponding multipoles $\mathcal{M}_{\ell}^{\rm best}$.
- It is also reasonable to apply ''cut selections'' to all obtained LM-solutions $\Phi^j_{\mathcal{M}}$ according to

$$\frac{\Phi^{j}_{\mathcal{M}} - \Phi^{\text{best}}_{\mathcal{M}}}{\Phi^{\text{best}}_{\mathcal{M}}} < \epsilon.$$

- Examples: $\epsilon = 1$ for solutions vaguely compatible in Φ_M , or adjust ϵ to the numerical fit precision for mathematically equivalent solutions.
- $\rightarrow\,$ Store the solutions passing the cuts, later: used for histograms

The $\Phi_{\mathcal{M}}$ is defined by the fitted Legendre coefficients $(a_L^{\text{Fit}})_{\mu}^{\alpha}$.

Start values have been distributed on the relevant part of the space \mathcal{M}_{ℓ} .

Cut selection using $\epsilon=1$

Fitted datasets

The following datasets were investigated in the energy region $E_{\gamma}^{\text{LAB}} = 300...350 \text{ MeV}$ for the process $\gamma p \rightarrow \pi^0 p$:

I. Data taken at the MAMI facility:

- σ_0 : 20 energy points for $E_{\gamma}^{\text{LAB}} \in [302.010, 348.280]$ MeV $\Delta \sigma_0 \leq 1\%$, [D. Hornidge, PRL 111 (2013) 062004]
- Σ : 6 energy points for $E_{\gamma}^{\text{LAB}} \in [300, 350] \text{ MeV}$ $\Delta \Sigma \simeq 5, \dots, 10\%, [R. \text{ Leukel, PhD}(2001)]$
- T: 47 energy points for $E_{\gamma}^{\text{LAB}} \in [300.452, 349.358]$ MeV $\Delta T \leq 10\%$, [P. Otte, S. Schumann (preliminary)]
- F: 47 energy points for $E_{\gamma}^{\text{LAB}} \in [300.452, 349.358]$ MeV $\Delta F \leq 10\%$, [P. Otte, S. Schumann (preliminary)]

Fitted datasets

The following datasets were investigated in the energy region $E_{\gamma}^{\text{LAB}} = 300...350 \text{ MeV}$ for the process $\gamma p \rightarrow \pi^0 p$:

I. Data taken at the MAMI facility:

- σ_0 : 20 energy points for $E_{\gamma}^{\text{LAB}} \in [302.010, 348.280]$ MeV $\Delta \sigma_0 \leq 1\%$, [D. Hornidge, PRL 111 (2013) 062004]
- Σ : 6 energy points for $E_{\gamma}^{\text{LAB}} \in [300, 350] \text{ MeV}$ $\Delta \Sigma \simeq 5, \dots, 10\%, [\text{R. Leukel, PhD}(2001)]$
- T: 47 energy points for $E_{\gamma}^{\text{LAB}} \in [300.452, 349.358]$ MeV $\Delta T \leq 10\%$, [P. Otte, S. Schumann (preliminary)]
- F: 47 energy points for $E_{\gamma}^{\text{LAB}} \in [300.452, 349.358]$ MeV $\Delta F \leq 10\%$, [P. Otte, S. Schumann (preliminary)]
- II. Data from the world database (cf. SAID website):
 - *P*: 3 (!) energy points, i.e. $E_{\gamma}^{\text{LAB}} = \{300, 320, 350\}$ MeV $\Delta P \simeq 50, \dots, 150\%$, combination of Kharkov and Bonn data: [Belyaev et al., NPB 213 (1983) 201] & [Althoff et al., PLB 26 (1968) 677]

Fitted datasets

The following datasets were investigated in the energy region $E_{\gamma}^{\text{LAB}} = 300...350 \text{ MeV}$ for the process $\gamma p \rightarrow \pi^0 p$:

I. Data taken at the MAMI facility:

- σ_0 : 20 energy points for $E_{\gamma}^{\text{LAB}} \in [302.010, 348.280]$ MeV $\Delta \sigma_0 \leq 1\%$, [D. Hornidge, PRL 111 (2013) 062004]
- Σ : 6 energy points for $E_{\gamma}^{\text{LAB}} \in [300, 350] \text{ MeV}$ $\Delta \Sigma \simeq 5, \dots, 10\%, [\text{R. Leukel, PhD}(2001)]$
- T: 47 energy points for $E_{\gamma}^{\text{LAB}} \in [300.452, 349.358]$ MeV $\Delta T \leq 10\%$, [P. Otte, S. Schumann (preliminary)]
- F: 47 energy points for $E_{\gamma}^{\text{LAB}} \in [300.452, 349.358]$ MeV $\Delta F \leq 10\%$, [P. Otte, S. Schumann (preliminary)]
- II. Data from the world database (cf. SAID website):

- P: 3 (!) energy points, i.e. $E_{\gamma}^{\text{LAB}} = \{300, 320, 350\}$ MeV $\Delta P \simeq 50, \dots, 150\%$, combination of Kharkov and Bonn data: [Belyaev et al., NPB 213 (1983) 201] & [Althoff et al., PLB 26 (1968) 677]

 \rightarrow 2214 data points taken into account for $\gamma p \rightarrow \pi^0 p$.

Angular distributions of data as provided are shown.

The data are re-binned to the kinematic grid dictated by the σ_0 measurement. Profile functions are calculated.

Profile functions for the original dataset are fitted with an S- and P-wave truncation ($\ell_{\rm max}=1$).

Y. Wunderlich

Y. Wunderlich

Complete Experiment in a TPWA

Fit the additional dataset.

Generate 1 more dataset.

Fit the additional dataset.

Generate 1 more dataset.

Fit the additional dataset.

In total, 250 additional datasets are generated.

All of the (1 + 250) datasets are fitted. The TPWA fit step 2 is then applied to each one (for $\ell_{max} = 1$).

 $\gamma p \rightarrow \pi^0 p$: { σ_0, Σ, T, F } from MAMI and <u>P</u> from World Data. Histogram results for an Ensemble of (1 + 250) datasets at $E_{\gamma}^{\rm LAB}\simeq 338\,{\rm MeV}$: $\operatorname{ReE}_{0+}^{C}[m\,\mathrm{Fm}]$ $\operatorname{Im} E^{C}_{1+}[m \operatorname{Fm}]$ $\text{ReE}_{1+}^{C}[\text{mFm}]$ 2.5 0.8 2.5 2.0 minan 0.6 2.01.5 1.5 0.4 1.0 1.0 0.2 0.5 0.5 0.0 0.0 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -3.0-2.5-2.0-1.5-1.0-0.5 0.0 $\text{ReM}^{C_{1}}[\text{mFm}]$ $\operatorname{Im} M^{C}_{1+}[m \operatorname{Fm}]$ $\text{ReM}^{C}_{1+}[\text{mFm}]$ 1.2 0.20 1.0 0.8 ekiminary Preliminal 0.15 0.8 0.6 0.10 0.6 0.4 Prel 0.4 0.05 0.2 0.2 0.0 0.00 31 -15 -10 1.5 2.0 32 33 34 35 -5 0.5 1.0 2.5 3.0 $\operatorname{Im} M^{C}_{1-}[mFm]$ 0.15 0.10 0.05 0.00 -2 -4 0 2 4 6 8

 $\gamma p \rightarrow \pi^0 p$: { σ_0, Σ, T, F } from MAMI and <u>P</u> from World Data. Histogram results for an Ensemble of (1 + 250) datasets at $E_{\gamma}^{\rm LAB}\simeq 338\,{\rm MeV}$: $\operatorname{ReE}_{0+}^{C}[m\,\mathrm{Fm}]$ $\operatorname{Im} E^{C}_{1+}[m \operatorname{Fm}]$ $\text{ReE}_{1+}^{C}[\text{mFm}]$ 2.5 0.8 2.5 2.0 nan 0.6 2.01.5 1.5 0.41.0 1.0 0.2 0.5 0.5 0.0 0.0 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -3.0-2.5-2.0-1.5-1.0-0.5 0.0 $\text{ReM}^{C}_{1-}[\text{mFm}]$ $\operatorname{ReM}^{C}_{1+}[m\,\mathrm{Fm}]$ $\operatorname{Im} M^{C}_{1+}[mFm]$ 0.20 1.0 0.8 ninary Prelimina 0.15 0.8 0.6 0.10 0.6 0.4 0.40.05 0.2 0.0 0.00 31 32 -15 -10 -5 0.5 1.5 2.0 33 34 35 1.0 2.5 3.0 Im M^C₁₋[m Fm] 0.15 0.10 0.05 0.00 -4 -2 0 2 4 6 8

 $\gamma p \rightarrow \pi^0 p$: { σ_0, Σ, T, F } from MAMI and <u>P</u> from World Data. Histogram results for an Ensemble of (1 + 250) datasets at $E_{\gamma}^{\rm LAB} \simeq 338\,{\rm MeV}$: $\operatorname{ReE}_{0+}^{C}[m\,\mathrm{Fm}]$ $\operatorname{Im} E^{C}_{1+}[mFm]$ $\text{ReE}_{1+}^{C}[\text{mFm}]$ 2.5 0.8 2.5 2.0 nan 0.6 2.01.5 1.5 0.41.0 1.0 0.2 0.5 0.5 0.0 0.0 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -3.0-2.5-2.0-1.5-1.0-0.5 0.0 $\operatorname{ReM}^{C}_{1-}[mFm]$ $\operatorname{Im} M^{C}_{1+}[mFm]$ $\text{ReM}^{C}_{1+}[\text{mFm}]$ 0.20 1.0 0.8 ninary Preliminal 0.15 0.8 0.6 0.10 0.6 0.4 0.40.05 0.2 0.0 0.00 31 32 -15 -10-5 1.5 2.0 33 34 35 0.5 1.0 2.5 3.0 $\operatorname{Im} M^{C}_{1-}[mFm]$ 0.15 0.10 0.05 0.00 -4 -2 0 2 4 6 8

 $\gamma p \rightarrow \pi^0 p$: { σ_0, Σ, T, F } from MAMI and <u>P</u> from World Data. Histogram results for an Ensemble of (1 + 250) datasets at $E_{\gamma}^{\rm LAB}\simeq 338\,{\rm MeV}$: $\operatorname{ReE}_{0+}^{C}[m\,\mathrm{Fm}]$ $\operatorname{Im} E^{C}_{1+}[mFm]$ $\text{ReE}_{1+}^{C}[\text{mFm}]$ 2.5 0.8 2.5 2.0 nary 0.6 2.01.5 1.5 0.4 1.0 1.0 0.2 0.5 0.5 0.0 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -3.0-2.5-2.0-1.5-1.0-0.5 0.0 $\text{ReM}^{C}_{1-}[\text{mFm}]$ $\operatorname{Im} M^{C}_{1+}[mFm]$ $\text{ReM}^{C}_{1+}[\text{mFm}]$ 0.20 1.0 0.8 ninary Preliminal 0.15 0.8 0.6 0.10 0.6 0.4 0.4 0.05 0.2 0.0 0.00 31 32 -15 -10-5 1.5 2.0 33 34 35 0.5 1.0 2.5 3.0 $\operatorname{Im} M^{C}_{1-}[mFm]$ 0.15 0.10 0.05 0.00 -4 -2 0 2 4 6 8

Results for fits to real data II

It is possible to verify the completeness of $\{\sigma_0, \Sigma, T, P, F\}$ by fitting new MAMI data as well as <u>P</u>-data from the world database for $\gamma p \rightarrow \pi^0 p$:

Results for fits to real data II

It is possible to verify the completeness of $\{\sigma_0, \Sigma, T, P, F\}$ by fitting new MAMI data as well as <u>P</u>-data from the world database for $\gamma p \rightarrow \pi^0 p$:

I. Model independent TPWA fit approach developed using the total cross section $\sigma(W)$ and the MATHEMATICA routine FindMinimum.

- I. Model independent TPWA fit approach developed using the total cross section $\sigma(W)$ and the MATHEMATICA routine FindMinimum.
- II. A routine based on the bootstrapping method was proposed in order to check for ambiguities as well as extract multipoles with error bands.

- I. Model independent TPWA fit approach developed using the total cross section $\sigma(W)$ and the MATHEMATICA routine FindMinimum.
- II. A routine based on the bootstrapping method was proposed in order to check for ambiguities as well as extract multipoles with error bands.
- III. First preliminary fits of an S- and P wave truncation to precisely solvable MAID theory data as well as recent polarization data from MAMI confirm the completeness of the set { $\sigma_0, \Sigma, T, P, F$ } for a truncation at $\ell_{max} = 1$.

- I. Model independent TPWA fit approach developed using the total cross section $\sigma(W)$ and the MATHEMATICA routine FindMinimum.
- II. A routine based on the bootstrapping method was proposed in order to check for ambiguities as well as extract multipoles with error bands.
- III. First preliminary fits of an S- and P wave truncation to precisely solvable MAID theory data as well as recent polarization data from MAMI confirm the completeness of the set { $\sigma_0, \Sigma, T, P, F$ } for a truncation at $\ell_{max} = 1$.
- $\label{eq:max} \rightarrow \mbox{ Investigations of higher } \ell_{max} \mbox{ as well as } \pi^0 \mbox{ photoproduction data over the whole Δ-region are planned.} \\ \mbox{ Important: D-waves have to be fitted or fixed to a model in order to obtain really correct S- and P-waves, due to interferences.}$

Thank You!

Appendix: Distributions of Legendre coefficients

I. For non. rel. QM / Spinless scattering:

$$f(W,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}(W) P_{\ell}(\cos\theta) \leftrightarrow f_{\ell}(W) = \frac{1}{2} \int_{-1}^{1} d\cos\theta f(W,\theta) P_{\ell}(\cos\theta)$$

I. For non. rel. QM / Spinless scattering:

$$f(W,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}(W) P_{\ell}(\cos\theta) \leftrightarrow f_{\ell}(W) = \frac{1}{2} \int_{-1}^{1} d\cos\theta f(W,\theta) P_{\ell}(\cos\theta)$$

II. There exist more involved projections for photoproduction, e.g.:

$$M_{\ell+}(W) = \frac{1}{2(\ell+1)} \int_{-1}^{1} d\cos\theta \Big[F_1(W,\theta) P_\ell(\cos\theta) - F_2(W,\theta) P_{\ell+1}(\cos\theta) \\ - F_3(W,\theta) \frac{P_{\ell-1}(\cos\theta) - P_{\ell+1}(\cos\theta)}{2\ell+1} \Big]$$

I. For non. rel. QM / Spinless scattering:

$$f(W,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}(W) P_{\ell}(\cos\theta) \leftrightarrow f_{\ell}(W) = \frac{1}{2} \int_{-1}^{1} d\cos\theta f(W,\theta) P_{\ell}(\cos\theta)$$

II. There exist more involved projections for photoproduction, e.g.:

$$\begin{split} \mathcal{M}_{\ell+}(W) &= \frac{1}{2(\ell+1)} \int_{-1}^{1} d\cos\theta \Big[F_1(W,\theta) \, P_\ell(\cos\theta) - F_2(W,\theta) \, P_{\ell+1}(\cos\theta) \\ &- F_3(W,\theta) \, \frac{P_{\ell-1}(\cos\theta) - P_{\ell+1}(\cos\theta)}{2\ell+1} \Big] \\ &= \frac{1}{2(\ell+1)} \int_{-1}^{1} d\cos\theta \Big[\tilde{F}_1 e^{i\phi^F} P_\ell(\cos\theta) - \tilde{F}_2 e^{i\phi^F} P_{\ell+1}(\cos\theta) \\ &- \tilde{F}_3 e^{i\phi^F} \frac{P_{\ell-1}(\cos\theta) - P_{\ell+1}(\cos\theta)}{2\ell+1} \Big] \end{split}$$

I. For non. rel. QM / Spinless scattering:

$$f(W,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}(W) P_{\ell}(\cos\theta) \leftrightarrow f_{\ell}(W) = \frac{1}{2} \int_{-1}^{1} d\cos\theta f(W,\theta) P_{\ell}(\cos\theta)$$

II. There exist more involved projections for photoproduction, e.g.:

$$\begin{split} \mathcal{M}_{\ell+}(W) &= \frac{1}{2(\ell+1)} \int_{-1}^{1} d\cos\theta \Big[F_1\left(W,\theta\right) P_\ell\left(\cos\theta\right) - F_2\left(W,\theta\right) P_{\ell+1}\left(\cos\theta\right) \\ &- F_3\left(W,\theta\right) \frac{P_{\ell-1}\left(\cos\theta\right) - P_{\ell+1}\left(\cos\theta\right)}{2\ell+1} \Big] \\ &= \frac{1}{2(\ell+1)} \int_{-1}^{1} d\cos\theta \underbrace{e^{i\phi^F\left(W,\theta\right)}}_{\text{unknown}} \Big[\tilde{F}_1\left(W,\theta\right) P_\ell\left(\cos\theta\right) - \tilde{F}_2\left(W,\theta\right) P_{\ell+1}\left(\cos\theta\right) \\ &- \tilde{F}_3\left(W,\theta\right) \frac{P_{\ell-1}\left(\cos\theta\right) - P_{\ell+1}\left(\cos\theta\right)}{2\ell+1} \Big] \end{split}$$

I. For non. rel. QM / Spinless scattering:

$$f(W,\theta) = \sum_{\ell=0}^{\infty} (2\ell+1) f_{\ell}(W) P_{\ell}(\cos\theta) \leftrightarrow f_{\ell}(W) = \frac{1}{2} \int_{-1}^{1} d\cos\theta f(W,\theta) P_{\ell}(\cos\theta)$$

II. There exist more involved projections for photoproduction, e.g.:

$$\begin{split} M_{\ell+}(W) &= \frac{1}{2(\ell+1)} \int_{-1}^{1} d\cos\theta \Big[F_1(W,\theta) P_{\ell}(\cos\theta) - F_2(W,\theta) P_{\ell+1}(\cos\theta) \\ &- F_3(W,\theta) \frac{P_{\ell-1}(\cos\theta) - P_{\ell+1}(\cos\theta)}{2\ell+1} \Big] \\ &= \frac{1}{2(\ell+1)} \int_{-1}^{1} d\cos\theta \underbrace{e^{i\phi^F(W,\theta)}}_{\text{unknown}} \Big[\tilde{F}_1(W,\theta) P_{\ell}(\cos\theta) - \tilde{F}_2(W,\theta) P_{\ell+1}(\cos\theta) \\ &- \tilde{F}_3(W,\theta) \frac{P_{\ell-1}(\cos\theta) - P_{\ell+1}(\cos\theta)}{2\ell+1} \Big] \end{split}$$

→ Not knowing $\phi^F(W, \theta)$ denies access to partial waves via the full amplitudes!